首页 > 最新文献

Adipocyte最新文献

英文 中文
Activation of CXCR7 exerts an inhibitory effect on adipogenesis through regulation of β-arrestin2/Wnt and AKT signalling. CXCR7的激活通过调节β-arrestin2/Wnt和AKT信号通路,对脂肪形成起到抑制作用。
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-04-29 DOI: 10.1080/21623945.2025.2490258
Shiyue Sun, Muhammad Arif Aslam, Eun Bi Ma, Gahui Lee, Hafiz Muhammad Ahmad Javaid, Somy Yoon, Joo Young Huh

CXCR7, an alternative receptor for the inflammatory chemokine SDF-1, is involved in cell proliferation and migration. Recent studies have reported that CXCR7 also plays a role in adipose tissue. However, evidence regarding the role of CXCR7 and its ligands in adipocyte differentiation is limited. In this study, we aimed to elucidate changes in CXCR7 expression during adipocyte differentiation and the role of the SDF-1/CXCR7/CXCR4 axis in adipogenesis using recombinant SDF-1, the CXCR7 ligand CCX771, and small interfering RNAs. The results indicated that the levels of SDF-1 and its receptors, CXCR7 and CXCR4, decreased during the early stages of adipogenesis. Treatment with recombinant SDF-1 and CCX771 inhibited adipogenesis and lipid accumulation by inducing β-arrestin2, Wnt expression, and AKT phosphorylation and downregulating C/EBPα, PPARγ, and FABP4 expression. In contrast, knockdown of SDF-1 and CXCR7 in preadipocytes downregulated the β-arrestin2/Wnt and AKT pathway, leading to the induction of adipogenesis. Meanwhile, knockdown of CXCR4 had no significant effect. In mice, basal gene expression levels of SDF-1 and CXCR7 were higher in the stromal vascular fraction compared to mature adipocytes and were significantly upregulated by a high-fat diet. Our results provide new insights into the local role of the SDF-1-CXCR7 axis in adipocytes and offer additional benefits for the prevention of obesity-related metabolic disorders.

CXCR7是炎性趋化因子SDF-1的替代受体,参与细胞增殖和迁移。最近的研究报道,CXCR7也在脂肪组织中发挥作用。然而,关于CXCR7及其配体在脂肪细胞分化中的作用的证据有限。在这项研究中,我们旨在通过重组SDF-1、CXCR7配体CCX771和小干扰rna来阐明脂肪细胞分化过程中CXCR7表达的变化以及SDF-1/CXCR7/CXCR4轴在脂肪形成中的作用。结果表明,SDF-1及其受体CXCR7和CXCR4的水平在脂肪形成的早期阶段下降。重组SDF-1和CCX771通过诱导β-arrestin2、Wnt表达和AKT磷酸化,下调C/EBPα、PPARγ和FABP4表达,抑制脂肪形成和脂质积累。相反,脂肪前细胞中SDF-1和CXCR7的下调下调了β-arrestin2/Wnt和AKT通路,从而诱导脂肪形成。同时,敲除CXCR4无显著影响。在小鼠中,与成熟脂肪细胞相比,基质血管部分中SDF-1和CXCR7的基础基因表达水平更高,并且在高脂肪饮食中显著上调。我们的研究结果为SDF-1-CXCR7轴在脂肪细胞中的局部作用提供了新的见解,并为预防肥胖相关的代谢紊乱提供了额外的益处。
{"title":"Activation of CXCR7 exerts an inhibitory effect on adipogenesis through regulation of β-arrestin2/Wnt and AKT signalling.","authors":"Shiyue Sun, Muhammad Arif Aslam, Eun Bi Ma, Gahui Lee, Hafiz Muhammad Ahmad Javaid, Somy Yoon, Joo Young Huh","doi":"10.1080/21623945.2025.2490258","DOIUrl":"https://doi.org/10.1080/21623945.2025.2490258","url":null,"abstract":"<p><p>CXCR7, an alternative receptor for the inflammatory chemokine SDF-1, is involved in cell proliferation and migration. Recent studies have reported that CXCR7 also plays a role in adipose tissue. However, evidence regarding the role of CXCR7 and its ligands in adipocyte differentiation is limited. In this study, we aimed to elucidate changes in CXCR7 expression during adipocyte differentiation and the role of the SDF-1/CXCR7/CXCR4 axis in adipogenesis using recombinant SDF-1, the CXCR7 ligand CCX771, and small interfering RNAs. The results indicated that the levels of SDF-1 and its receptors, CXCR7 and CXCR4, decreased during the early stages of adipogenesis. Treatment with recombinant SDF-1 and CCX771 inhibited adipogenesis and lipid accumulation by inducing β-arrestin2, Wnt expression, and AKT phosphorylation and downregulating C/EBPα, PPARγ, and FABP4 expression. In contrast, knockdown of SDF-1 and CXCR7 in preadipocytes downregulated the β-arrestin2/Wnt and AKT pathway, leading to the induction of adipogenesis. Meanwhile, knockdown of CXCR4 had no significant effect. In mice, basal gene expression levels of SDF-1 and CXCR7 were higher in the stromal vascular fraction compared to mature adipocytes and were significantly upregulated by a high-fat diet. Our results provide new insights into the local role of the SDF-1-CXCR7 axis in adipocytes and offer additional benefits for the prevention of obesity-related metabolic disorders.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2490258"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143958040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retinoid X receptor γ interacts with peroxisome proliferator-activated receptor-γ to promote browning during adipose tissue differentiation. 类视黄醇X受体γ与过氧化物酶体增殖物激活受体γ相互作用,促进脂肪组织分化过程中的褐变。
IF 3.1 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-08-25 DOI: 10.1080/21623945.2025.2548780
Defei Chen, Saed Woraikat, Xiong Guo, Fuyu Yang, Chenglin Tang, Fan He, Kun Qian

Obesity and type 2 diabetes mellitus are global public health challenges. Activating thermogenic adipose tissues, such as brown adipose tissue and beige adipose tissue, could be a promising strategy to combat obesity and consequently obesity-related diabetes. Both peroxisome proliferator-activated receptor-γ (PPARγ) and retinoid X receptor γ (RXRγ) play significant roles in the regulation of adipogenic differentiation. However, the underlying mechanisms and interactions between these receptors during adipogenic differentiation remain unclear. In this study, we conducted a comprehensive analysis of a transcriptome sequencing dataset sourced from the GEO database, encompassing samples of white and brown adipose tissues from 15 healthy individuals. Our findings reveal that RXRγ expression is significantly elevated in brown adipose tissue relative to white adipose tissue (p = 0.041). Furthermore, co-immunoprecipitation assays validated that RXRγ can be co-precipitated with PPARγ. Subsequent luciferase assays demonstrated that the interaction between RXRγ and PPARγ significantly enhances the transcriptional activity of uncoupling protein 1 (UCP1) compared to the overexpression of PPARγ alone (3.4-fold vs. 1.5-fold, p < 0.001). Notably, in human preadipocytes, the co-overexpression of RXRγ with PPARγ resulted in a significant increase in UCP1 transcriptional activity compared to the overexpression of PPARγ alone (3.4-fold vs. 2.0-fold, p < 0.05). In summary, our findings suggest that RXRγ serves as a novel cofactor for PPARγ, promoting the browning of adipose tissue through the upregulation of UCP1 transcription.

肥胖和2型糖尿病是全球性的公共卫生挑战。激活产热脂肪组织,如棕色脂肪组织和米色脂肪组织,可能是对抗肥胖和肥胖相关糖尿病的一种有希望的策略。过氧化物酶体增殖物激活受体-γ (PPARγ)和类视黄醇X受体γ (RXRγ)在脂肪形成分化的调控中发挥重要作用。然而,在脂肪形成分化过程中,这些受体之间的潜在机制和相互作用尚不清楚。在这项研究中,我们对来自GEO数据库的转录组测序数据集进行了全面分析,其中包括来自15名健康个体的白色和棕色脂肪组织样本。我们的研究结果显示,相对于白色脂肪组织,RXRγ在棕色脂肪组织中的表达显著升高(p = 0.041)。此外,共免疫沉淀实验证实RXRγ可以与PPARγ共沉淀。随后的荧光素酶分析表明,与单独过表达PPARγ相比,RXRγ和PPARγ之间的相互作用显著增强了解偶联蛋白1 (UCP1)的转录活性(3.4倍vs. 1.5倍,p . p .)
{"title":"Retinoid X receptor γ interacts with peroxisome proliferator-activated receptor-γ to promote browning during adipose tissue differentiation.","authors":"Defei Chen, Saed Woraikat, Xiong Guo, Fuyu Yang, Chenglin Tang, Fan He, Kun Qian","doi":"10.1080/21623945.2025.2548780","DOIUrl":"https://doi.org/10.1080/21623945.2025.2548780","url":null,"abstract":"<p><p>Obesity and type 2 diabetes mellitus are global public health challenges. Activating thermogenic adipose tissues, such as brown adipose tissue and beige adipose tissue, could be a promising strategy to combat obesity and consequently obesity-related diabetes. Both peroxisome proliferator-activated receptor-γ (PPARγ) and retinoid X receptor γ (RXRγ) play significant roles in the regulation of adipogenic differentiation. However, the underlying mechanisms and interactions between these receptors during adipogenic differentiation remain unclear. In this study, we conducted a comprehensive analysis of a transcriptome sequencing dataset sourced from the GEO database, encompassing samples of white and brown adipose tissues from 15 healthy individuals. Our findings reveal that RXRγ expression is significantly elevated in brown adipose tissue relative to white adipose tissue (<i>p</i> = 0.041). Furthermore, co-immunoprecipitation assays validated that RXRγ can be co-precipitated with PPARγ. Subsequent luciferase assays demonstrated that the interaction between RXRγ and PPARγ significantly enhances the transcriptional activity of uncoupling protein 1 (UCP1) compared to the overexpression of PPARγ alone (3.4-fold vs. 1.5-fold, <i>p</i> < 0.001). Notably, in human preadipocytes, the co-overexpression of RXRγ with PPARγ resulted in a significant increase in UCP1 transcriptional activity compared to the overexpression of PPARγ alone (3.4-fold vs. 2.0-fold, <i>p</i> < 0.05). In summary, our findings suggest that RXRγ serves as a novel cofactor for PPARγ, promoting the browning of adipose tissue through the upregulation of UCP1 transcription.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2548780"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144938068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FLOT chemotherapy treatment affects adipocyte's lipid metabolism: an in vitro study. FLOT化疗对脂肪细胞脂质代谢影响的体外研究。
IF 3.1 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-06-21 DOI: 10.1080/21623945.2025.2518285
Lisa Guerrier, Ruddy Richard, Jean Brac de la Perrière, Ophélie Bacoeur-Ouzillou, Julianne Touron, Johan Gagnière, Alexandre Pinel, Corinne Malpuech-Brugère

Cachexia is a complex syndrome that is often associated with cancer. Chemotherapy, one of the main cancer treatments, worsens weight loss in cancer-induced cachexia. In this context, it is thought that fat loss precedes muscle loss, and that alterations in adipose tissue are associated with tumours. However, the effect of cancer treatment on adipose tissue is not well understood. This study aimed to evaluate the impact of chemotherapy alone on mature 3T3-L1 adipocytes to identify the mechanisms contributing to adipose tissue alteration. The murine cell line 3T3-L1, a model of mature adipocytes, was used in this study. After differentiation, cells were treated for 48 h with a chemotherapy cocktail called FLOT composed of 5-fluorouracil, leucovorin, oxaliplatin and docetaxel at two concentrations (FLOT 1X and 0.1X). The control group was treated with the vehicle of the chemotherapy cocktail. Viability, mitochondrial function and dynamics, lipid metabolism, and cellular stress were also evaluated. FLOT 1X chemotherapy significantly reduced viability of mature 3T3-L1 cells and inhibited lipid accumulation. Interestingly, while FLOT 1X treatment downregulated lipogenesis markers, FLOT 0.1X treatment upregulated some of them. Although, the treatment showed no effect on mitochondrial respiration or density, it significantly increased expression of oxidative stress and inflammation markers in adipocytes.This in vitro study provides the first evidence of FLOT chemotherapy's direct effects on healthy mature adipocytes. The results demonstrate significant treatment-induced reductions in cell viability along with dysregulation of both lipogenic and lipolytic pathways. These findings elucidate previously unrecognized mechanisms underlying adipose tissue dysfunction in cancer cachexia.

恶病质是一种复杂的综合征,通常与癌症有关。化疗是主要的癌症治疗方法之一,它会加重癌症引起的恶病质导致的体重下降。在这种情况下,人们认为脂肪的减少先于肌肉的减少,脂肪组织的改变与肿瘤有关。然而,癌症治疗对脂肪组织的影响尚不清楚。本研究旨在评估单独化疗对成熟3T3-L1脂肪细胞的影响,以确定导致脂肪组织改变的机制。本研究采用小鼠成熟脂肪细胞模型3T3-L1细胞系。细胞分化后,用由5-氟尿嘧啶、亚叶酸素、奥沙利铂和多西紫杉醇以两种浓度(FLOT 1X和0.1X)组成的FLOT化疗鸡尾酒治疗48小时。对照组以化疗鸡尾酒为载体进行治疗。还评估了细胞活力、线粒体功能和动力学、脂质代谢和细胞应激。FLOT 1X化疗显著降低成熟3T3-L1细胞活力,抑制脂质积累。有趣的是,虽然FLOT 1X治疗下调了脂肪生成标志物,但FLOT 0.1X治疗上调了其中一些标志物。虽然治疗对线粒体呼吸或密度没有影响,但它显著增加了脂肪细胞中氧化应激和炎症标志物的表达。这项体外研究首次证明了FLOT化疗对健康成熟脂肪细胞的直接影响。结果显示显著治疗诱导的细胞活力降低以及脂肪生成和脂肪分解途径的失调。这些发现阐明了以前未被认识的癌症恶病质中脂肪组织功能障碍的机制。
{"title":"FLOT chemotherapy treatment affects adipocyte's lipid metabolism: an <i>in vitro</i> study.","authors":"Lisa Guerrier, Ruddy Richard, Jean Brac de la Perrière, Ophélie Bacoeur-Ouzillou, Julianne Touron, Johan Gagnière, Alexandre Pinel, Corinne Malpuech-Brugère","doi":"10.1080/21623945.2025.2518285","DOIUrl":"10.1080/21623945.2025.2518285","url":null,"abstract":"<p><p>Cachexia is a complex syndrome that is often associated with cancer. Chemotherapy, one of the main cancer treatments, worsens weight loss in cancer-induced cachexia. In this context, it is thought that fat loss precedes muscle loss, and that alterations in adipose tissue are associated with tumours. However, the effect of cancer treatment on adipose tissue is not well understood. This study aimed to evaluate the impact of chemotherapy alone on mature 3T3-L1 adipocytes to identify the mechanisms contributing to adipose tissue alteration. The murine cell line 3T3-L1, a model of mature adipocytes, was used in this study. After differentiation, cells were treated for 48 h with a chemotherapy cocktail called FLOT composed of 5-fluorouracil, leucovorin, oxaliplatin and docetaxel at two concentrations (FLOT 1X and 0.1X). The control group was treated with the vehicle of the chemotherapy cocktail. Viability, mitochondrial function and dynamics, lipid metabolism, and cellular stress were also evaluated. FLOT 1X chemotherapy significantly reduced viability of mature 3T3-L1 cells and inhibited lipid accumulation. Interestingly, while FLOT 1X treatment downregulated lipogenesis markers, FLOT 0.1X treatment upregulated some of them. Although, the treatment showed no effect on mitochondrial respiration or density, it significantly increased expression of oxidative stress and inflammation markers in adipocytes.This <i>in vitro</i> study provides the first evidence of FLOT chemotherapy's direct effects on healthy mature adipocytes. The results demonstrate significant treatment-induced reductions in cell viability along with dysregulation of both lipogenic and lipolytic pathways. These findings elucidate previously unrecognized mechanisms underlying adipose tissue dysfunction in cancer cachexia.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2518285"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144339800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of alpelisib treatment on murine Pten-deficient lipomas. alpelisib对小鼠pten缺陷型脂肪瘤的治疗作用。
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-02-17 DOI: 10.1080/21623945.2025.2468275
Lea M Merz, Karsten Winter, Sandy Richter, Sonja Kallendrusch, Andreas Horn, Sonja Grunewald, Nora Klöting, Kerstin Krause, Wieland Kiess, Diana Le Duc, Antje Garten

 Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (Pcna), fibrosis (Tgfb1), and adipogenesis (Pparg) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.

磷酸酶和紧张素同源物(PTEN)错构瘤肿瘤综合征(PHTS)是一种罕见的疾病,由肿瘤抑制基因PTEN的种系突变引起,PTEN是磷脂酰肌醇3-激酶(PI3K)/AKT信号传导的关键负调控因子。PHTS患儿常发展为脂肪瘤,只有手术切除是有效的治疗方法。我们研究了选择性pi3k抑制剂alpelisib对pten缺陷型脂肪瘤的影响。用alpelisib或非选择性PI3K抑制剂wortmannin孵育后,我们分析了脂肪瘤和对照附睾脂肪组织(epiWAT)的组织学、基因表达和PI3K通路。与epiWAT相比,Alpelisib增加了脂肪瘤中的脂肪细胞面积。基线基因表达显示,在脂肪瘤中增殖(Pcna)、纤维化(Tgfb1)和脂肪生成(Pparg)标志物水平较高,而激素敏感脂肪酶的表达低于epiWAT。alpelisib孵育后,Pi3k信号和细胞外基质因子的靶基因减少。与对照组相比,我们通过检测Akt水平的下降证实了Pi3k的抑制作用。用alpelisib治疗的人类脂肪瘤样品显示出可变的脂解反应,表明治疗结果的可变性。我们建立了一个离体模型来研究alpelisib对pten缺失型脂肪瘤的作用。这些结果强调了靶向PI3K抑制在治疗phts相关脂肪瘤中的治疗潜力,特别是在无法手术的情况下。
{"title":"Effects of alpelisib treatment on murine <i>Pten</i>-deficient lipomas.","authors":"Lea M Merz, Karsten Winter, Sandy Richter, Sonja Kallendrusch, Andreas Horn, Sonja Grunewald, Nora Klöting, Kerstin Krause, Wieland Kiess, Diana Le Duc, Antje Garten","doi":"10.1080/21623945.2025.2468275","DOIUrl":"10.1080/21623945.2025.2468275","url":null,"abstract":"<p><p> Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (<i>Pcna</i>), fibrosis (<i>Tgfb1</i>), and adipogenesis (<i>Pparg</i>) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2468275"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perivascular adipocyte size is related to the lipid profile and inflammatory changes in a healthy population. 在健康人群中,血管周围脂肪细胞大小与脂质分布和炎症变化有关。
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-05-23 DOI: 10.1080/21623945.2025.2499500
Hana Bartuskova, Ivana Kralova Lesna, Sona Kauerova, Vera Lanska, Jiri Fronek, Libor Janousek, Barbora Muffova, Karel Paukner, Rudolf Poledne

Inflammatory changes in perivascular adipose tissue are associated with atherosclerotic lesions in the adjacent artery and can also be used as a marker in patient workup. While adipocyte size is known to be closely related to adipose tissue dysfunction and inflammation, it has not been widely studied in perivascular adipose tissue obtained from healthy human subjects without clinical atherosclerosis. In this cross-sectional study, we addressed this issue by measuring adipocyte size and defining its relationship to cardiovascular risk factors in a healthy cohort of living kidney donors. The presence of cardiovascular risk factors was established by a standardized questionnaire, clinical measurements and body composition analyses. Adipocyte size was measured in the perivascular depot. The proportions of various macrophage subtypes were determined by flow cytometry. To confirm the results, the proportion of CD68  +  macrophages was additionally assessed by immunohistochemistry. A correlation and principal component analyses were performed to explore associations. Adipocyte size in perivascular adipose tissue correlated with markers of lipid metabolism, inflammation, and glucose metabolism. Further, the positive correlation with the pro-inflammatory subpopulation of macrophages suggests a strong local effect of perivascular adipose tissue. Perivascular adipocyte size was associated with cardiovascular risk factors and markers of inflammation in a healthy cohort of living kidney donors. This further supports the local role of adipose tissue dysfunction and inflammation in early atherosclerosis development and detection.

血管周围脂肪组织的炎症变化与邻近动脉的动脉粥样硬化病变有关,也可作为患者检查的标志。虽然已知脂肪细胞大小与脂肪组织功能障碍和炎症密切相关,但尚未在无临床动脉粥样硬化的健康人血管周围脂肪组织中进行广泛研究。在这项横断面研究中,我们通过测量脂肪细胞大小并确定其与健康活体肾脏供体心血管危险因素的关系来解决这一问题。通过标准化问卷调查、临床测量和身体成分分析来确定心血管危险因素的存在。在血管周围储存库测量脂肪细胞大小。流式细胞术检测各巨噬细胞亚型比例。为了证实结果,我们用免疫组织化学方法进一步评估CD68 +巨噬细胞的比例。进行相关分析和主成分分析以探讨相关性。血管周围脂肪组织中的脂肪细胞大小与脂质代谢、炎症和葡萄糖代谢标志物相关。此外,与巨噬细胞的促炎亚群呈正相关表明血管周围脂肪组织具有很强的局部作用。在健康的活体肾供者队列中,血管周围脂肪细胞大小与心血管危险因素和炎症标志物相关。这进一步支持了脂肪组织功能障碍和炎症在早期动脉粥样硬化发展和检测中的局部作用。
{"title":"Perivascular adipocyte size is related to the lipid profile and inflammatory changes in a healthy population.","authors":"Hana Bartuskova, Ivana Kralova Lesna, Sona Kauerova, Vera Lanska, Jiri Fronek, Libor Janousek, Barbora Muffova, Karel Paukner, Rudolf Poledne","doi":"10.1080/21623945.2025.2499500","DOIUrl":"10.1080/21623945.2025.2499500","url":null,"abstract":"<p><p>Inflammatory changes in perivascular adipose tissue are associated with atherosclerotic lesions in the adjacent artery and can also be used as a marker in patient workup. While adipocyte size is known to be closely related to adipose tissue dysfunction and inflammation, it has not been widely studied in perivascular adipose tissue obtained from healthy human subjects without clinical atherosclerosis. In this cross-sectional study, we addressed this issue by measuring adipocyte size and defining its relationship to cardiovascular risk factors in a healthy cohort of living kidney donors. The presence of cardiovascular risk factors was established by a standardized questionnaire, clinical measurements and body composition analyses. Adipocyte size was measured in the perivascular depot. The proportions of various macrophage subtypes were determined by flow cytometry. To confirm the results, the proportion of CD68  +  macrophages was additionally assessed by immunohistochemistry. A correlation and principal component analyses were performed to explore associations. Adipocyte size in perivascular adipose tissue correlated with markers of lipid metabolism, inflammation, and glucose metabolism. Further, the positive correlation with the pro-inflammatory subpopulation of macrophages suggests a strong local effect of perivascular adipose tissue. Perivascular adipocyte size was associated with cardiovascular risk factors and markers of inflammation in a healthy cohort of living kidney donors. This further supports the local role of adipose tissue dysfunction and inflammation in early atherosclerosis development and detection.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2499500"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144126468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. 脂滴病理生理学和相关并发症中的一系列研究基因的参与。
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-12-01 Epub Date: 2024-09-27 DOI: 10.1080/21623945.2024.2403380
Sami N Al Harake, Yasamin Abedin, Fatema Hatoum, Nour Zahraa Nassar, Ali Ali, Aline Nassar, Amjad Kanaan, Samer Bazzi, Sami Azar, Frederic Harb, Hilda E Ghadieh

Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.

脂滴(LDs)是高度特化的储能细胞器,通过调节白脂肪组织(WAT)内的脂质通量来维持脂质平衡。脂肪细胞和 LDs 的生理功能可因多个基因突变而受损,导致 NEFA 诱导的脂肪毒性,最终表现为代谢并发症,主要表现为血脂异常、异位脂肪堆积和胰岛素抵抗。在这篇综述中,我们阐述了参与脂滴代谢的 CIDEC、PPARG、BSCL2、AGPAT2、PLIN1、LIPE、LMNA、CAV1、CEACAM1 和 INSR 基因突变和缺失的影响及其相关的病理生理学损伤,强调了它们在脂肪营养不良和代谢功能障碍的发生中的作用。
{"title":"Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities.","authors":"Sami N Al Harake, Yasamin Abedin, Fatema Hatoum, Nour Zahraa Nassar, Ali Ali, Aline Nassar, Amjad Kanaan, Samer Bazzi, Sami Azar, Frederic Harb, Hilda E Ghadieh","doi":"10.1080/21623945.2024.2403380","DOIUrl":"10.1080/21623945.2024.2403380","url":null,"abstract":"<p><p>Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - <i>CIDEC</i>, <i>PPARG</i>, <i>BSCL2</i>, <i>AGPAT2</i>, <i>PLIN1</i>, <i>LIPE</i>, <i>LMNA</i>, <i>CAV1</i>, <i>CEACAM1</i>, and <i>INSR</i> - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2403380"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of miR-29c on proliferation and adipogenic differentiation of porcine bone marrow mesenchymal stromal cells. miR-29c 对猪骨髓间充质基质细胞增殖和成脂分化的影响
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-12-01 Epub Date: 2024-06-10 DOI: 10.1080/21623945.2024.2365211
Anjing Zhang, Lu Lu, Fuxing Yang, Tingting Luo, Shuqi Yang, Peidong Yang, Xuemin Li, Xiaoli Deng, Yang Qiu, Litong Chen, Keren Long, Dengke Pan, Long Jin, Mingzhou Li, Li Chen

microRNAs (miRNAs), a subclass of noncoding short RNAs, direct cells fate decisions that are important for cell proliferation and cell lineage decisions. Adipogenic differentiation contributes greatly to the development of white adipose tissue, involving of highly organized regulation by miRNAs. In the present study, we screened and identified 78 differently expressed miRNAs of porcine BMSCs during adipogenic differentiation. Of which, the role of miR-29c in regulating the proliferation and adipogenic differentiation was proved and detailed. Specifically, over-expression miR-29c inhibits the proliferation and adipogenic differentiation of BMSCs, which were reversed upon miR-29c inhibitor. Interference of IGF1 inhibits the proliferation and adipogenic differentiation of BMSCs. Mechanistically, miR-29c regulates the proliferation and adipogenic differentiation of BMSCs by targeting IGF1 and further regulating the MAPK pathway and the PI3K-AKT-mTOR pathway, respectively. In conclusion, we highlight the important role of miR-29c in regulating proliferation and adipogenic differentiation of BMSCs.

微小RNA(miRNA)是非编码短RNA的一个亚类,可指导细胞命运的决定,对细胞增殖和细胞系的决定非常重要。成脂分化对白色脂肪组织的发育有很大贡献,其中涉及到 miRNAs 的高度有序调控。本研究筛选并鉴定了猪 BMSCs 在成脂分化过程中表达的 78 个不同 miRNA。其中,miR-29c 在增殖和成脂分化过程中的调控作用得到了证实和详细描述。具体来说,过度表达 miR-29c 会抑制 BMSCs 的增殖和成脂分化,而 miR-29c 抑制剂会逆转这种抑制作用。IGF1的干扰抑制了BMSCs的增殖和成脂分化。从机制上讲,miR-29c 通过靶向 IGF1 并进一步分别调控 MAPK 通路和 PI3K-AKT-mTOR 通路来调节 BMSCs 的增殖和成脂分化。总之,我们强调了 miR-29c 在调控 BMSCs 增殖和成脂分化中的重要作用。
{"title":"Effects of miR-29c on proliferation and adipogenic differentiation of porcine bone marrow mesenchymal stromal cells.","authors":"Anjing Zhang, Lu Lu, Fuxing Yang, Tingting Luo, Shuqi Yang, Peidong Yang, Xuemin Li, Xiaoli Deng, Yang Qiu, Litong Chen, Keren Long, Dengke Pan, Long Jin, Mingzhou Li, Li Chen","doi":"10.1080/21623945.2024.2365211","DOIUrl":"10.1080/21623945.2024.2365211","url":null,"abstract":"<p><p>microRNAs (miRNAs), a subclass of noncoding short RNAs, direct cells fate decisions that are important for cell proliferation and cell lineage decisions. Adipogenic differentiation contributes greatly to the development of white adipose tissue, involving of highly organized regulation by miRNAs. In the present study, we screened and identified 78 differently expressed miRNAs of porcine BMSCs during adipogenic differentiation. Of which, the role of miR-29c in regulating the proliferation and adipogenic differentiation was proved and detailed. Specifically, over-expression miR-29c inhibits the proliferation and adipogenic differentiation of BMSCs, which were reversed upon miR-29c inhibitor. Interference of <i>IGF1</i> inhibits the proliferation and adipogenic differentiation of BMSCs. Mechanistically, miR-29c regulates the proliferation and adipogenic differentiation of BMSCs by targeting IGF1 and further regulating the MAPK pathway and the PI3K-AKT-mTOR pathway, respectively. In conclusion, we highlight the important role of miR-29c in regulating proliferation and adipogenic differentiation of BMSCs.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2365211"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between the triglyceride glucose index and short-term mortality in septic patients with or without obesity: a retrospective cohort study. 有无肥胖症的脓毒症患者的甘油三酯血糖指数与短期死亡率之间的关系:一项回顾性队列研究。
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-12-01 Epub Date: 2024-07-16 DOI: 10.1080/21623945.2024.2379867
Zhou Lv, Juntao Wang, Minglu Gu, Liuyan Zhou, Saie Shen, Chunmei Huang

Background: Sepsis is a significant contributor to both intensive care unit (ICU) admissions and mortality among patients in ICU, with a rising prevalence of obesity. There is a lack of extensive research on the correlation between TyGI and findings in patients with sepsis, especially in obese patients.

Methods: This study used a retrospective cohort design and included patients with sepsis (≥18 years) from the Medical Information Mart for Intensive Care IV database. The association between TyGI and outcome was examined using multivariable logistic regression analysis.

Results: 8,840 patients with sepsis were included in the analysis. The in-ICU mortality rate was 9.7%. Non-survivors exhibited significantly greater TyGI levels than survivors [9.19(8.76-9.71) vs. 9.10(8.67-9.54), p < 0.001]. The adjusted multivariate regression model showed that elevated TyGI values were linked to a greater likelihood of death in ICU (odds ratio [OR] range 1.072-1.793, p < 0.001) and hospital (OR range 1.068-1.445, p = 0.005). Restricted Cubic Spline analysis revealed a nonlinear association between TyGI and in-ICU and in-hospital mortality risks within specified ranges. Subgroup analysis revealed interaction effects in the general obesity, abdominal obesity, and impaired fasting glucose subgroups (p = 0.014, 0.016, and < 0.001, respectively).

Conclusion: TyGI was associated with an increased sepsis-related short-term mortality risk and adverse outcomes after ICU admission.

背景:脓毒症是导致重症监护病房(ICU)患者入院和死亡的一个重要因素,而肥胖的发病率却在不断上升。关于脓毒症患者,尤其是肥胖患者的 TyGI 与检查结果之间的相关性,目前还缺乏广泛的研究:本研究采用了回顾性队列设计,纳入了重症监护医学信息市场IV数据库中的脓毒症患者(≥18岁)。结果:8840名脓毒症患者(≥18岁)被纳入重症监护医学信息市场IV数据库:结果:8840 名脓毒症患者被纳入分析。重症监护室内的死亡率为 9.7%。非幸存者的TyGI水平明显高于幸存者[9.19(8.76-9.71) vs. 9.10(8.67-9.54), p p = 0.005]。限制性三次样条分析显示,在特定范围内,TyGI 与重症监护室内和院内死亡风险之间存在非线性关联。亚组分析显示,在全身肥胖、腹型肥胖和空腹血糖受损亚组中存在交互效应(p = 0.014、0.016 和 结论:TyGI与脓毒症相关的短期死亡风险和入住ICU后的不良结局增加有关。
{"title":"Association between the triglyceride glucose index and short-term mortality in septic patients with or without obesity: a retrospective cohort study.","authors":"Zhou Lv, Juntao Wang, Minglu Gu, Liuyan Zhou, Saie Shen, Chunmei Huang","doi":"10.1080/21623945.2024.2379867","DOIUrl":"10.1080/21623945.2024.2379867","url":null,"abstract":"<p><strong>Background: </strong>Sepsis is a significant contributor to both intensive care unit (ICU) admissions and mortality among patients in ICU, with a rising prevalence of obesity. There is a lack of extensive research on the correlation between TyGI and findings in patients with sepsis, especially in obese patients.</p><p><strong>Methods: </strong>This study used a retrospective cohort design and included patients with sepsis (≥18 years) from the Medical Information Mart for Intensive Care IV database. The association between TyGI and outcome was examined using multivariable logistic regression analysis.</p><p><strong>Results: </strong>8,840 patients with sepsis were included in the analysis. The in-ICU mortality rate was 9.7%. Non-survivors exhibited significantly greater TyGI levels than survivors [9.19(8.76-9.71) vs. 9.10(8.67-9.54), <i>p</i> < 0.001]. The adjusted multivariate regression model showed that elevated TyGI values were linked to a greater likelihood of death in ICU (odds ratio [OR] range 1.072-1.793, <i>p</i> < 0.001) and hospital (OR range 1.068-1.445, <i>p</i> = 0.005). Restricted Cubic Spline analysis revealed a nonlinear association between TyGI and in-ICU and in-hospital mortality risks within specified ranges. Subgroup analysis revealed interaction effects in the general obesity, abdominal obesity, and impaired fasting glucose subgroups (<i>p</i> = 0.014, 0.016, and < 0.001, respectively).</p><p><strong>Conclusion: </strong>TyGI was associated with an increased sepsis-related short-term mortality risk and adverse outcomes after ICU admission.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2379867"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low circulating levels of neuregulin 4 as a potential biomarker associated with the severity and prognosis of obesity-related metabolic diseases: a systematic review. 作为与肥胖相关代谢性疾病的严重程度和预后有关的潜在生物标志物的低循环神经胶质蛋白 4:系统综述。
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-12-01 Epub Date: 2024-08-20 DOI: 10.1080/21623945.2024.2390833
Khanyisani Ziqubu, Phiwayinkosi V Dludla, Sinenhlanhla X H Mthembu, Bongani Nkambule, Sithandiwe E Mazibuko-Mbeje

Background: Neuregulin 4 (Nrg4) is a brown adipose tissue-derived adipokine that greatly affects systemic metabolism and improves metabolic derangements. Although abnormal circulating levels of Nrg4 are common in obesity, it remains elusive whether low or elevated levels of this batokine are associated with the onset of metabolic diseases.

Aim: To assess Nrg4 levels and its role as a feasible biomarker to predict the severity of obesity, gestational diabetes mellitus (GDM), type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD).

Methods: A search for relevant studies was performed systematically using prominent search engines, including PubMed, Google Scholar, and Embase, by following PRISMA guidelines.

Results: Ample clinical evidence reported low serum/plasma levels of Nrg4 in obesity and these were inversely proportional to the indices of metabolic syndrome, including body mass index, waist circumference, triglycerides, fasting plasma glucose, and homoeostatic model assessment for insulin resistance as well as high-sensitivity C-reactive protein. Low circulating Nrg4 levels may aid in the prediction of morbid obesity, and subsequent GDM, T2DM, NAFLD, and CVD.

Conclusion: Current clinical evidence emphasizes that the circulating levels of Nrg4 are decreased in morbid obesity, and it also highlights that Nrg4 May serve as a potential prognostic biomarker for obesity-related metabolic diseases.

背景:Neuregulin 4(Nrg4)是一种来源于棕色脂肪组织的脂肪因子,它能极大地影响全身代谢并改善代谢紊乱。目的:评估 Nrg4 水平及其作为预测肥胖、妊娠糖尿病(GDM)、2 型糖尿病(T2DM)、非酒精性脂肪肝(NAFLD)和心血管疾病(CVD)严重程度的可行生物标志物的作用:按照 PRISMA 指南,使用 PubMed、Google Scholar 和 Embase 等著名搜索引擎系统地搜索相关研究:结果:大量临床证据表明,肥胖症患者血清/血浆中的Nrg4水平较低,且与代谢综合征指标成反比,这些指标包括体重指数、腰围、甘油三酯、空腹血浆葡萄糖、胰岛素抵抗的稳态模型评估以及高敏C反应蛋白。低水平的循环 Nrg4 可能有助于预测病态肥胖以及随后的 GDM、T2DM、非酒精性脂肪肝和心血管疾病:目前的临床证据强调,病态肥胖症患者的循环 Nrg4 水平会降低,同时还强调 Nrg4 可作为肥胖相关代谢疾病的潜在预后生物标志物。
{"title":"Low circulating levels of neuregulin 4 as a potential biomarker associated with the severity and prognosis of obesity-related metabolic diseases: a systematic review.","authors":"Khanyisani Ziqubu, Phiwayinkosi V Dludla, Sinenhlanhla X H Mthembu, Bongani Nkambule, Sithandiwe E Mazibuko-Mbeje","doi":"10.1080/21623945.2024.2390833","DOIUrl":"10.1080/21623945.2024.2390833","url":null,"abstract":"<p><strong>Background: </strong>Neuregulin 4 (Nrg4) is a brown adipose tissue-derived adipokine that greatly affects systemic metabolism and improves metabolic derangements. Although abnormal circulating levels of Nrg4 are common in obesity, it remains elusive whether low or elevated levels of this batokine are associated with the onset of metabolic diseases.</p><p><strong>Aim: </strong>To assess Nrg4 levels and its role as a feasible biomarker to predict the severity of obesity, gestational diabetes mellitus (GDM), type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD).</p><p><strong>Methods: </strong>A search for relevant studies was performed systematically using prominent search engines, including PubMed, Google Scholar, and Embase, by following PRISMA guidelines.</p><p><strong>Results: </strong>Ample clinical evidence reported low serum/plasma levels of Nrg4 in obesity and these were inversely proportional to the indices of metabolic syndrome, including body mass index, waist circumference, triglycerides, fasting plasma glucose, and homoeostatic model assessment for insulin resistance as well as high-sensitivity C-reactive protein. Low circulating Nrg4 levels may aid in the prediction of morbid obesity, and subsequent GDM, T2DM, NAFLD, and CVD.</p><p><strong>Conclusion: </strong>Current clinical evidence emphasizes that the circulating levels of Nrg4 are decreased in morbid obesity, and it also highlights that Nrg4 May serve as a potential prognostic biomarker for obesity-related metabolic diseases.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2390833"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Follistatin like-1 (Fstl1) regulates adipose tissue development in zebrafish. 卵泡素样蛋白-1 (Fstl1)调节斑马鱼脂肪组织的发育。
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-12-01 Epub Date: 2024-12-07 DOI: 10.1080/21623945.2024.2435862
Lucía Guggeri, Ileana Sosa-Redaelli, Magdalena Cárdenas-Rodríguez, Martina Alonso, Gisell González, Hugo Naya, Victoria Prieto-Echagüe, Paola Lepanto, Jose L Badano

Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous in vitro results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the in vivo relevance of the zebrafish orthologous genes fstl1a and fstl1b in primary cilia and adipose tissue development. Using a combination of knockdowns and a new fstl1a mutant line, we show that fstl1a promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that fstl1b partially compensates for the loss of fstl1a. Moreover, in high fat diet, fstl1a depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous in vitro data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.

肥胖是一种病因复杂、普遍存在的疾病。因此,研究其相关的细胞和分子途径可能有助于分析遗传易感性疾病。在此背景下,对纤毛病(如Bardet-Biedl综合征)的研究强调了中枢神经系统和外周组织中原发性纤毛与肥胖的相关性。基于我们之前的体外实验结果支持新的bbs4 -纤毛- fstl1轴在脂肪细胞分化中的作用,我们评估了斑马鱼同源基因fstl1a和fstl1b在初级纤毛和脂肪组织发育中的体内相关性。通过敲除和一个新的fstl1a突变系,我们发现fstl1a促进早期胚胎的初级纤毛形成,并参与幼虫脂肪组织的形成。我们还表明,fstl1b部分补偿了fstl1a的损失。此外,在高脂肪饮食中,fstl1a的消耗会影响分化和成熟脂肪细胞标志物的表达。这些结果与我们之前的体外实验数据一致,并进一步支持FSTL1作为脂肪组织形成调节剂的作用。剖析FSTL1等蛋白质的确切生物学作用可能有助于理解肥胖的发病和表现。
{"title":"Follistatin like-1 (<i>Fstl1</i>) regulates adipose tissue development in zebrafish.","authors":"Lucía Guggeri, Ileana Sosa-Redaelli, Magdalena Cárdenas-Rodríguez, Martina Alonso, Gisell González, Hugo Naya, Victoria Prieto-Echagüe, Paola Lepanto, Jose L Badano","doi":"10.1080/21623945.2024.2435862","DOIUrl":"10.1080/21623945.2024.2435862","url":null,"abstract":"<p><p>Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous <i>in vitro</i> results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the <i>in vivo</i> relevance of the zebrafish orthologous genes <i>fstl1a</i> and <i>fstl1b</i> in primary cilia and adipose tissue development. Using a combination of knockdowns and a new <i>fstl1a</i> mutant line, we show that <i>fstl1a</i> promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that <i>fstl1b</i> partially compensates for the loss of <i>fstl1a</i>. Moreover, in high fat diet, <i>fstl1a</i> depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous <i>in vitro</i> data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2435862"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Adipocyte
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1