首页 > 最新文献

Adipocyte最新文献

英文 中文
IL-27 increases energy storage in white adipocytes by enhancing glucose uptake and fatty acid esterification. IL-27通过增强葡萄糖摄取和脂肪酸酯化来增加白色脂肪细胞的能量储存。
IF 3.3 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2023-12-01 Epub Date: 2023-11-10 DOI: 10.1080/21623945.2023.2276346
Chiara Scaffidi, Annie Srdic, Daniel Konrad, Stephan Wueest

The cytokine interleukin (IL)-27 has been reported to induce thermogenesis in white adipocytes. However, it remains unknown whether IL-27-mediated adipocyte energy dissipation is paralleled by an elevated energy supply from lipids and/or carbohydrates. We hypothesized that IL-27 increases lipolysis and glucose uptake in white adipocytes, thereby providing substrates for thermogenesis. Unexpectedly, we found that treatment of 3T3-L1 adipocytes with IL-27 reduced intra- and extracellular free fatty acid (FFA) concentrations and that phosphorylation of hormone-sensitive lipase (HSL) was not affected by IL-27. These results were confirmed in subcutaneous white adipocytes. Further, application of IL-27 to 3T3-L1 adipocytes increased intracellular triglyceride (TG) content but not mitochondrial ATP production nor expression of enzymes involved in beta-oxidation indicating that elevated esterification rather than oxidation causes FFA disappearance. In addition, IL-27 significantly increased GLUT1 protein levels, basal glucose uptake as well as glycolytic ATP production, suggesting that increased glycolytic flux due to IL-27 provides the glycerol backbone for TG synthesis. In conclusion, our findings suggest IL-27 increases glucose uptake and TG deposition in white adipocytes.

细胞因子白细胞介素(IL)-27已被报道可诱导白色脂肪细胞产热。然而,目前尚不清楚IL-27介导的脂肪细胞能量耗散是否与脂质和/或碳水化合物的能量供应增加平行。我们假设IL-27增加了白色脂肪细胞的脂解和葡萄糖摄取,从而为产热提供了底物。出乎意料的是,我们发现用IL-27处理3T3-L1脂肪细胞降低了细胞内和细胞外游离脂肪酸(FFA)浓度,并且激素敏感脂肪酶(HSL)的磷酸化不受IL-27的影响。这些结果在皮下白色脂肪细胞中得到证实。此外,将IL-27应用于3T3-L1脂肪细胞增加了细胞内甘油三酯(TG)含量,但没有增加线粒体ATP的产生,也没有增加参与β氧化的酶的表达,这表明升高的酯化而不是氧化导致FFA消失。此外,IL-27显著增加了GLUT1蛋白水平、基础葡萄糖摄取以及糖酵解ATP的产生,表明IL-27导致的糖酵解通量增加为TG合成提供了甘油骨架。总之,我们的研究结果表明IL-27增加了白色脂肪细胞的葡萄糖摄取和TG沉积。
{"title":"IL-27 increases energy storage in white adipocytes by enhancing glucose uptake and fatty acid esterification.","authors":"Chiara Scaffidi, Annie Srdic, Daniel Konrad, Stephan Wueest","doi":"10.1080/21623945.2023.2276346","DOIUrl":"10.1080/21623945.2023.2276346","url":null,"abstract":"<p><p>The cytokine interleukin (IL)-27 has been reported to induce thermogenesis in white adipocytes. However, it remains unknown whether IL-27-mediated adipocyte energy dissipation is paralleled by an elevated energy supply from lipids and/or carbohydrates. We hypothesized that IL-27 increases lipolysis and glucose uptake in white adipocytes, thereby providing substrates for thermogenesis. Unexpectedly, we found that treatment of 3T3-L1 adipocytes with IL-27 reduced intra- and extracellular free fatty acid (FFA) concentrations and that phosphorylation of hormone-sensitive lipase (HSL) was not affected by IL-27. These results were confirmed in subcutaneous white adipocytes. Further, application of IL-27 to 3T3-L1 adipocytes increased intracellular triglyceride (TG) content but not mitochondrial ATP production nor expression of enzymes involved in beta-oxidation indicating that elevated esterification rather than oxidation causes FFA disappearance. In addition, IL-27 significantly increased GLUT1 protein levels, basal glucose uptake as well as glycolytic ATP production, suggesting that increased glycolytic flux due to IL-27 provides the glycerol backbone for TG synthesis. In conclusion, our findings suggest IL-27 increases glucose uptake and TG deposition in white adipocytes.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2276346"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72208006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix density regulates adipocyte phenotype. 基质密度调节脂肪细胞表型。
IF 3.3 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2023-12-01 Epub Date: 2023-10-10 DOI: 10.1080/21623945.2023.2268261
Alexander Ky, Atticus J McCoy, Carmen G Flesher, Nicole E Friend, Jie Li, Kore Akinleye, Christopher Patsalis, Carey N Lumeng, Andrew J Putnam, Robert W O'Rourke

Alterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%. Adipogenesis and lipid and oxidative metabolic gene pathways were enriched in adipocytes in 5% relative to 3% hydrogels, while fibrotic gene pathways were enriched in 3% hydrogels. These data demonstrate that the intermediate density matrix promotes a more adipogenic, less fibrotic adipocyte phenotype geared towards increased lipid and aerobic metabolism. These observations contribute to a growing literature describing the role of matrix density in regulating adipose tissue function.

细胞外基质的改变导致代谢性疾病中的脂肪组织功能障碍。我们在可调水凝胶培养系统中研究了基质密度在调节人类脂肪细胞表型中的作用。相对于3%和10%,脂质积累在5重量%的中等水凝胶密度下最大。脂肪细胞中脂肪生成、脂质和氧化代谢基因途径在5%的水凝胶中富集,而纤维化基因途径在3%的水凝胶中丰富。这些数据表明,中等密度基质促进了更多的脂肪生成,更少的纤维化脂肪细胞表型,以增加脂质和有氧代谢。这些观察结果有助于越来越多的文献描述基质密度在调节脂肪组织功能中的作用。
{"title":"Matrix density regulates adipocyte phenotype.","authors":"Alexander Ky, Atticus J McCoy, Carmen G Flesher, Nicole E Friend, Jie Li, Kore Akinleye, Christopher Patsalis, Carey N Lumeng, Andrew J Putnam, Robert W O'Rourke","doi":"10.1080/21623945.2023.2268261","DOIUrl":"10.1080/21623945.2023.2268261","url":null,"abstract":"<p><p>Alterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%. Adipogenesis and lipid and oxidative metabolic gene pathways were enriched in adipocytes in 5% relative to 3% hydrogels, while fibrotic gene pathways were enriched in 3% hydrogels. These data demonstrate that the intermediate density matrix promotes a more adipogenic, less fibrotic adipocyte phenotype geared towards increased lipid and aerobic metabolism. These observations contribute to a growing literature describing the role of matrix density in regulating adipose tissue function.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2268261"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9e/54/KADI_12_2268261.PMC10566443.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41181772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory effects and mechanisms of exercise on activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT). 运动对棕色脂肪组织(BAT)活化和白色脂肪组织(WAT)褐变的调节作用及其机制。
IF 3.3 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2023-12-01 Epub Date: 2023-10-09 DOI: 10.1080/21623945.2023.2266147
Haijun Dong, Man Qin, Peng Wang, Shufan Li, Xing Wang

Exercise is a universally acknowledged and healthy way to reducing body weight. However, the roles and mechanisms of exercise on metabolism of adipose tissue remain largely unclear. Adipose tissues include white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue (BeAT). The main function of WAT is to store energy, while the BAT and BeAT can generate heat and consume energy. Therefore, promotion of BAT activation and WAT browning contributes to body weight loss. To date, many studies have suggested that exercise exerts the potential regulatory effects on BAT activation and WAT browning. In the present review, we compile the evidence for the regulatory effects of exercise on BAT activation and WAT browning and summarize the possible mechanisms whereby exercise modulates BAT activation and WAT browning, including activating sympathetic nervous system (SNS) and promoting the secretion of exerkines, with special focus on exerkines. These data might provide reference for prevention or treatment of obesity and the related metabolic disease through exercise.

运动是一种公认的健康减肥方式。然而,运动对脂肪组织代谢的作用和机制在很大程度上仍不清楚。脂肪组织包括白色脂肪组织(WAT)、棕色脂肪组织(BAT)和米色脂肪组织(BeAT)。WAT的主要功能是储存能量,而BAT和BeAT可以产生热量并消耗能量。因此,促进BAT活化和WAT褐变有助于体重减轻。迄今为止,许多研究表明,运动对BAT激活和WAT褐变具有潜在的调节作用。在这篇综述中,我们收集了运动对BAT激活和WAT褐变的调节作用的证据,并总结了运动调节BAT活化和WAT褐化的可能机制,包括激活交感神经系统(SNS)和促进运动因子的分泌,特别是运动因子。这些数据可为通过运动预防或治疗肥胖及相关代谢疾病提供参考。
{"title":"Regulatory effects and mechanisms of exercise on activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT).","authors":"Haijun Dong, Man Qin, Peng Wang, Shufan Li, Xing Wang","doi":"10.1080/21623945.2023.2266147","DOIUrl":"10.1080/21623945.2023.2266147","url":null,"abstract":"<p><p>Exercise is a universally acknowledged and healthy way to reducing body weight. However, the roles and mechanisms of exercise on metabolism of adipose tissue remain largely unclear. Adipose tissues include white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue (BeAT). The main function of WAT is to store energy, while the BAT and BeAT can generate heat and consume energy. Therefore, promotion of BAT activation and WAT browning contributes to body weight loss. To date, many studies have suggested that exercise exerts the potential regulatory effects on BAT activation and WAT browning. In the present review, we compile the evidence for the regulatory effects of exercise on BAT activation and WAT browning and summarize the possible mechanisms whereby exercise modulates BAT activation and WAT browning, including activating sympathetic nervous system (SNS) and promoting the secretion of exerkines, with special focus on exerkines. These data might provide reference for prevention or treatment of obesity and the related metabolic disease through exercise.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"2266147"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/7d/KADI_12_2266147.PMC10563630.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41118749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes of insulin receptors in high fat and high glucose diet mice with insulin resistance. 胰岛素抵抗高脂高糖饮食小鼠胰岛素受体的变化。
IF 3.3 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2023-12-01 Epub Date: 2023-10-13 DOI: 10.1080/21623945.2023.2264444
Chen Lei, Jing Wang, Xin Li, Yuan-Yuan Mao, Jian-Qun Yan

This study aimed to observe the expression of insulin-signaling molecules in different organs of mice with insulin resistance (IR). Firstly, mice were fed a high-fat and high-sugar diet (HF group) to establish an IR model, and the controls (NF group) were fed with a normal diet. Next, the weight, fasting blood glucose (FBG), serum insulin and insulin tolerance were detected. Pathological changes of liver tissues were observed by H&E staining. The expressions of INSR, IRS-1 and IRS-2 in the liver, skeletal muscle and ovary were measured by qRT-PCR and western blotting. As a result, compared with the NF group, the HF group mice had increased weight, FBG, insulin and IR index after 6-week of feeding as well as a worse performance in the insulin tolerance test and H&E staining showed fatty liver-like changes after 12-week of feeding, exhibited lower expression of INSR, IRS-1 and IRS-2 in the liver of mice at 6 and 12 weeks. The expression of INSR and IRS-1 in skeletal muscle tissues exhibited the same trend, while those in ovary organs showed the opposite trend. These results suggested that the insulin signaling alters in the liver, skeletal muscle and ovary organs with the progress of IR.

本研究旨在观察胰岛素信号分子在胰岛素抵抗(IR)小鼠不同器官中的表达。首先,给小鼠喂食高脂肪高糖饮食(HF组)以建立IR模型,对照组(NF组)喂食正常饮食。接下来,检测体重、空腹血糖(FBG)、血清胰岛素和胰岛素耐受性。H&E染色观察肝组织病理变化。通过qRT-PCR和蛋白质印迹法检测INSR、IRS-1和IRS-2在肝脏、骨骼肌和卵巢中的表达。结果,与NF组相比,HF组小鼠在喂食6周后体重、FBG、胰岛素和IR指数增加,并且在胰岛素耐受测试中表现较差,并且H&E染色显示喂食12周后脂肪肝样变化,在6周和12周时小鼠肝脏中INSR、IRS-1和IRS-2的表达较低。INSR和IRS-1在骨骼肌组织中的表达呈现相同的趋势,而在卵巢器官中的表达则呈现相反的趋势。这些结果表明,胰岛素信号在肝脏、骨骼肌和卵巢器官中随着IR的进展而改变。
{"title":"Changes of insulin receptors in high fat and high glucose diet mice with insulin resistance.","authors":"Chen Lei, Jing Wang, Xin Li, Yuan-Yuan Mao, Jian-Qun Yan","doi":"10.1080/21623945.2023.2264444","DOIUrl":"10.1080/21623945.2023.2264444","url":null,"abstract":"<p><p>This study aimed to observe the expression of insulin-signaling molecules in different organs of mice with insulin resistance (IR). Firstly, mice were fed a high-fat and high-sugar diet (HF group) to establish an IR model, and the controls (NF group) were fed with a normal diet. Next, the weight, fasting blood glucose (FBG), serum insulin and insulin tolerance were detected. Pathological changes of liver tissues were observed by H&E staining. The expressions of INSR, IRS-1 and IRS-2 in the liver, skeletal muscle and ovary were measured by qRT-PCR and western blotting. As a result, compared with the NF group, the HF group mice had increased weight, FBG, insulin and IR index after 6-week of feeding as well as a worse performance in the insulin tolerance test and H&E staining showed fatty liver-like changes after 12-week of feeding, exhibited lower expression of INSR, IRS-1 and IRS-2 in the liver of mice at 6 and 12 weeks. The expression of INSR and IRS-1 in skeletal muscle tissues exhibited the same trend, while those in ovary organs showed the opposite trend. These results suggested that the insulin signaling alters in the liver, skeletal muscle and ovary organs with the progress of IR.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"12 1","pages":"2264444"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Adipogenic characterization of immortalized CD55+ progenitor cells from human white adipose tissue. 人白色脂肪组织中永生化CD55+祖细胞的成脂特性。
IF 3.3 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2023-11-20 DOI: 10.1080/21623945.2023.2283213
Morgane Couchet, Hui Gao, Felix Klingelhuber, Jutta Jalkanen, Thais De Castro Barbosa, Muhmmad Omar-Hmeadi, Lucas Massier, Natalie Krahmer, Niklas Mejhert, Mikael Rydén

Background: Mature adipocytes are notoriously difficult to study ex vivo and alternative cell culture systems have therefore been developed. One of the most common models are human adipose progenitor cells (hAPCs). Unfortunately, these display replicative senescence after prolonged culture conditions, which limits their use in mechanistic studies.

Methods: Herein, we knocked in human telomerase reverse transcriptase (TERT) into the AAVS1 locus of CD55+ hAPCs derived from abdominal subcutaneous adipose tissue and characterized the cells before and after differentiation into adipocytes.

Results: Immortalized TERT-hAPCs retained proliferative and adipogenic capacities comparable to those of early-passage wild type hAPCs for > 80 passages. In line with this, our integrative transcriptomic and proteomic analyses revealed that TERT-hAPCs displayed robust adipocyte expression profiles in comparison to wild type hAPCs. This was confirmed by functional analyses of lipid turnover where TERT-hAPCs exhibited pronounced responses to insulin and pro-lipolytic stimuli such as isoprenaline, dibutyrul cAMP and tumour necrosis factor alpha. In addition, TERT-hAPCs could be readily cultured in both standard 2D and 3D-cultures and proteomic analyses revealed that the spheroid culture conditions improved adipogenesis.

Conclusion: Through descriptive and functional studies, we demonstrate that immortalization of human CD55+ hAPCs is feasible and results in cells with stable proliferative and adipogenic capacities over multiple passages. As these cells are cryopreservable, they provide the additional advantage over primary cells of allowing repeated studies in both 2D and 3D model systems with the same genetic background. (234/250).

背景:成熟脂肪细胞是出了名的难以离体研究,因此开发了替代的细胞培养系统。最常见的模型之一是人类脂肪祖细胞(hAPCs)。不幸的是,在长时间的培养条件下,这些细胞表现出复制性衰老,这限制了它们在机制研究中的应用。方法:将人端粒酶逆转录酶(TERT)敲入来自腹腔皮下脂肪组织的CD55+ hAPCs的AAVS1位点,并对细胞分化为脂肪细胞前后的细胞进行表征。结果:永生化的TERT-hAPCs保持了与早期传代野生型hAPCs相当的增殖和成脂能力。与此一致,我们的整合转录组学和蛋白质组学分析显示,与野生型hapc相比,tert - hapc表现出强大的脂肪细胞表达谱。脂质转换的功能分析证实了这一点,其中TERT-hAPCs对胰岛素和促脂解刺激(如异丙肾上腺素、二丁基cAMP和肿瘤坏死因子α)表现出明显的反应。此外,TERT-hAPCs可以很容易地在标准的2D和3d培养中培养,蛋白质组学分析显示球形培养条件可以促进脂肪形成。结论:通过描述性和功能性研究,我们证明了人CD55+ hAPCs的永生化是可行的,并且在多次传代中产生的细胞具有稳定的增殖和成脂能力。由于这些细胞是可低温保存的,它们比原代细胞提供了额外的优势,允许在具有相同遗传背景的2D和3D模型系统中重复研究。(234/250)。
{"title":"Adipogenic characterization of immortalized CD55<sup>+</sup> progenitor cells from human white adipose tissue.","authors":"Morgane Couchet, Hui Gao, Felix Klingelhuber, Jutta Jalkanen, Thais De Castro Barbosa, Muhmmad Omar-Hmeadi, Lucas Massier, Natalie Krahmer, Niklas Mejhert, Mikael Rydén","doi":"10.1080/21623945.2023.2283213","DOIUrl":"10.1080/21623945.2023.2283213","url":null,"abstract":"<p><strong>Background: </strong>Mature adipocytes are notoriously difficult to study ex vivo and alternative cell culture systems have therefore been developed. One of the most common models are human adipose progenitor cells (hAPCs). Unfortunately, these display replicative senescence after prolonged culture conditions, which limits their use in mechanistic studies.</p><p><strong>Methods: </strong>Herein, we knocked in human telomerase reverse transcriptase (TERT) into the AAVS1 locus of CD55<sup>+</sup> hAPCs derived from abdominal subcutaneous adipose tissue and characterized the cells before and after differentiation into adipocytes.</p><p><strong>Results: </strong>Immortalized TERT-hAPCs retained proliferative and adipogenic capacities comparable to those of early-passage wild type hAPCs for > 80 passages. In line with this, our integrative transcriptomic and proteomic analyses revealed that TERT-hAPCs displayed robust adipocyte expression profiles in comparison to wild type hAPCs. This was confirmed by functional analyses of lipid turnover where TERT-hAPCs exhibited pronounced responses to insulin and pro-lipolytic stimuli such as isoprenaline, dibutyrul cAMP and tumour necrosis factor alpha. In addition, TERT-hAPCs could be readily cultured in both standard 2D and 3D-cultures and proteomic analyses revealed that the spheroid culture conditions improved adipogenesis.</p><p><strong>Conclusion: </strong>Through descriptive and functional studies, we demonstrate that immortalization of human CD55<sup>+</sup> hAPCs is feasible and results in cells with stable proliferative and adipogenic capacities over multiple passages. As these cells are cryopreservable, they provide the additional advantage over primary cells of allowing repeated studies in both 2D and 3D model systems with the same genetic background. (234/250).</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"2283213"},"PeriodicalIF":3.3,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138045962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive peptides PDBSN improve mitochondrial function and suppression the oxidative stress in human adiposity cells. 生物活性肽PDBSN改善人类脂肪细胞的线粒体功能并抑制氧化应激。
IF 3.3 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2023-11-09 DOI: 10.1080/21623945.2023.2278213
Huiping Shen, Yong Lei, Wen Xie, Tieliang Ma, Li Bao, Qin Gao, Bingyu Chen, Biao Dai, Dani Qin

Introduction: Mitochondria are essential for generating cellular energy and are significant in the pathogenesis of obesity. Peptide PDBSN has been demonstrated to inhibit the adipogenic differentiation of adipocytes in vitro and improves metabolic homoeostasis in vivo. Therefore, in this study, we further investigated the effects of PDBSN on the morphology, synthesis, and function of adipocyte mitochondria. Methods: Human visceral and subcutaneous primary preadipocytes (HPA-v and HPA-s) were cultured into mature adipocytes. Intracellular triglyceride content was assessed using oil-red O staining and tissue triglyceride determination. Gene and protein levels associated with mitochondrial synthesis were detected using real-time quantitative polymerase chain reaction and western blotting. Mitochondrial membrane potentials and ROS were detected using fluorescent indicators. Morphological changes were observed by electron microscopy. Results: PDBSN significantly increased mitochondrial membrane potential (MMP), while decreasing intracellular triglyceride (TG) and intracellular reactive oxygen species (ROS) levels. On the other hand, the transcription and protein levels of genetic marker genes PGC1-α and MTFA were significantly up-regulated after PDBSN administration. Further studies showed that transcriptional and protein levels of mitochondrial fusion and fission genetic markers MFN1, MFN2, NRF1, and DRP1 increased. Conclusion: PDBSN significantly reduces intracellular TG and ROS levels and increases MMP. The maximum respiratory capacity in adults significantly increases after PDBSN administration, and ROS levels are significantly reduced. This suggests that PDBSN improves mitochondrial function to some extent, which not only provides an essential basis for the pathophysiology of obesity but also provides insights for the development of new drugs to treat obesity and metabolic diseases.

引言:线粒体对产生细胞能量至关重要,在肥胖的发病机制中具有重要意义。肽PDBSN已被证明在体外抑制脂肪细胞的成脂分化,并在体内改善代谢平衡。因此,在本研究中,我们进一步研究了PDBSN对脂肪细胞线粒体形态、合成和功能的影响。方法:将人内脏和皮下原代前脂肪细胞(HPA-v和HPA-s)培养成成熟脂肪细胞。使用油红O染色和组织甘油三酯测定来评估细胞内甘油三酯含量。使用实时定量聚合酶链反应和蛋白质印迹检测与线粒体合成相关的基因和蛋白质水平。使用荧光指示剂检测线粒体膜电位和ROS。电镜观察其形态学变化。结果:PDBSN显著提高线粒体膜电位(MMP),同时降低细胞内甘油三酯(TG)和细胞内活性氧(ROS)水平。另一方面,遗传标记基因PGC1-α和MTFA的转录和蛋白质水平在PDBSN给药后显著上调。进一步的研究表明,线粒体融合和分裂遗传标记MFN1、MFN2、NRF1和DRP1的转录和蛋白质水平增加。结论:PDBSN能显著降低细胞内TG和ROS水平,增加MMP。PDBSN给药后,成人的最大呼吸能力显著增加,ROS水平显著降低。这表明PDBSN在一定程度上改善了线粒体功能,这不仅为肥胖的病理生理学提供了必要的基础,而且为开发治疗肥胖和代谢性疾病的新药提供了见解。
{"title":"Bioactive peptides PDBSN improve mitochondrial function and suppression the oxidative stress in human adiposity cells.","authors":"Huiping Shen, Yong Lei, Wen Xie, Tieliang Ma, Li Bao, Qin Gao, Bingyu Chen, Biao Dai, Dani Qin","doi":"10.1080/21623945.2023.2278213","DOIUrl":"10.1080/21623945.2023.2278213","url":null,"abstract":"<p><p><i>Introduction</i>: Mitochondria are essential for generating cellular energy and are significant in the pathogenesis of obesity. Peptide PDBSN has been demonstrated to inhibit the adipogenic differentiation of adipocytes in vitro and improves metabolic homoeostasis in vivo. Therefore, in this study, we further investigated the effects of PDBSN on the morphology, synthesis, and function of adipocyte mitochondria. <i>Methods</i>: Human visceral and subcutaneous primary preadipocytes (HPA-v and HPA-s) were cultured into mature adipocytes. Intracellular triglyceride content was assessed using oil-red O staining and tissue triglyceride determination. Gene and protein levels associated with mitochondrial synthesis were detected using real-time quantitative polymerase chain reaction and western blotting. Mitochondrial membrane potentials and ROS were detected using fluorescent indicators. Morphological changes were observed by electron microscopy. <i>Results</i>: PDBSN significantly increased mitochondrial membrane potential (MMP), while decreasing intracellular triglyceride (TG) and intracellular reactive oxygen species (ROS) levels. On the other hand, the transcription and protein levels of genetic marker genes <i>PGC1-α</i> and <i>MTFA</i> were significantly up-regulated after PDBSN administration. Further studies showed that transcriptional and protein levels of mitochondrial fusion and fission genetic markers <i>MFN1</i>, <i>MFN2</i>, <i>NRF1</i>, and <i>DRP1</i> increased. Conclusion: PDBSN significantly reduces intracellular TG and ROS levels and increases MMP. The maximum respiratory capacity in adults significantly increases after PDBSN administration, and ROS levels are significantly reduced. This suggests that PDBSN improves mitochondrial function to some extent, which not only provides an essential basis for the pathophysiology of obesity but also provides insights for the development of new drugs to treat obesity and metabolic diseases.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"2278213"},"PeriodicalIF":3.3,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71520168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose-derived mesenchymal stem cell-secreted extracellular vesicles alleviate non-alcoholic fatty liver disease via delivering miR-223-3p. 脂肪源性间充质干细胞分泌的细胞外囊泡通过传递miR-223-3p缓解非酒精性脂肪肝疾病。
IF 3.3 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2098583
Qinghui Niu, Ting Wang, Zhiqiang Wang, Feng Wang, Deyu Huang, Huali Sun, Hanyun Liu

Increasing studies have identified the potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in non-alcoholic fatty liver disease (NAFLD) treatment. Hence, we further focused on the potential of adipose-derived MSC (ADSC)-EVs in NAFLD by delivering miR-223-3p. The uptake of isolated ADSC-EVs by hepatocytes was assessed, and the expression of miR-223-3p in ADSC-EVs and hepatocytes was characterized. It was established that miR-223-3p, enriched in ADSC-EVs, could be delivered by ADSC-EVs into hepatocytes. Using co-culture system and gain-of-function approach, we evaluated the effect of ADSC-EVs carrying miR-223-3p on lipid accumulation and liver fibrosis in pyrrolizidine alkaloids (PA)-induced hepatocytes and a high-fat diet-induced NAFLD mouse model. Bioinformatics websites and dual-luciferase reporter gene assay were performed to determine the interactions between miR-223-3p and E2F1, which was further validated by rescue experiments. ADSC-EVs containing miR-223-3p displayed suppressive effects on lipid accumulation and liver fibrosis through E2F1 inhibition, since E2F1 was demonstrated as a target gene of miR-223-3p. The protective role of ADSC-EVs by delivering miR-223-3p was then confirmed in the mouse model. Collectively, this study elucidated that ADSC-EVs delayed the progression NAFLD through the delivery of anti-fibrotic miR-223-3p and subsequent E2F1 suppression, which may suggest miR-223-3p-loaded ADSC-EVs to be a potential therapeutic approach for NAFLD.

越来越多的研究已经确定了间充质干细胞衍生的细胞外囊泡(msc - ev)在非酒精性脂肪性肝病(NAFLD)治疗中的潜力。因此,我们进一步关注脂肪来源的MSC (ADSC)- ev通过递送miR-223-3p在NAFLD中的潜力。评估肝细胞对分离的adsc - ev的摄取情况,并表征miR-223-3p在adsc - ev和肝细胞中的表达。我们证实,在adsc - ev中富集的miR-223-3p可以通过adsc - ev传递到肝细胞中。通过共培养系统和功能获得法,我们评估了携带miR-223-3p的adsc - ev对吡罗里西定生物碱(PA)诱导的肝细胞和高脂肪饮食诱导的NAFLD小鼠模型中脂质积累和肝纤维化的影响。通过生物信息学网站和双荧光素酶报告基因检测来确定miR-223-3p与E2F1之间的相互作用,并通过救援实验进一步验证。含有miR-223-3p的adsc - ev通过抑制E2F1表现出对脂质积累和肝纤维化的抑制作用,因为E2F1被证明是miR-223-3p的靶基因。然后在小鼠模型中证实了adsc - ev通过传递miR-223-3p的保护作用。总的来说,这项研究阐明了adsc - ev通过传递抗纤维化miR-223-3p和随后的E2F1抑制来延缓NAFLD的进展,这可能表明负载miR-223-3p的adsc - ev是一种潜在的NAFLD治疗方法。
{"title":"Adipose-derived mesenchymal stem cell-secreted extracellular vesicles alleviate non-alcoholic fatty liver disease <i>via</i> delivering miR-223-3p.","authors":"Qinghui Niu,&nbsp;Ting Wang,&nbsp;Zhiqiang Wang,&nbsp;Feng Wang,&nbsp;Deyu Huang,&nbsp;Huali Sun,&nbsp;Hanyun Liu","doi":"10.1080/21623945.2022.2098583","DOIUrl":"https://doi.org/10.1080/21623945.2022.2098583","url":null,"abstract":"<p><p>Increasing studies have identified the potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in non-alcoholic fatty liver disease (NAFLD) treatment. Hence, we further focused on the potential of adipose-derived MSC (ADSC)-EVs in NAFLD by delivering miR-223-3p. The uptake of isolated ADSC-EVs by hepatocytes was assessed, and the expression of miR-223-3p in ADSC-EVs and hepatocytes was characterized. It was established that miR-223-3p, enriched in ADSC-EVs, could be delivered by ADSC-EVs into hepatocytes. Using co-culture system and gain-of-function approach, we evaluated the effect of ADSC-EVs carrying miR-223-3p on lipid accumulation and liver fibrosis in pyrrolizidine alkaloids (PA)-induced hepatocytes and a high-fat diet-induced NAFLD mouse model. Bioinformatics websites and dual-luciferase reporter gene assay were performed to determine the interactions between miR-223-3p and E2F1, which was further validated by rescue experiments. ADSC-EVs containing miR-223-3p displayed suppressive effects on lipid accumulation and liver fibrosis through E2F1 inhibition, since E2F1 was demonstrated as a target gene of miR-223-3p. The protective role of ADSC-EVs by delivering miR-223-3p was then confirmed in the mouse model. Collectively, this study elucidated that ADSC-EVs delayed the progression NAFLD through the delivery of anti-fibrotic miR-223-3p and subsequent E2F1 suppression, which may suggest miR-223-3p-loaded ADSC-EVs to be a potential therapeutic approach for NAFLD.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"572-587"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10626499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Cixutumumab reveals a critical role for IGF-1 in adipose and hepatic tissue remodelling during the development of diet-induced obesity. 环妥珠单抗揭示了IGF-1在饮食性肥胖发展过程中脂肪和肝组织重塑中的关键作用。
IF 3.3 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2089394
Helen Imrie, Hema Viswambharan, Natalie J Haywood, Katherine I Bridge, Nadira Y Yuldasheva, Stacey Galloway, Katie J Simmons, Richard M Cubbon, Piruthivi Sukumar, Nicole T Watt, Laeticia Lichtenstein, Judy I Wyatt, Hiromi Kudo, Robert Goldin, Baptiste Rode, Stephen B Wheatcroft, Mark T Kearney

High fat diet (HFD)-induced obesity leads to perturbation in the storage function of white adipose tissue (WAT) resulting in deposition of lipids in tissues ill-equipped to deal with this challenge. The role of insulin like growth factor-1 (IGF-1) in the systemic and organ-specific responses to HFD is unclear. Using cixutumumab, a monoclonal antibody that internalizes and degrades cell surface IGF-1 receptors (IGF-1 R), leaving insulin receptor expression unchanged we aimed to establish the role of IGF-1 R in the response to a HFD. Mice treated with cixutumumab fed standard chow developed mild hyperinsulinemia with no change in WAT. When challenged by HFD mice treated with cixutumumab had reduced weight gain, reduced WAT expansion, and reduced hepatic lipid vacuole formation. In HFD-fed mice, cixutumumab led to reduced levels of genes encoding proteins important in fatty acid metabolism in WAT and liver. Cixutumumab protected against blunting of insulin-stimulated phosphorylation of Akt in liver of HFD fed mice. These data reveal an important role for IGF-1 R in the WAT and hepatic response to short-term nutrient excess. IGF-1 R inhibition during HFD leads to a lipodystrophic phenotype with a failure of WAT lipid storage and protection from HFD-induced hepatic insulin resistance.

高脂饮食(HFD)诱导的肥胖导致白色脂肪组织(WAT)储存功能的紊乱,导致脂肪沉积在缺乏应对这一挑战能力的组织中。胰岛素样生长因子-1 (IGF-1)在HFD的全身和器官特异性反应中的作用尚不清楚。使用环妥珠单抗,一种内化和降解细胞表面IGF-1受体(igf - 1r)的单克隆抗体,保持胰岛素受体表达不变,我们旨在确定igf - 1r在HFD应答中的作用。用环妥珠单抗治疗的小鼠以标准饲料喂养,出现轻度高胰岛素血症,WAT没有变化。接受环妥珠单抗治疗的HFD小鼠体重增加减少,WAT扩张减少,肝脂泡形成减少。在饲喂hfd的小鼠中,环妥珠单抗导致WAT和肝脏中编码脂肪酸代谢重要蛋白质的基因水平降低。环妥珠单抗对HFD喂养小鼠肝脏中胰岛素刺激的Akt磷酸化钝化具有保护作用。这些数据揭示了igf - 1r在WAT和肝脏对短期营养过剩的反应中的重要作用。在HFD期间,IGF-1 R抑制导致脂肪营养不良表型,WAT脂质储存和对HFD诱导的肝脏胰岛素抵抗的保护失败。
{"title":"Cixutumumab reveals a critical role for IGF-1 in adipose and hepatic tissue remodelling during the development of diet-induced obesity.","authors":"Helen Imrie,&nbsp;Hema Viswambharan,&nbsp;Natalie J Haywood,&nbsp;Katherine I Bridge,&nbsp;Nadira Y Yuldasheva,&nbsp;Stacey Galloway,&nbsp;Katie J Simmons,&nbsp;Richard M Cubbon,&nbsp;Piruthivi Sukumar,&nbsp;Nicole T Watt,&nbsp;Laeticia Lichtenstein,&nbsp;Judy I Wyatt,&nbsp;Hiromi Kudo,&nbsp;Robert Goldin,&nbsp;Baptiste Rode,&nbsp;Stephen B Wheatcroft,&nbsp;Mark T Kearney","doi":"10.1080/21623945.2022.2089394","DOIUrl":"https://doi.org/10.1080/21623945.2022.2089394","url":null,"abstract":"<p><p>High fat diet (HFD)-induced obesity leads to perturbation in the storage function of white adipose tissue (WAT) resulting in deposition of lipids in tissues ill-equipped to deal with this challenge. The role of insulin like growth factor-1 (IGF-1) in the systemic and organ-specific responses to HFD is unclear. Using cixutumumab, a monoclonal antibody that internalizes and degrades cell surface IGF-1 receptors (IGF-1 R), leaving insulin receptor expression unchanged we aimed to establish the role of IGF-1 R in the response to a HFD. Mice treated with cixutumumab fed standard chow developed mild hyperinsulinemia with no change in WAT. When challenged by HFD mice treated with cixutumumab had reduced weight gain, reduced WAT expansion, and reduced hepatic lipid vacuole formation. In HFD-fed mice, cixutumumab led to reduced levels of genes encoding proteins important in fatty acid metabolism in WAT and liver. Cixutumumab protected against blunting of insulin-stimulated phosphorylation of Akt in liver of HFD fed mice. These data reveal an important role for IGF-1 R in the WAT and hepatic response to short-term nutrient excess. IGF-1 R inhibition during HFD leads to a lipodystrophic phenotype with a failure of WAT lipid storage and protection from HFD-induced hepatic insulin resistance.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"366-378"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9114661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dipeptidyl peptidase-4 cell surface expression marks an abundant adipose stem/progenitor cell population with high stemness in human white adipose tissue. 二肽基肽酶-4细胞表面表达标志着人类白色脂肪组织中存在丰富的高干性脂肪干/祖细胞群。
IF 3.3 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2129060
Florian M Hatzmann, Sonja Großmann, Petra Waldegger, G Jan Wiegers, Markus Mandl, Tina Rauchenwald, Gerhard Pierer, Werner Zwerschke

The capacity of adipose stem/progenitor cells (ASCs) to undergo self-renewal and differentiation is crucial for adipose tissue homoeostasis, regeneration and expansion. However, the heterogeneous ASC populations of the adipose lineage constituting adipose tissue are not precisely known. In the present study, we demonstrate that cell surface expression of dipeptidyl peptidase-4 (DPP4)/cluster of differentiation 26 (CD26) subdivides the DLK1-/CD34+/CD45-/CD31- ASC pool of human white adipose tissues (WATs) into two large populations. Ex vivo, DPP4+ ASCs possess higher self-renewal and proliferation capacity and lesser adipocyte differentiation potential than DDP4- ASCs. The knock-down of DPP4 in ASC leads to significantly reduced proliferation and self-renewal capacity, while adipogenic differentiation is increased. Ectopic overexpression of DPP4 strongly inhibits adipogenesis. Moreover, in whole mount stainings of human subcutaneous (s)WAT, we detect DPP4 in CD34+ ASC located in the vascular stroma surrounding small blood vessels and in mature adipocytes. We conclude that DPP4 is a functional marker for an abundant ASC population in human WAT with high proliferation and self-renewal potential and low adipogenic differentiation capacity.

脂肪干细胞/祖细胞(ASCs)进行自我更新和分化的能力对于脂肪组织的平衡、再生和扩张至关重要。然而,构成脂肪组织的脂肪谱系的异质ASC群体尚不清楚。在本研究中,我们证明了二肽基肽酶-4 (DPP4)/分化簇26 (CD26)的细胞表面表达将人白色脂肪组织(WATs)的DLK1-/CD34+/CD45-/CD31- ASC库细分为两个大群体。在体外,与DDP4- ASCs相比,DPP4+ ASCs具有更高的自我更新和增殖能力,而脂肪细胞分化潜力较小。在ASC中,DPP4的敲除导致增殖和自我更新能力显著降低,而成脂分化增加。DPP4异位过表达强烈抑制脂肪生成。此外,在人皮下WAT的全载染色中,我们在位于小血管周围血管间质和成熟脂肪细胞中的CD34+ ASC中检测到DPP4。我们得出结论,DPP4是人类WAT中丰富的ASC群体的功能标记物,具有高增殖和自我更新潜力,低脂肪分化能力。
{"title":"Dipeptidyl peptidase-4 cell surface expression marks an abundant adipose stem/progenitor cell population with high stemness in human white adipose tissue.","authors":"Florian M Hatzmann,&nbsp;Sonja Großmann,&nbsp;Petra Waldegger,&nbsp;G Jan Wiegers,&nbsp;Markus Mandl,&nbsp;Tina Rauchenwald,&nbsp;Gerhard Pierer,&nbsp;Werner Zwerschke","doi":"10.1080/21623945.2022.2129060","DOIUrl":"https://doi.org/10.1080/21623945.2022.2129060","url":null,"abstract":"<p><p>The capacity of adipose stem/progenitor cells (ASCs) to undergo self-renewal and differentiation is crucial for adipose tissue homoeostasis, regeneration and expansion. However, the heterogeneous ASC populations of the adipose lineage constituting adipose tissue are not precisely known. In the present study, we demonstrate that cell surface expression of dipeptidyl peptidase-4 (DPP4)/cluster of differentiation 26 (CD26) subdivides the DLK1<sup>-</sup>/CD34<sup>+</sup>/CD45<sup>-</sup>/CD31<sup>-</sup> ASC pool of human white adipose tissues (WATs) into two large populations. <i>Ex vivo</i>, DPP4<sup>+</sup> ASCs possess higher self-renewal and proliferation capacity and lesser adipocyte differentiation potential than DDP4<sup>-</sup> ASCs. The knock-down of DPP4 in ASC leads to significantly reduced proliferation and self-renewal capacity, while adipogenic differentiation is increased. Ectopic overexpression of DPP4 strongly inhibits adipogenesis. Moreover, in whole mount stainings of human subcutaneous (s)WAT, we detect DPP4 in CD34<sup>+</sup> ASC located in the vascular stroma surrounding small blood vessels and in mature adipocytes. We conclude that DPP4 is a functional marker for an abundant ASC population in human WAT with high proliferation and self-renewal potential and low adipogenic differentiation capacity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"601-615"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9180569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparative transcriptomic analysis of rabbit interscapular brown adipose tissue whitening under physiological conditions. 生理条件下兔肩胛间褐色脂肪组织变白的比较转录组学分析。
IF 3.3 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2111053
Lei Li, Qian Wan, Qiaoyun Long, Tao Nie, Shiting Zhao, Liufeng Mao, Chuanli Cheng, Chao Zou, Kerry Loomes, Aimin Xu, Liangxue Lai, Xin Liu, Ziyuan Duan, Xiaoyan Hui, Donghai Wu

Interscapular brown adipose tissue (iBAT) of both rabbits and humans exhibits a similar whitening phenomenon under physiological conditions. However, a detailed characterization of iBAT whitening in them is still lacking. Here, we chose rabbits as a model to gain a better understanding of the molecular signature changes during the whitening process of iBAT by transcriptomic analysis of rabbit iBAT at day 1, day 14, 1 month and 4 months after birth. We applied non-invasive MRI imaging to monitor the whitening process and correlated these changes with analysis of morphological, histological and molecular features. Principal component analysis (PCA) of differentially expressed genes delineated three major phases for the whitening process as Brown, Transition and Whitened BAT phases. RNA-sequencing data revealed that whitening of iBAT was an orchestrated process where multiple types of cells and tissues participated in a variety of physiological processes including neovascularization, formation of new nervous networks and immune regulation. Several key metabolic and signalling pathways contributed to whitening of iBAT, and immune cells and immune regulation appeared to play an overarching role.

兔和人的肩胛间棕色脂肪组织(iBAT)在生理条件下都表现出相似的增白现象。然而,目前还缺乏对iBAT白化的详细描述。本研究选择家兔作为模型,通过对家兔出生后第1天、第14天、第1个月和第4个月的iBAT进行转录组学分析,更好地了解iBAT美白过程中的分子特征变化。我们应用无创MRI成像技术监测白化过程,并将这些变化与形态学、组织学和分子特征分析相关联。差异表达基因主成分分析(PCA)将白化过程划分为褐化、过渡和白化BAT三个主要阶段。rna测序数据显示,iBAT的增白是一个协调的过程,多种类型的细胞和组织参与了多种生理过程,包括新生血管、新神经网络的形成和免疫调节。几个关键的代谢和信号通路有助于iBAT的增白,免疫细胞和免疫调节似乎起着重要作用。
{"title":"Comparative transcriptomic analysis of rabbit interscapular brown adipose tissue whitening under physiological conditions.","authors":"Lei Li,&nbsp;Qian Wan,&nbsp;Qiaoyun Long,&nbsp;Tao Nie,&nbsp;Shiting Zhao,&nbsp;Liufeng Mao,&nbsp;Chuanli Cheng,&nbsp;Chao Zou,&nbsp;Kerry Loomes,&nbsp;Aimin Xu,&nbsp;Liangxue Lai,&nbsp;Xin Liu,&nbsp;Ziyuan Duan,&nbsp;Xiaoyan Hui,&nbsp;Donghai Wu","doi":"10.1080/21623945.2022.2111053","DOIUrl":"https://doi.org/10.1080/21623945.2022.2111053","url":null,"abstract":"<p><p>Interscapular brown adipose tissue (iBAT) of both rabbits and humans exhibits a similar whitening phenomenon under physiological conditions. However, a detailed characterization of iBAT whitening in them is still lacking. Here, we chose rabbits as a model to gain a better understanding of the molecular signature changes during the whitening process of iBAT by transcriptomic analysis of rabbit iBAT at day 1, day 14, 1 month and 4 months after birth. We applied non-invasive MRI imaging to monitor the whitening process and correlated these changes with analysis of morphological, histological and molecular features. Principal component analysis (PCA) of differentially expressed genes delineated three major phases for the whitening process as Brown, Transition and Whitened BAT phases. RNA-sequencing data revealed that whitening of iBAT was an orchestrated process where multiple types of cells and tissues participated in a variety of physiological processes including neovascularization, formation of new nervous networks and immune regulation. Several key metabolic and signalling pathways contributed to whitening of iBAT, and immune cells and immune regulation appeared to play an overarching role.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"529-549"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10625211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Adipocyte
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1