Pub Date : 2024-12-01Epub Date: 2024-12-07DOI: 10.1080/21623945.2024.2435862
Lucía Guggeri, Ileana Sosa-Redaelli, Magdalena Cárdenas-Rodríguez, Martina Alonso, Gisell González, Hugo Naya, Victoria Prieto-Echagüe, Paola Lepanto, Jose L Badano
Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous in vitro results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the in vivo relevance of the zebrafish orthologous genes fstl1a and fstl1b in primary cilia and adipose tissue development. Using a combination of knockdowns and a new fstl1a mutant line, we show that fstl1a promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that fstl1b partially compensates for the loss of fstl1a. Moreover, in high fat diet, fstl1a depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous in vitro data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.
{"title":"Follistatin like-1 (<i>Fstl1</i>) regulates adipose tissue development in zebrafish.","authors":"Lucía Guggeri, Ileana Sosa-Redaelli, Magdalena Cárdenas-Rodríguez, Martina Alonso, Gisell González, Hugo Naya, Victoria Prieto-Echagüe, Paola Lepanto, Jose L Badano","doi":"10.1080/21623945.2024.2435862","DOIUrl":"10.1080/21623945.2024.2435862","url":null,"abstract":"<p><p>Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous <i>in vitro</i> results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the <i>in vivo</i> relevance of the zebrafish orthologous genes <i>fstl1a</i> and <i>fstl1b</i> in primary cilia and adipose tissue development. Using a combination of knockdowns and a new <i>fstl1a</i> mutant line, we show that <i>fstl1a</i> promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that <i>fstl1b</i> partially compensates for the loss of <i>fstl1a</i>. Moreover, in high fat diet, <i>fstl1a</i> depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous <i>in vitro</i> data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2435862"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-11-22DOI: 10.1080/21623945.2023.2282566
Jiong Ma, Junyan Li, Xuejun Chen, Yanyan Ma
Background: Platinum is a commonly used drug for ovarian cancer (OvCa) treatment, but drug resistance limits its clinical application. This study intended to delineate the effects of adipocytes on platinum resistance in OvCa.
Methods: OvCa cells were maintained in the adipocyte-conditioned medium. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, separately. Proliferation and apoptosis-related protein expression were assayed by western blot. The IC50 values of cisplatin and carboplatin were determined using CCK-8. IGF1 secretion and expression were assayed via ELISA and western blot, respectively. A xenograft model was established, and pathological changes were detected by H&E staining. Proliferation and apoptosis-associated protein expression was assessed via IHC.
Results: Adipocytes promoted the viability and repressed cell apoptosis in OvCa, as well as enhancing platinum resistance, while the addition of IGF-1 R inhibitor reversed the effects of adipocytes on proliferation, apoptosis, and drug resistance of OvCa cells. Treatment with different concentrations of Ojeok-san (OJS) inhibited the adipocyte-induced platinum resistance in OvCa cells by suppressing IGF1. The combined treatment of OJS and cisplatin significantly inhibited tumour growth in vivo with good mouse tolerance.
Conclusion: In summary, OJS inhibited OvCa proliferation and platinum resistance by suppressing adipocyte paracrine IGF1 secretion.
{"title":"Ojeok-san enhances platinum sensitivity in ovarian cancer by regulating adipocyte paracrine IGF1 secretion.","authors":"Jiong Ma, Junyan Li, Xuejun Chen, Yanyan Ma","doi":"10.1080/21623945.2023.2282566","DOIUrl":"10.1080/21623945.2023.2282566","url":null,"abstract":"<p><strong>Background: </strong>Platinum is a commonly used drug for ovarian cancer (OvCa) treatment, but drug resistance limits its clinical application. This study intended to delineate the effects of adipocytes on platinum resistance in OvCa.</p><p><strong>Methods: </strong>OvCa cells were maintained in the adipocyte-conditioned medium. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, separately. Proliferation and apoptosis-related protein expression were assayed by western blot. The IC<sub>50</sub> values of cisplatin and carboplatin were determined using CCK-8. IGF1 secretion and expression were assayed via ELISA and western blot, respectively. A xenograft model was established, and pathological changes were detected by H&E staining. Proliferation and apoptosis-associated protein expression was assessed via IHC.</p><p><strong>Results: </strong>Adipocytes promoted the viability and repressed cell apoptosis in OvCa, as well as enhancing platinum resistance, while the addition of IGF-1 R inhibitor reversed the effects of adipocytes on proliferation, apoptosis, and drug resistance of OvCa cells. Treatment with different concentrations of Ojeok-san (OJS) inhibited the adipocyte-induced platinum resistance in OvCa cells by suppressing IGF1. The combined treatment of OJS and cisplatin significantly inhibited tumour growth <i>in vivo</i> with good mouse tolerance.</p><p><strong>Conclusion: </strong>In summary, OJS inhibited OvCa proliferation and platinum resistance by suppressing adipocyte paracrine IGF1 secretion.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2282566"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138294411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-10DOI: 10.1080/21623945.2024.2411453
María Elizabeth Preciado-Ortiz, Erika Martínez-López, Trinidad García-Iglesias, Gildardo Gembe-Olivarez, Nathaly Torres-Castillo, Iris Monserrat Llamas-Covarrubias, Juan José Rivera-Valdés
Obesity is a globally prevalent metabolic disorder characterized by an increased number of adipose cells and excessive fat in adipocytes. Herbal medicines, such as ginger, have shown potential in treating obesity by inhibiting adipogenesis and reducing adipocyte hypertrophy. Ginger contains bioactive compounds, particularly gingerols, which have demonstrated anti-adipogenic and/or lipolytic effects. However, research on the effects of 10-gingerol on adipose tissue remains limited. This study aimed to evaluate the effect of 10-gingerol on lipid content, lipolysis markers, and the expression of genes related to lipid metabolism in 3T3-L1 adipocytes. Three groups were analyzed: a negative control (preadipocytes), a positive control (mature adipocytes), and a group treated with 10-gingerol (10-G). Results showed that 10-G reduced lipid accumulation by 42.16% in mature adipocytes compared to the control, without affecting cell viability. Additionally, 10-G increased glycerol release and downregulated lipogenic genes such as Pparγ, Acaca, Fabp4, and Mtor, while upregulating genes related to fatty acid oxidation, including Cebpα, Cpt1a, Lipe, and Prkaa1. In conclusion, 10-gingerol reduces lipid content in mature adipocytes by downregulating lipogenesis, increasing lipolysis, and enhancing fatty acid oxidation.
{"title":"10-Gingerol reduces cytoplasmic lipid droplets and induces lipolysis in 3T3-L1 adipocytes.","authors":"María Elizabeth Preciado-Ortiz, Erika Martínez-López, Trinidad García-Iglesias, Gildardo Gembe-Olivarez, Nathaly Torres-Castillo, Iris Monserrat Llamas-Covarrubias, Juan José Rivera-Valdés","doi":"10.1080/21623945.2024.2411453","DOIUrl":"10.1080/21623945.2024.2411453","url":null,"abstract":"<p><p>Obesity is a globally prevalent metabolic disorder characterized by an increased number of adipose cells and excessive fat in adipocytes. Herbal medicines, such as ginger, have shown potential in treating obesity by inhibiting adipogenesis and reducing adipocyte hypertrophy. Ginger contains bioactive compounds, particularly gingerols, which have demonstrated anti-adipogenic and/or lipolytic effects. However, research on the effects of 10-gingerol on adipose tissue remains limited. This study aimed to evaluate the effect of 10-gingerol on lipid content, lipolysis markers, and the expression of genes related to lipid metabolism in 3T3-L1 adipocytes. Three groups were analyzed: a negative control (preadipocytes), a positive control (mature adipocytes), and a group treated with 10-gingerol (10-G). Results showed that 10-G reduced lipid accumulation by 42.16% in mature adipocytes compared to the control, without affecting cell viability. Additionally, 10-G increased glycerol release and downregulated lipogenic genes such as <i>Pparγ, Acaca, Fabp4</i>, and <i>Mtor</i>, while upregulating genes related to fatty acid oxidation, including <i>Cebpα, Cpt1a, Lipe</i>, and <i>Prkaa1</i>. In conclusion, 10-gingerol reduces lipid content in mature adipocytes by downregulating lipogenesis, increasing lipolysis, and enhancing fatty acid oxidation.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2411453"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-27DOI: 10.1080/21623945.2024.2369777
José Antonio Palma-Jacinto, Edgar López-López, José Luis Medina-Franco, Oreth Montero-Ruíz, Isela Santiago-Roque
Insulin resistance is caused by the abnormal secretion of proinflammatory cytokines in adipose tissue, which is induced by an increase in lipid accumulation in adipocytes, hepatocytes, and myocytes. The inflammatory pathway involves multiple targets such as nuclear factor kappa B, inhibitor of nuclear factor κ-B kinase, and mitogen-activated protein kinase. Vitamins are micronutrients with anti-inflammatory activities that have unclear mechanisms. The present study aimed to describe the putative mechanisms of vitamins involved in the inflammatory pathway of insulin resistance. The strategy to achieve this goal was to integrate data mining and analysis, target prediction, and molecular docking simulation calculations to support our hypotheses. Our results suggest that the multitarget activity of vitamins A, B1, B2, B3, B5, B6, B7, B12, C, D3, and E inhibits nuclear factor kappa B and mitogen-activated protein kinase, in addition to vitamins A and B12 against inhibitor of nuclear factor κ-B kinase. The findings of this study highlight the pharmacological potential of using an anti-inflammatory and multitarget treatment based on vitamins and open new perspectives to evaluate the inhibitory activity of vitamins against nuclear factor kappa B, mitogen-activated protein kinase, and inhibitor of nuclear factor κ-B kinase in an insulin-resistant context.
胰岛素抵抗是由脂肪组织中促炎细胞因子的异常分泌引起的,而脂肪组织中促炎细胞因子的异常分泌是由脂肪细胞、肝细胞和肌细胞中脂质积累的增加诱发的。炎症途径涉及多个靶点,如核因子卡巴 B、核因子κ-B 激酶抑制剂和丝裂原活化蛋白激酶。维生素是具有抗炎活性的微量营养素,但其机制尚不清楚。本研究旨在描述维生素参与胰岛素抵抗炎症途径的假定机制。实现这一目标的策略是整合数据挖掘和分析、靶点预测和分子对接模拟计算,以支持我们的假设。我们的结果表明,维生素 A、B1、B2、B3、B5、B6、B7、B12、C、D3 和 E 的多靶点活性可抑制核因子卡巴 B 和丝裂原活化蛋白激酶,此外,维生素 A 和 B12 还可抑制核因子κ-B 激酶抑制因子。这项研究的结果凸显了利用维生素进行抗炎和多靶点治疗的药理潜力,并为评估维生素在胰岛素抵抗情况下对核因子卡巴B、丝裂原活化蛋白激酶和核因子κ-B激酶抑制剂的抑制活性开辟了新的前景。
{"title":"Putative mechanism of a multivitamin treatment against insulin resistance.","authors":"José Antonio Palma-Jacinto, Edgar López-López, José Luis Medina-Franco, Oreth Montero-Ruíz, Isela Santiago-Roque","doi":"10.1080/21623945.2024.2369777","DOIUrl":"10.1080/21623945.2024.2369777","url":null,"abstract":"<p><p>Insulin resistance is caused by the abnormal secretion of proinflammatory cytokines in adipose tissue, which is induced by an increase in lipid accumulation in adipocytes, hepatocytes, and myocytes. The inflammatory pathway involves multiple targets such as nuclear factor kappa B, inhibitor of nuclear factor κ-B kinase, and mitogen-activated protein kinase. Vitamins are micronutrients with anti-inflammatory activities that have unclear mechanisms. The present study aimed to describe the putative mechanisms of vitamins involved in the inflammatory pathway of insulin resistance. The strategy to achieve this goal was to integrate data mining and analysis, target prediction, and molecular docking simulation calculations to support our hypotheses. Our results suggest that the multitarget activity of vitamins A, B1, B2, B3, B5, B6, B7, B12, C, D3, and E inhibits nuclear factor kappa B and mitogen-activated protein kinase, in addition to vitamins A and B12 against inhibitor of nuclear factor κ-B kinase. The findings of this study highlight the pharmacological potential of using an anti-inflammatory and multitarget treatment based on vitamins and open new perspectives to evaluate the inhibitory activity of vitamins against nuclear factor kappa B, mitogen-activated protein kinase, and inhibitor of nuclear factor κ-B kinase in an insulin-resistant context.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2369777"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-11DOI: 10.1080/21623945.2024.2350751
Iram Fatima S Siddiqui, Muthu L Muthu, Dieter P Reinhardt
Introduction and purpose: Mouse mesenchymal stem cells (MSCs) provide a resourceful tool to study physiological and pathological aspects of adipogenesis. Bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (ASCs) are widely used for these studies. Since there is a wide spectrum of methods available, the purpose is to provide a focused hands-on procedural guide for isolation and characterization of murine BM-MSCs and ASCs and to effectively differentiate them into adipocytes.
Methods and results: Optimized harvesting procedures for murine BM-MSCs and ASCs are described and graphically documented. Since macrophages reside in bone-marrow and fat tissues and regulate the biological behaviour of BM-MSCs and ASCs, we included a procedure to deplete macrophages from the MSC preparations. The identity and stemness of BM-MSCs and ASCs were confirmed by flow cytometry using established markers. Since the composition and concentrations of adipogenic differentiation cocktails differ widely, we present a standardized four-component adipogenic cocktail, consisting of insulin, dexamethasone, 3-isobutyl-1-methylxanthine, and indomethacin to efficiently differentiate freshly isolated or frozen/thawed BM-MSCs and ASCs into adipocytes. We further included visualization and quantification protocols of the differentiated adipocytes.
Conclusion: This laboratory protocol was designed as a step-by-step procedure for harvesting murine BM-MSCs and ASCs and differentiating them into adipocytes.
{"title":"Isolation and adipogenic differentiation of murine mesenchymal stem cells harvested from macrophage-depleted bone marrow and adipose tissue.","authors":"Iram Fatima S Siddiqui, Muthu L Muthu, Dieter P Reinhardt","doi":"10.1080/21623945.2024.2350751","DOIUrl":"10.1080/21623945.2024.2350751","url":null,"abstract":"<p><strong>Introduction and purpose: </strong>Mouse mesenchymal stem cells (MSCs) provide a resourceful tool to study physiological and pathological aspects of adipogenesis. Bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (ASCs) are widely used for these studies. Since there is a wide spectrum of methods available, the purpose is to provide a focused hands-on procedural guide for isolation and characterization of murine BM-MSCs and ASCs and to effectively differentiate them into adipocytes.</p><p><strong>Methods and results: </strong>Optimized harvesting procedures for murine BM-MSCs and ASCs are described and graphically documented. Since macrophages reside in bone-marrow and fat tissues and regulate the biological behaviour of BM-MSCs and ASCs, we included a procedure to deplete macrophages from the MSC preparations. The identity and stemness of BM-MSCs and ASCs were confirmed by flow cytometry using established markers. Since the composition and concentrations of adipogenic differentiation cocktails differ widely, we present a standardized four-component adipogenic cocktail, consisting of insulin, dexamethasone, 3-isobutyl-1-methylxanthine, and indomethacin to efficiently differentiate freshly isolated or frozen/thawed BM-MSCs and ASCs into adipocytes. We further included visualization and quantification protocols of the differentiated adipocytes.</p><p><strong>Conclusion: </strong>This laboratory protocol was designed as a step-by-step procedure for harvesting murine BM-MSCs and ASCs and differentiating them into adipocytes.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2350751"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-01DOI: 10.1080/21623945.2024.2421745
Maria Razzoli, Seth McGonigle, Bhavani Shankar Sahu, Pedro Rodriguez, Daniel Svedberg, Loredana Rao, Chiara Ruocco, Enzo Nisoli, Bianca Vezzani, Andrea Frontini, Alessandro Bartolomucci
Brown adipocytes are defined based on a distinct morphology and genetic signature that includes, amongst others, the expression of the Purinergic 2 Receptor X5 (P2RX5). However, the role of P2RX5 in brown adipocyte and brown adipose tissue function is poorly characterized. In the present study, we conducted a metabolic characterization of P2RX5 knockout male mice; next, we characterized this purinergic pathway in a cell-autonomous context in brown adipocytes. We then tested the role of the P2RX5 receptor agonism in metabolic responses in vivo in conditions of minimal adaptive thermogenesis requirements. Our data show that loss of P2RX5 causes reduced brown adipocyte differentiation in vitro, and browning in vivo. Lastly, we unravel a previously unappreciated role for P2RX5 agonism to exert an anti-obesity effect in the presence of enhanced brown adipose tissue recruitment in male mice housed at thermoneutrality. Altogether, our data support a role for P2RX5 in mediating brown adipocyte differentiation and function that could be further targeted for benefits in the context of adipose tissue pathology and metabolic diseases.
{"title":"A key role for P2RX5 in brown adipocyte differentiation and energy homeostasis.","authors":"Maria Razzoli, Seth McGonigle, Bhavani Shankar Sahu, Pedro Rodriguez, Daniel Svedberg, Loredana Rao, Chiara Ruocco, Enzo Nisoli, Bianca Vezzani, Andrea Frontini, Alessandro Bartolomucci","doi":"10.1080/21623945.2024.2421745","DOIUrl":"10.1080/21623945.2024.2421745","url":null,"abstract":"<p><p>Brown adipocytes are defined based on a distinct morphology and genetic signature that includes, amongst others, the expression of the Purinergic 2 Receptor X5 (P2RX5). However, the role of P2RX5 in brown adipocyte and brown adipose tissue function is poorly characterized. In the present study, we conducted a metabolic characterization of P2RX5 knockout male mice; next, we characterized this purinergic pathway in a cell-autonomous context in brown adipocytes. We then tested the role of the P2RX5 receptor agonism in metabolic responses in vivo in conditions of minimal adaptive thermogenesis requirements. Our data show that loss of P2RX5 causes reduced brown adipocyte differentiation in vitro, and browning in vivo. Lastly, we unravel a previously unappreciated role for P2RX5 agonism to exert an anti-obesity effect in the presence of enhanced brown adipose tissue recruitment in male mice housed at thermoneutrality. Altogether, our data support a role for P2RX5 in mediating brown adipocyte differentiation and function that could be further targeted for benefits in the context of adipose tissue pathology and metabolic diseases.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2421745"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-11DOI: 10.1080/21623945.2024.2376571
Ewa Bielczyk-Maczynska
Dedifferentiated adipose tissue (DFAT) has been proposed as a promising source of patient-specific multipotent progenitor cells (MPPs). During induced dedifferentiation, adipocytes exhibit profound gene expression and cell morphology changes. However, dedifferentiation of post-mitotic cells is expected to enable proliferation, which is critical if enough MPPs are to be obtained. Here, lineage tracing was employed to quantify cell proliferation in mouse adipocytes subjected to a dedifferentiation-inducing protocol commonly used to obtain DFAT cells. No evidence of cell proliferation in adipocyte-derived cells was observed, in contrast to the robust proliferation of non-adipocyte cells present in adipose tissue. We conclude that proliferative MPPs derived using the ceiling culture method most likely arise from non-adipocyte cells in adipose tissue.
{"title":"Quantification of cell cycle re-entry during dedifferentiation of primary adipocytes <i>in vitro</i>.","authors":"Ewa Bielczyk-Maczynska","doi":"10.1080/21623945.2024.2376571","DOIUrl":"10.1080/21623945.2024.2376571","url":null,"abstract":"<p><p>Dedifferentiated adipose tissue (DFAT) has been proposed as a promising source of patient-specific multipotent progenitor cells (MPPs). During induced dedifferentiation, adipocytes exhibit profound gene expression and cell morphology changes. However, dedifferentiation of post-mitotic cells is expected to enable proliferation, which is critical if enough MPPs are to be obtained. Here, lineage tracing was employed to quantify cell proliferation in mouse adipocytes subjected to a dedifferentiation-inducing protocol commonly used to obtain DFAT cells. No evidence of cell proliferation in adipocyte-derived cells was observed, in contrast to the robust proliferation of non-adipocyte cells present in adipose tissue. We conclude that proliferative MPPs derived using the ceiling culture method most likely arise from non-adipocyte cells in adipose tissue.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2376571"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a mechanically condensed product of Coleman fat, extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel) eliminates adipocytes, concentrates SVF cells, and improves fat graft retention. This study aims to compare SVF cell composition between Coleman fat and ECM/SVF-gel. Matched Coleman fat and ECM/SVF-gel of 28 healthy women were subjected to RNA-seq, followed by functional enrichment and cell-type-specific enrichment analyses, and deconvolution of SVF cell subsets, reconstructing SVF cell composition in the transcriptome level. ECM/SVF-gels had 9 upregulated and 73 downregulated differentially expressed genes (DEGs). Downregulated DEGs were mainly associated with inflammatory and immune responses, and enriched in fat macrophages. M2 macrophages, resting CD4+ memory T cells, M1 macrophages, resting mast cells, and M0 macrophages ranked in the top five most prevalent immune cells in the two groups. The proportions of the principal non-immune cells (e.g., adipose-derived stem cells, pericytes, preadipocytes, microvascular endothelial cells) had no statistical differences between the two groups. Our findings reveal ECM/SVF-gels share the same dominant immune cells beneficial to fat graft survival with Coleman fat, but exhibiting obvious losses of immune cells (especially macrophages), while non-immune cells necessary for adipose regeneration might have no significant loss in ECM/SVF-gels and their biological effects could be markedly enhanced by the ECM/SVF-gel's condensed nature.
{"title":"Comparison of stromal vascular fraction cell composition between Coleman fat and extracellular matrix/stromal vascular fraction gel.","authors":"Xiaoyun Li, Guohong Zhang, Mengmeng Wang, Changhao Lu, Guangping Zhang, Zhehui Chen, Yingchang Ji","doi":"10.1080/21623945.2024.2360037","DOIUrl":"10.1080/21623945.2024.2360037","url":null,"abstract":"<p><p>As a mechanically condensed product of Coleman fat, extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel) eliminates adipocytes, concentrates SVF cells, and improves fat graft retention. This study aims to compare SVF cell composition between Coleman fat and ECM/SVF-gel. Matched Coleman fat and ECM/SVF-gel of 28 healthy women were subjected to RNA-seq, followed by functional enrichment and cell-type-specific enrichment analyses, and deconvolution of SVF cell subsets, reconstructing SVF cell composition in the transcriptome level. ECM/SVF-gels had 9 upregulated and 73 downregulated differentially expressed genes (DEGs). Downregulated DEGs were mainly associated with inflammatory and immune responses, and enriched in fat macrophages. M2 macrophages, resting CD4<sup>+</sup> memory T cells, M1 macrophages, resting mast cells, and M0 macrophages ranked in the top five most prevalent immune cells in the two groups. The proportions of the principal non-immune cells (e.g., adipose-derived stem cells, pericytes, preadipocytes, microvascular endothelial cells) had no statistical differences between the two groups. Our findings reveal ECM/SVF-gels share the same dominant immune cells beneficial to fat graft survival with Coleman fat, but exhibiting obvious losses of immune cells (especially macrophages), while non-immune cells necessary for adipose regeneration might have no significant loss in ECM/SVF-gels and their biological effects could be markedly enhanced by the ECM/SVF-gel's condensed nature.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2360037"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-05DOI: 10.1080/21623945.2024.2339418
Luigi Marino, Bin Ni, Jared S Farrar, Joseph C Lownik, Janina V Pearce, Rebecca K Martin, Francesco S Celi
A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.
含分解蛋白和金属蛋白酶结构域的蛋白 10(ADAM10)参与了多种代谢和炎症途径。我们推测 ADAM10 在脂肪组织炎症和新陈代谢中起着调节作用。为此,我们研究了脂肪组织特异性 ADAM10 基因敲除小鼠(aKO)。虽然以普通饲料喂养的年轻 aKO 小鼠的胰岛素敏感性有所提高,但在长期(33 周)接触高脂饮食(HFD)后,aKO 小鼠出现了肥胖和胰岛素抵抗。与对照组相比,尽管脂肪含量显著增加,但 aKO 小鼠的炎性脂肪因子含量却较低。在棕色脂肪组织中,摄入 HFD 的 aKO 小鼠的 CD8+ T 细胞群发生了变化,表明炎症模式较轻。摄入高氟日粮后,aKO 小鼠和对照组小鼠的脂肪组织促炎症巨噬细胞减少,抗炎症积聚增加,但基因型之间没有差异。总之,我们的观察结果表明,选择性地删除脂肪细胞中的 ADAM10 可减轻炎症反应,从而提高正常饮食喂养的幼鼠对胰岛素的敏感性。这种胰岛素敏感性状态会在长期高频饮食后促进能量储存,导致脂肪堆积增加,最终形成肥胖和胰岛素抵抗的表型。总之,这些数据表明,ADAM10 对炎症和全身能量代谢具有调节作用。
{"title":"Adipose tissue-selective ablation of ADAM10 results in divergent metabolic phenotypes following long-term dietary manipulation.","authors":"Luigi Marino, Bin Ni, Jared S Farrar, Joseph C Lownik, Janina V Pearce, Rebecca K Martin, Francesco S Celi","doi":"10.1080/21623945.2024.2339418","DOIUrl":"10.1080/21623945.2024.2339418","url":null,"abstract":"<p><p>A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2339418"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140846702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-01DOI: 10.1080/21623945.2024.2421750
Imogen Morris, Frank Vrieling, Annemieke Bouwman, Rinke Stienstra, Eric Kalkhoven
Reciprocal communication between adipocytes and immune cells is essential to maintain optimal adipose tissue (AT) functionality. Amongst others, adipocytes directly interact with invariant NKT cells (iNKT cells), which in turn secrete various cytokines. A lipid-rich microenvironment, as observed in obesity, skews this adipocyte-driven cytokine output towards a more inflammatory output. Whether a lipid-rich microenvironment also affects iNKT cells directly, however, is unknown. Here, we show that primary mouse iNKT cells isolated from AT can accumulate lipids in lipid droplets (LDs), more so than liver- and spleen-resident iNKT cells. Furthermore, a lipid-rich microenvironment increased the production of the proinflammatory cytokine IFNγ. Next, to an indirect, adipocyte-mediated cue, iNKT cells can directly respond to environmental lipid changes, supporting a potential role as nutrient sensors.
{"title":"Lipid accumulation in adipose tissue-resident iNKT cells contributes to an inflammatory phenotype.","authors":"Imogen Morris, Frank Vrieling, Annemieke Bouwman, Rinke Stienstra, Eric Kalkhoven","doi":"10.1080/21623945.2024.2421750","DOIUrl":"10.1080/21623945.2024.2421750","url":null,"abstract":"<p><p>Reciprocal communication between adipocytes and immune cells is essential to maintain optimal adipose tissue (AT) functionality. Amongst others, adipocytes directly interact with invariant NKT cells (iNKT cells), which in turn secrete various cytokines. A lipid-rich microenvironment, as observed in obesity, skews this adipocyte-driven cytokine output towards a more inflammatory output. Whether a lipid-rich microenvironment also affects iNKT cells directly, however, is unknown. Here, we show that primary mouse iNKT cells isolated from AT can accumulate lipids in lipid droplets (LDs), more so than liver- and spleen-resident iNKT cells. Furthermore, a lipid-rich microenvironment increased the production of the proinflammatory cytokine IFNγ. Next, to an indirect, adipocyte-mediated cue, iNKT cells can directly respond to environmental lipid changes, supporting a potential role as nutrient sensors.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2421750"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}