Pub Date : 2023-04-06DOI: 10.1016/j.ailsci.2023.100071
Fernando Merchan , Kenji Contreras , Rolando A. Gittens , Jose R. Loaiza , Javier E. Sanchez-Galan
Deep Learning techniques have significant advantages for mass spectral classification, such as parallelized signal correction and feature extraction. Deep Metric Learning models combine Metric Learning to determine the degree of similarity or difference between a set of mass spectra with the generalization power of Deep Learning to improve feature extraction even further. The two most popular of these models combine multiple neural networks with identical architectures and are commonly called Siamese (SNN) and Triplet Neural Networks (TNN). Herein, using both SNNs and TNNs, we intended to taxonomically categorize two sets of previously-validated mass spectra that corresponded to 30 species of Neotropical arthropods in the Culicidae and Ixodidae families, some of which are disease vectors. The effectiveness of SNNs and TNNs to correctly classify 826 spectra from 12 mosquito species and 310 spectra from 18 species of hard ticks was highly effective, with both algorithms performing with minimal average loss during cross-validation. SNNs produced accuracy rates for ticks and mosquitoes of 91.22% and 94.46%, respectively, while accuracy rates of 93% and 99% were obtained with TNNs. Our results indicate that Deep Metric Learning is a practical machine learning tool for quickly and precisely classifying MALDI-TOF-generated mass spectra of Neotropical and public-health-relevant arthropod species.
{"title":"Deep metric learning for the classification of MALDI-TOF spectral signatures from multiple species of neotropical disease vectors","authors":"Fernando Merchan , Kenji Contreras , Rolando A. Gittens , Jose R. Loaiza , Javier E. Sanchez-Galan","doi":"10.1016/j.ailsci.2023.100071","DOIUrl":"10.1016/j.ailsci.2023.100071","url":null,"abstract":"<div><p>Deep Learning techniques have significant advantages for mass spectral classification, such as parallelized signal correction and feature extraction. Deep Metric Learning models combine Metric Learning to determine the degree of similarity or difference between a set of mass spectra with the generalization power of Deep Learning to improve feature extraction even further. The two most popular of these models combine multiple neural networks with identical architectures and are commonly called Siamese (SNN) and Triplet Neural Networks (TNN). Herein, using both SNNs and TNNs, we intended to taxonomically categorize two sets of previously-validated mass spectra that corresponded to 30 species of Neotropical arthropods in the Culicidae and Ixodidae families, some of which are disease vectors. The effectiveness of SNNs and TNNs to correctly classify 826 spectra from 12 mosquito species and 310 spectra from 18 species of hard ticks was highly effective, with both algorithms performing with minimal average loss during cross-validation. SNNs produced accuracy rates for ticks and mosquitoes of 91.22% and 94.46%, respectively, while accuracy rates of 93% and 99% were obtained with TNNs. Our results indicate that Deep Metric Learning is a practical machine learning tool for quickly and precisely classifying MALDI-TOF-generated mass spectra of Neotropical and public-health-relevant arthropod species.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100071"},"PeriodicalIF":0.0,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41748999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1016/j.ailsci.2023.100070
Wouter Heyndrickx , Adam Arany , Jaak Simm , Anastasia Pentina , Noé Sturm , Lina Humbeck , Lewis Mervin , Adam Zalewski , Martijn Oldenhof , Peter Schmidtke , Lukas Friedrich , Regis Loeb , Arina Afanasyeva , Ansgar Schuffenhauer , Yves Moreau , Hugo Ceulemans
In a drug discovery setting, pharmaceutical companies own substantial but confidential datasets. The MELLODDY project developed a privacy-preserving federated machine learning solution and deployed it at an unprecedented scale. Each partner built models for their own private assays that benefitted from a shared representation. Established predictive performance metrics such as AUC ROC or AUC PR are constrained to unseen labeled chemical space and cannot gage performance gains in unlabeled chemical space. Federated learning indirectly extends labeled space, but in a privacy-preserving context, a partner cannot use this label extension for performance assessment. Metrics that estimate uncertainty on a prediction can be calculated even where no label is known. Practically, the chemical space covered with predictions above an uncertainty threshold, reflects the applicability domain of a model. After establishing a link to established performance metrics, we propose the efficiency from the conformal prediction framework (‘conformal efficiency’) as a proxy to the applicability domain size. A documented extension of the applicability domain would qualify as a tangible benefit from federated learning. In interim assessments, MELLODDY partners reported a median increase in conformal efficiency of the federated over the single-partner model of 5.5% (with increases up to 9.7%). Subject to distributional conditions, that efficiency increase can be directly interpreted as the expected increase in conformal i.e. low uncertainty predictions. In conclusion, we present the first indication that privacy-preserving federated machine learning across massive drug-discovery datasets from ten pharma partners indeed extends the applicability domain of property prediction models.
{"title":"Conformal efficiency as a metric for comparative model assessment befitting federated learning","authors":"Wouter Heyndrickx , Adam Arany , Jaak Simm , Anastasia Pentina , Noé Sturm , Lina Humbeck , Lewis Mervin , Adam Zalewski , Martijn Oldenhof , Peter Schmidtke , Lukas Friedrich , Regis Loeb , Arina Afanasyeva , Ansgar Schuffenhauer , Yves Moreau , Hugo Ceulemans","doi":"10.1016/j.ailsci.2023.100070","DOIUrl":"10.1016/j.ailsci.2023.100070","url":null,"abstract":"<div><p>In a drug discovery setting, pharmaceutical companies own substantial but confidential datasets. The MELLODDY project developed a privacy-preserving federated machine learning solution and deployed it at an unprecedented scale. Each partner built models for their own private assays that benefitted from a shared representation. Established predictive performance metrics such as AUC ROC or AUC PR are constrained to unseen labeled chemical space and cannot gage performance gains in unlabeled chemical space. Federated learning indirectly extends labeled space, but in a privacy-preserving context, a partner cannot use this label extension for performance assessment. Metrics that estimate uncertainty on a prediction can be calculated even where no label is known. Practically, the chemical space covered with predictions above an uncertainty threshold, reflects the applicability domain of a model. After establishing a link to established performance metrics, we propose the efficiency from the conformal prediction framework (‘conformal efficiency’) as a proxy to the applicability domain size. A documented extension of the applicability domain would qualify as a tangible benefit from federated learning. In interim assessments, MELLODDY partners reported a median increase in conformal efficiency of the federated over the single-partner model of 5.5% (with increases up to 9.7%). Subject to distributional conditions, that efficiency increase can be directly interpreted as the expected increase in conformal i.e. low uncertainty predictions. In conclusion, we present the first indication that privacy-preserving federated machine learning across massive drug-discovery datasets from ten pharma partners indeed extends the applicability domain of property prediction models.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100070"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42954871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.1016/j.ailsci.2023.100069
Yojana Gadiya , Philip Gribbon , Martin Hofmann-Apitius , Andrea Zaliani
Patents play a crucial role in the drug discovery process by providing legal protection for discoveries and incentivising investments in research and development. By identifying patterns within patent data resources, researchers can gain insight into the market trends and priorities of the pharmaceutical and biotechnology industries, as well as provide additional perspectives on more fundamental aspects such as the emergence of potential new drug targets. In this paper, we used the patent enrichment tool, PEMT, to extract, integrate, and analyse patent literature for rare diseases (RD) and Alzheimer's disease (AD). This is followed by a systematic review of the underlying patent landscape to decipher trends and applications in patents for these diseases. To do so, we discuss prominent organisations involved in drug discovery research in AD and RD. This allows us to gain an understanding of the importance of AD and RD from specific organisational (pharmaceutical or university) perspectives. Next, we analyse the historical focus of patents in relation to individual therapeutic targets and correlate them with market scenarios allowing the identification of prominent targets for a disease. Lastly, we identified drug repurposing activities within the two diseases with the help of patents. This resulted in identifying existing repurposed drugs and novel potential therapeutic approaches applicable to the indication areas. The study demonstrates the expanded applicability of patent documents from legal to drug discovery, design, and research, thus, providing a valuable resource for future drug discovery efforts. Moreover, this study is an attempt towards understanding the importance of data underlying patent documents and raising the need for preparing the data for machine learning-based applications.
{"title":"Pharmaceutical patent landscaping: A novel approach to understand patents from the drug discovery perspective","authors":"Yojana Gadiya , Philip Gribbon , Martin Hofmann-Apitius , Andrea Zaliani","doi":"10.1016/j.ailsci.2023.100069","DOIUrl":"https://doi.org/10.1016/j.ailsci.2023.100069","url":null,"abstract":"<div><p>Patents play a crucial role in the drug discovery process by providing legal protection for discoveries and incentivising investments in research and development. By identifying patterns within patent data resources, researchers can gain insight into the market trends and priorities of the pharmaceutical and biotechnology industries, as well as provide additional perspectives on more fundamental aspects such as the emergence of potential new drug targets. In this paper, we used the patent enrichment tool, PEMT, to extract, integrate, and analyse patent literature for rare diseases (RD) and Alzheimer's disease (AD). This is followed by a systematic review of the underlying patent landscape to decipher trends and applications in patents for these diseases. To do so, we discuss prominent organisations involved in drug discovery research in AD and RD. This allows us to gain an understanding of the importance of AD and RD from specific organisational (pharmaceutical or university) perspectives. Next, we analyse the historical focus of patents in relation to individual therapeutic targets and correlate them with market scenarios allowing the identification of prominent targets for a disease. Lastly, we identified drug repurposing activities within the two diseases with the help of patents. This resulted in identifying existing repurposed drugs and novel potential therapeutic approaches applicable to the indication areas. The study demonstrates the expanded applicability of patent documents from legal to drug discovery, design, and research, thus, providing a valuable resource for future drug discovery efforts. Moreover, this study is an attempt towards understanding the importance of data underlying patent documents and raising the need for preparing the data for machine learning-based applications.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100069"},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49774974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Single cell RNA sequencing (scRNA-seq) technologies provide researchers with an unprecedented opportunity to exploit cell heterogeneity. For example, the sequenced cells belong to various cell lineages, which may have different cell fates in stem and progenitor cells. Those cells may differentiate into various mature cell types in a cell differentiation process. To trace the behavior of cell differentiation, researchers reconstruct cell lineages and predict cell fates by ordering cells chronologically into a trajectory with a pseudo-time. However, in scRNA-seq experiments, there are no cell-to-cell correspondences along with the time to reconstruct the cell lineages, which creates a significant challenge for cell lineage tracing and cell fate prediction. Therefore, methods that can accurately reconstruct the dynamic cell lineages and predict cell fates are highly desirable.
In this article, we develop an innovative machine-learning framework called Cell Smoothing Transformation (CellST) to elucidate the dynamic cell fate paths and construct gene networks in cell differentiation processes. Unlike the existing methods that construct one single bulk cell trajectory, CellST builds cell trajectories and tracks behaviors for each individual cell. Additionally, CellST can predict cell fates even for less frequent cell types. Based on the individual cell fate trajectories, CellST can further construct dynamic gene networks to model gene-gene relationships along the cell differentiation process and discover critical genes that potentially regulate cells into various mature cell types.
{"title":"Elucidating dynamic cell lineages and gene networks in time-course single cell differentiation","authors":"Mengrui Zhang , Yongkai Chen , Dingyi Yu , Wenxuan Zhong , Jingyi Zhang , Ping Ma","doi":"10.1016/j.ailsci.2023.100068","DOIUrl":"10.1016/j.ailsci.2023.100068","url":null,"abstract":"<div><p>Single cell RNA sequencing (scRNA-seq) technologies provide researchers with an unprecedented opportunity to exploit cell heterogeneity. For example, the sequenced cells belong to various cell lineages, which may have different cell fates in stem and progenitor cells. Those cells may differentiate into various mature cell types in a cell differentiation process. To trace the behavior of cell differentiation, researchers reconstruct cell lineages and predict cell fates by ordering cells chronologically into a trajectory with a pseudo-time. However, in scRNA-seq experiments, there are no cell-to-cell correspondences along with the time to reconstruct the cell lineages, which creates a significant challenge for cell lineage tracing and cell fate prediction. Therefore, methods that can accurately reconstruct the dynamic cell lineages and predict cell fates are highly desirable.</p><p>In this article, we develop an innovative machine-learning framework called Cell Smoothing Transformation (CellST) to elucidate the dynamic cell fate paths and construct gene networks in cell differentiation processes. Unlike the existing methods that construct one single bulk cell trajectory, CellST builds cell trajectories and tracks behaviors for each individual cell. Additionally, CellST can predict cell fates even for less frequent cell types. Based on the individual cell fate trajectories, CellST can further construct dynamic gene networks to model gene-gene relationships along the cell differentiation process and discover critical genes that potentially regulate cells into various mature cell types.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100068"},"PeriodicalIF":0.0,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9800573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-27DOI: 10.1016/j.ailsci.2023.100067
Jürgen Bajorath
{"title":"Data science and data analytics in life science research","authors":"Jürgen Bajorath","doi":"10.1016/j.ailsci.2023.100067","DOIUrl":"10.1016/j.ailsci.2023.100067","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100067"},"PeriodicalIF":0.0,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43783253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-26DOI: 10.1016/j.ailsci.2023.100066
Ana L. Chávez-Hernández, José L. Medina-Franco
Natural products are attractive for drug discovery applications because of their distinctive chemical structures, such as an overall large fraction of sp3 carbon atoms, chiral centers (both features associated with structural complexity), large chemical scaffolds, and diversity of functional groups. Furthermore, natural products are used in de novo design and have inspired the development of pseudo-natural products using generative models. Public databases such as the Collection of Open NatUral ProdUcTs and the Universal Natural Product database (UNPD) are rich sources of structures to be used in generative models and other applications. In this work, we report the selection and characterization of the most diverse compounds of natural products from the UNPD using the MaxMin algorithm. The subsets generated with 14,994, 7,497, and 4,998 compounds are publicly available at https://github.com/DIFACQUIM/Natural-products-subsets-generation. We anticipate that the subsets will be particularly useful in building generative models based on natural products by research groups, particularly those with limited access to extensive supercomputer resources.
{"title":"Natural products subsets: Generation and characterization","authors":"Ana L. Chávez-Hernández, José L. Medina-Franco","doi":"10.1016/j.ailsci.2023.100066","DOIUrl":"10.1016/j.ailsci.2023.100066","url":null,"abstract":"<div><p>Natural products are attractive for drug discovery applications because of their distinctive chemical structures, such as an overall large fraction of sp<sup>3</sup> carbon atoms, chiral centers (both features associated with structural complexity), large chemical scaffolds, and diversity of functional groups. Furthermore, natural products are used in <em>de novo</em> design and have inspired the development of pseudo-natural products using generative models. Public databases such as the Collection of Open NatUral ProdUcTs and the Universal Natural Product database (UNPD) are rich sources of structures to be used in generative models and other applications. In this work, we report the selection and characterization of the most diverse compounds of natural products from the UNPD using the MaxMin algorithm. The subsets generated with 14,994, 7,497, and 4,998 compounds are publicly available at <span>https://github.com/DIFACQUIM/Natural-products-subsets-generation</span><svg><path></path></svg>. We anticipate that the subsets will be particularly useful in building generative models based on natural products by research groups, particularly those with limited access to extensive supercomputer resources.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43292936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-24DOI: 10.1016/j.ailsci.2023.100065
Xuxiang Huo , Jun Xu , Mingyuan Xu , Hongming Chen
Ligand-based virtual screening plays an important role for cases in which protein structures are not available. Among ligand-based methods, accurate and fast prediction of protein-ligand binding affinity is crucial for reducing computational cost and exploring the chemical search space efficiently. Here we proposed a CNN-based method, termed as L3D-PLS for building the quantitative structure-activity relationships without target structures. In L3D-PLS, a CNN module was designed for extracting the key interaction features from the grids around aligned ligands, and a partial least square (PLS) model fits the binding affinity with the extracted features of the pre-trained CNN module. In 30 publicly available pre-aligned molecular datasets, L3D-PLS outperformed the traditional CoMFA method. This results highlight that L3D-PLS can be useful for lead optimization based on small datasets which is often true in drug discovery compaign.
{"title":"An improved 3D quantitative structure-activity relationships (QSAR) of molecules with CNN-based partial least squares model","authors":"Xuxiang Huo , Jun Xu , Mingyuan Xu , Hongming Chen","doi":"10.1016/j.ailsci.2023.100065","DOIUrl":"10.1016/j.ailsci.2023.100065","url":null,"abstract":"<div><p>Ligand-based virtual screening plays an important role for cases in which protein structures are not available. Among ligand-based methods, accurate and fast prediction of protein-ligand binding affinity is crucial for reducing computational cost and exploring the chemical search space efficiently. Here we proposed a CNN-based method, termed as L3D-PLS for building the quantitative structure-activity relationships without target structures. In L3D-PLS, a CNN module was designed for extracting the key interaction features from the grids around aligned ligands, and a partial least square (PLS) model fits the binding affinity with the extracted features of the pre-trained CNN module. In 30 publicly available pre-aligned molecular datasets, L3D-PLS outperformed the traditional CoMFA method. This results highlight that L3D-PLS can be useful for lead optimization based on small datasets which is often true in drug discovery compaign.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100065"},"PeriodicalIF":0.0,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46036629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-17DOI: 10.1016/j.ailsci.2023.100060
Guangyan Tian , Philip J Harrison , Akshai P Sreenivasan , Jordi Carreras-Puigvert , Ola Spjuth
The mechanism of action (MoA) of a compound describes the biological interaction through which it produces a pharmacological effect. Multiple data sources can be used for the purpose of predicting MoA, including compound structural information, and various assays, such as those based on cell morphology, transcriptomics and metabolomics. In the present study we explored the benefits and potential additive/synergistic effects of combining structural information, in the form of Morgan fingerprints, and morphological information, in the form of five-channel Cell Painting image data. For a set of 10 well represented MoA classes, we compared the performance of deep learning models trained on the two datasets separately versus a model trained on both datasets simultaneously. On a held-out test set we obtained a macro-averaged F1 score of 0.58 when training on only the structural data, 0.81 when training on only the image data, and 0.92 when training on both together. Thus indicating clear additive/synergistic effects and highlighting the benefit of integrating multiple data sources for MoA prediction.
{"title":"Combining molecular and cell painting image data for mechanism of action prediction","authors":"Guangyan Tian , Philip J Harrison , Akshai P Sreenivasan , Jordi Carreras-Puigvert , Ola Spjuth","doi":"10.1016/j.ailsci.2023.100060","DOIUrl":"https://doi.org/10.1016/j.ailsci.2023.100060","url":null,"abstract":"<div><p>The mechanism of action (MoA) of a compound describes the biological interaction through which it produces a pharmacological effect. Multiple data sources can be used for the purpose of predicting MoA, including compound structural information, and various assays, such as those based on cell morphology, transcriptomics and metabolomics. In the present study we explored the benefits and potential additive/synergistic effects of combining structural information, in the form of Morgan fingerprints, and morphological information, in the form of five-channel Cell Painting image data. For a set of 10 well represented MoA classes, we compared the performance of deep learning models trained on the two datasets separately versus a model trained on both datasets simultaneously. On a held-out test set we obtained a macro-averaged F1 score of 0.58 when training on only the structural data, 0.81 when training on only the image data, and 0.92 when training on both together. Thus indicating clear additive/synergistic effects and highlighting the benefit of integrating multiple data sources for MoA prediction.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100060"},"PeriodicalIF":0.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49774973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.1016/j.ailsci.2023.100063
Marc Bianciotto , Lionel Colliandre , Kun Mi , Isabelle Schreiber , Cécile Delorme , Stéphanie Vougier , Hervé Minoux
One of the common strategies to identify novel chemical matter in drug discovery consists in performing a High Throughput Screening (HTS). However, the large amount of data generated at the dose-response (DR) step of an HTS campaign requires a careful analysis to detect artifacts and correct erroneous datapoints before validating the experiments. This step which requires to review each DR experiment can be time consuming and prone to human errors or inconsistencies. AI4DR is a system that has been developed for the classification of DR curves based on a Convolutional Neural Network (CNN) acting on normalized images of the DR curves. AI4DR allows the annotation in minutes of thousands of curves among 14 categories to help the High Throughput Screening biologists in their analyses. Several categories are associated with active and inactive compounds, other categories correspond to features of interest such as the presence of noise, a weaker effect at high doses, or a suspiciously weak or strong slope at the inflexion point of the DR curves of actives. The classifier has been trained on an algorithmically generated dataset curated and refined by experts, tested using real screening campaigns and improved using thousands of annotations by experts. The solution is deployed using a MLFlow model server interfaced with the Genedata Screener data analysis software used by the end users. AI4DR improves the consistency, the robustness, and the speed of HTS data analysis as well as reducing the human effort to identify faster new medicines for patients.
{"title":"AI4DR: Development and implementation of an annotation system for high-throughput dose-response experiments","authors":"Marc Bianciotto , Lionel Colliandre , Kun Mi , Isabelle Schreiber , Cécile Delorme , Stéphanie Vougier , Hervé Minoux","doi":"10.1016/j.ailsci.2023.100063","DOIUrl":"10.1016/j.ailsci.2023.100063","url":null,"abstract":"<div><p>One of the common strategies to identify novel chemical matter in drug discovery consists in performing a High Throughput Screening (HTS). However, the large amount of data generated at the dose-response (DR) step of an HTS campaign requires a careful analysis to detect artifacts and correct erroneous datapoints before validating the experiments. This step which requires to review each DR experiment can be time consuming and prone to human errors or inconsistencies. AI4DR is a system that has been developed for the classification of DR curves based on a Convolutional Neural Network (CNN) acting on normalized images of the DR curves. AI4DR allows the annotation in minutes of thousands of curves among 14 categories to help the High Throughput Screening biologists in their analyses. Several categories are associated with active and inactive compounds, other categories correspond to features of interest such as the presence of noise, a weaker effect at high doses, or a suspiciously weak or strong slope at the inflexion point of the DR curves of actives. The classifier has been trained on an algorithmically generated dataset curated and refined by experts, tested using real screening campaigns and improved using thousands of annotations by experts. The solution is deployed using a MLFlow model server interfaced with the Genedata Screener data analysis software used by the end users. AI4DR improves the consistency, the robustness, and the speed of HTS data analysis as well as reducing the human effort to identify faster new medicines for patients.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100063"},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45852417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-04DOI: 10.1016/j.ailsci.2023.100064
Martin Vogt
Recent advances in the field of artificial intelligence, specifically regarding deep learning methods, have invigorated research into novel ways for the exploration of chemical space. Compared to more traditional methods that rely on chemical fragments and combinatorial recombination deep generative models generate molecules in a non-transparent way that defies easy rationalization. However, this opaque nature also promises to explore uncharted chemical space in novel ways that do not rely on structural similarity directly. These aspects and the complexity of training such models makes model assessment regarding novelty, uniqueness, and distribution of generated molecules a central aspect. This perspective gives an overview of current methodologies for chemical space exploration with an emphasis on deep neural network approaches. Key aspects of generative models include choice of molecular representation, the targeted chemical space, and the methodology for assessing and validating chemical space coverage.
{"title":"Exploring chemical space — Generative models and their evaluation","authors":"Martin Vogt","doi":"10.1016/j.ailsci.2023.100064","DOIUrl":"10.1016/j.ailsci.2023.100064","url":null,"abstract":"<div><p>Recent advances in the field of artificial intelligence, specifically regarding deep learning methods, have invigorated research into novel ways for the exploration of chemical space. Compared to more traditional methods that rely on chemical fragments and combinatorial recombination deep generative models generate molecules in a non-transparent way that defies easy rationalization. However, this opaque nature also promises to explore uncharted chemical space in novel ways that do not rely on structural similarity directly. These aspects and the complexity of training such models makes model assessment regarding novelty, uniqueness, and distribution of generated molecules a central aspect. This perspective gives an overview of current methodologies for chemical space exploration with an emphasis on deep neural network approaches. Key aspects of generative models include choice of molecular representation, the targeted chemical space, and the methodology for assessing and validating chemical space coverage.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100064"},"PeriodicalIF":0.0,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48370934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}