首页 > 最新文献

Artificial intelligence in the life sciences最新文献

英文 中文
Learning functional group chemistry from molecular images leads to accurate prediction of activity cliffs 从分子图像中学习官能团化学可以准确预测活性悬崖
Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100022
Javed Iqbal, Martin Vogt, Jürgen Bajorath

Advances in image analysis through deep learning have catalyzed the recent use of molecular images in chemoinformatics and drug design for predictive modeling of compound properties and other applications. For image analysis and representation learning from molecular graphs, convolutional neural networks (CNNs) represent a preferred computational architecture. In this work, we have investigated the questions whether functional groups (FGs) and their distinguishing chemical features can be learned from compound images using CNNs of different complexity and whether such knowledge might be transferable to other prediction tasks. We have shown that frequently occurring FGs were comprehensively learned, leading to highly accurate multi-label FG predictions. Furthermore, we have determined that the FG knowledge acquired by CNNs was sufficient for accurate prediction of compound activity cliffs (ACs) via transfer learning. Re-training of FG prediction models on AC data optimized convolutional layer weights and further improved prediction accuracy. Through feature weight analysis and visualization, a rationale was provided for the ability of CNNs to learn FG chemistry and transfer this knowledge for effective AC prediction.

通过深度学习在图像分析方面的进步促进了分子图像在化学信息学和药物设计中的应用,用于化合物性质的预测建模和其他应用。对于从分子图中进行图像分析和表示学习,卷积神经网络(cnn)代表了首选的计算架构。在这项工作中,我们研究了是否可以使用不同复杂性的cnn从复合图像中学习官能团(fg)及其不同的化学特征,以及这些知识是否可以转移到其他预测任务中。我们已经表明,频繁发生的FG被全面学习,导致高度准确的多标签FG预测。此外,我们已经确定cnn获得的FG知识足以通过迁移学习准确预测复合活性悬崖(ACs)。在AC数据上重新训练FG预测模型,优化卷积层权值,进一步提高预测精度。通过特征权值分析和可视化,为cnn学习FG化学并将这些知识用于有效的AC预测提供了理论基础。
{"title":"Learning functional group chemistry from molecular images leads to accurate prediction of activity cliffs","authors":"Javed Iqbal,&nbsp;Martin Vogt,&nbsp;Jürgen Bajorath","doi":"10.1016/j.ailsci.2021.100022","DOIUrl":"10.1016/j.ailsci.2021.100022","url":null,"abstract":"<div><p>Advances in image analysis through deep learning have catalyzed the recent use of molecular images in chemoinformatics and drug design for predictive modeling of compound properties and other applications. For image analysis and representation learning from molecular graphs, convolutional neural networks (CNNs) represent a preferred computational architecture. In this work, we have investigated the questions whether functional groups (FGs) and their distinguishing chemical features can be learned from compound images using CNNs of different complexity and whether such knowledge might be transferable to other prediction tasks. We have shown that frequently occurring FGs were comprehensively learned, leading to highly accurate multi-label FG predictions. Furthermore, we have determined that the FG knowledge acquired by CNNs was sufficient for accurate prediction of compound activity cliffs (ACs) via transfer learning. Re-training of FG prediction models on AC data optimized convolutional layer weights and further improved prediction accuracy. Through feature weight analysis and visualization, a rationale was provided for the ability of CNNs to learn FG chemistry and transfer this knowledge for effective AC prediction.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000222/pdfft?md5=cb926dd5579da39d2f820073674a8d1d&pid=1-s2.0-S2667318521000222-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47627435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
AutoGenome: An AutoML tool for genomic research AutoGenome:一个用于基因组研究的AutoML工具
Pub Date : 2021-12-01 DOI: 10.1016/j.ailsci.2021.100017
Denghui Liu , Chi Xu , Wenjun He , Zhimeng Xu , Wenqi Fu , Lei Zhang , Jie Yang , Zhihao Wang , Bing Liu , Guangdun Peng , Dali Han , Xiaolong Bai , Nan Qiao

Deep learning has achieved great successes in traditional fields like computer vision (CV), natural language processing (NLP), speech processing, and more. These advancements have greatly inspired researchers in genomics and made deep learning in genomics an exciting and popular topic. The convolutional neural network (CNN) and recurrent neural network (RNN) are frequently used to solve genomic sequencing and prediction problems, and multiple layer perception (MLP) and auto-encoders (AE) are frequently used for genomic profiling data like RNA expression data and gene mutation data. Here, we introduce a new neural network architecture-the residual fully-connected neural network (RFCN)-and describe its advantage in modeling genomic profiling data. We also incorporate AutoML algorithms and implement AutoGenome, an end-to-end, automated deep learning framework for genomic studies. By utilizing the proposed RFCN architecture, automatic hyper-parameter search, and neural architecture search algorithms, AutoGenome can automatically train high-performance deep learning models for various kinds of genomic profiling data. To help researchers better understand the trained models, AutoGenome can assess the importance of different features and export the most critical features for supervised learning tasks and the representative latent vectors for unsupervised learning tasks. We expect AutoGenome will become a popular tool in genomic studies.

深度学习在计算机视觉(CV)、自然语言处理(NLP)、语音处理等传统领域取得了巨大成功。这些进步极大地激励了基因组学的研究人员,并使基因组学的深度学习成为一个令人兴奋和流行的话题。卷积神经网络(CNN)和递归神经网络(RNN)常用于解决基因组测序和预测问题,多层感知(MLP)和自编码器(AE)常用于RNA表达数据和基因突变数据等基因组分析数据。在这里,我们介绍了一种新的神经网络架构-残差全连接神经网络(RFCN),并描述了它在建模基因组图谱数据方面的优势。我们还整合了AutoML算法并实现了AutoGenome,这是一个用于基因组研究的端到端自动化深度学习框架。利用提出的RFCN架构、自动超参数搜索和神经架构搜索算法,AutoGenome可以自动训练高性能的深度学习模型,用于各种基因组分析数据。为了帮助研究人员更好地理解训练模型,AutoGenome可以评估不同特征的重要性,并为监督学习任务导出最关键的特征,为无监督学习任务导出具有代表性的潜在向量。我们期待AutoGenome成为基因组研究中的一个流行工具。
{"title":"AutoGenome: An AutoML tool for genomic research","authors":"Denghui Liu ,&nbsp;Chi Xu ,&nbsp;Wenjun He ,&nbsp;Zhimeng Xu ,&nbsp;Wenqi Fu ,&nbsp;Lei Zhang ,&nbsp;Jie Yang ,&nbsp;Zhihao Wang ,&nbsp;Bing Liu ,&nbsp;Guangdun Peng ,&nbsp;Dali Han ,&nbsp;Xiaolong Bai ,&nbsp;Nan Qiao","doi":"10.1016/j.ailsci.2021.100017","DOIUrl":"https://doi.org/10.1016/j.ailsci.2021.100017","url":null,"abstract":"<div><p>Deep learning has achieved great successes in traditional fields like computer vision (CV), natural language processing (NLP), speech processing, and more. These advancements have greatly inspired researchers in genomics and made deep learning in genomics an exciting and popular topic. The convolutional neural network (CNN) and recurrent neural network (RNN) are frequently used to solve genomic sequencing and prediction problems, and multiple layer perception (MLP) and auto-encoders (AE) are frequently used for genomic profiling data like RNA expression data and gene mutation data. Here, we introduce a new neural network architecture-the residual fully-connected neural network (RFCN)-and describe its advantage in modeling genomic profiling data. We also incorporate AutoML algorithms and implement AutoGenome, an end-to-end, automated deep learning framework for genomic studies. By utilizing the proposed RFCN architecture, automatic hyper-parameter search, and neural architecture search algorithms, AutoGenome can automatically train high-performance deep learning models for various kinds of genomic profiling data. To help researchers better understand the trained models, AutoGenome can assess the importance of different features and export the most critical features for supervised learning tasks and the representative latent vectors for unsupervised learning tasks. We expect AutoGenome will become a popular tool in genomic studies.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000179/pdfft?md5=cf6b23a0b87a53ab56b10caf93790902&pid=1-s2.0-S2667318521000179-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136694939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GPCR Dock 2021: a blind docking competition in the post AlphaFold2 era GPCR对接2021:后AlphaFold2时代的盲对接竞赛
Pub Date : 2021-11-01 DOI: 10.1016/j.ailsci.2021.100024
Suwen Zhao
{"title":"GPCR Dock 2021: a blind docking competition in the post AlphaFold2 era","authors":"Suwen Zhao","doi":"10.1016/j.ailsci.2021.100024","DOIUrl":"https://doi.org/10.1016/j.ailsci.2021.100024","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47624485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum regarding missing Conflict of Interest Statement & Ethical Statement in previously published articles 关于先前发表的文章中缺少利益冲突声明和道德声明的勘误表
Pub Date : 1900-01-01 DOI: 10.1016/j.ailsci.2023.100076
{"title":"Erratum regarding missing Conflict of Interest Statement & Ethical Statement in previously published articles","authors":"","doi":"10.1016/j.ailsci.2023.100076","DOIUrl":"https://doi.org/10.1016/j.ailsci.2023.100076","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54191568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Optimizing active learning for free energy Calculations” [Artificial Intelligence in the Life Sciences, 2 (2022) 100050] “优化自由能计算的主动学习”的勘误表[生命科学中的人工智能,2 (2022)100050]
Pub Date : 1900-01-01 DOI: 10.1016/j.ailsci.2023.100074
James Thompson, W. Walters, Jianwen A. Feng, Nicolas A. Pabon, Hongcheng Xu, Brian B. Goldman, D. Moustakas, M. Schmidt, Forrest York
{"title":"Corrigendum to “Optimizing active learning for free energy Calculations” [Artificial Intelligence in the Life Sciences, 2 (2022) 100050]","authors":"James Thompson, W. Walters, Jianwen A. Feng, Nicolas A. Pabon, Hongcheng Xu, Brian B. Goldman, D. Moustakas, M. Schmidt, Forrest York","doi":"10.1016/j.ailsci.2023.100074","DOIUrl":"https://doi.org/10.1016/j.ailsci.2023.100074","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54191531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An industrial evaluation of proteochemometric modelling: Predicting drug-target affinities for kinases 蛋白质化学模型的工业评价:预测激酶的药物靶标亲和力
Pub Date : 1900-01-01 DOI: 10.1016/j.ailsci.2023.100079
Astrid Stroobants, Lewis H. Mervin, O. Engkvist, G. Robb
{"title":"An industrial evaluation of proteochemometric modelling: Predicting drug-target affinities for kinases","authors":"Astrid Stroobants, Lewis H. Mervin, O. Engkvist, G. Robb","doi":"10.1016/j.ailsci.2023.100079","DOIUrl":"https://doi.org/10.1016/j.ailsci.2023.100079","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54191637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A natural language processing system for the efficient updating of highly curated pathophysiology mechanism knowledge graphs 一个自然语言处理系统,用于高效地更新高度策划的病理生理机制知识图谱
Pub Date : 1900-01-01 DOI: 10.1016/j.ailsci.2023.100078
Negin Sadat Babaiha, H. Elsayed, Bide Zhang, Abish Kaladharan, Priya Sethumadhavan, Bruce Schultz, Jürgen Klein, Bruno Freudensprung, V. Lage-Rupprecht, A. Kodamullil, M. Jacobs, Stefan Geißler, S. Madan, M. Hofmann-Apitius
{"title":"A natural language processing system for the efficient updating of highly curated pathophysiology mechanism knowledge graphs","authors":"Negin Sadat Babaiha, H. Elsayed, Bide Zhang, Abish Kaladharan, Priya Sethumadhavan, Bruce Schultz, Jürgen Klein, Bruno Freudensprung, V. Lage-Rupprecht, A. Kodamullil, M. Jacobs, Stefan Geißler, S. Madan, M. Hofmann-Apitius","doi":"10.1016/j.ailsci.2023.100078","DOIUrl":"https://doi.org/10.1016/j.ailsci.2023.100078","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54191598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Artificial intelligence in the life sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1