Pub Date : 2023-01-20DOI: 10.1016/j.ailsci.2023.100058
Miru Tang , Chang Wen , Jie Lin , Hongming Chen , Ting Ran
The A2A adenosine receptor (A2AR) is emerging as a promising drug target for cancer immunotherapy. Novel A2AR antagonists are highly demanded due to few candidates entering clinic trials specific for cancer treatment. Structure-based virtual screening has made a great contribution to discover novel A2AR antagonists, but most depended on inefficient molecular docking on relatively small molecular databases. In this work, a deep learning strategy was applied to accelerate docking-based virtual screening, through which new structural types of A2AR antagonists for an extremely large molecular library were found successfully.
{"title":"Discovery of novel A2AR antagonists through deep learning-based virtual screening","authors":"Miru Tang , Chang Wen , Jie Lin , Hongming Chen , Ting Ran","doi":"10.1016/j.ailsci.2023.100058","DOIUrl":"10.1016/j.ailsci.2023.100058","url":null,"abstract":"<div><p>The A<sub>2A</sub> adenosine receptor (A<sub>2A</sub>R) is emerging as a promising drug target for cancer immunotherapy. Novel A<sub>2A</sub>R antagonists are highly demanded due to few candidates entering clinic trials specific for cancer treatment. Structure-based virtual screening has made a great contribution to discover novel A<sub>2A</sub>R antagonists, but most depended on inefficient molecular docking on relatively small molecular databases. In this work, a deep learning strategy was applied to accelerate docking-based virtual screening, through which new structural types of A<sub>2A</sub>R antagonists for an extremely large molecular library were found successfully.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100058"},"PeriodicalIF":0.0,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46817392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-06DOI: 10.1016/j.ailsci.2023.100057
Manas Wakchaure , B.K. Patle , A.K. Mahindrakar
The aim of the proposed work is to review the various AI techniques (fuzzy logic (FL), artificial neural network (ANN), genetic algorithm (GA), particle swarm optimization (PSO), artificial potential field (APF), simulated annealing (SA), ant colony optimization (ACO), artificial bee colony algorithm (ABC), harmony search algorithm (HS), bat algorithm (BA), cell decomposition (CD) and firefly algorithm (FA)) in agriculture, focusing on expert systems, robots developed for agriculture, sensors technology for collecting and transmitting data, in an attempt to reveal their potential impact in the field of agriculture. None of the literature highlights the application of AI techniques and robots in (Cultivation, Monitoring, and Harvesting) to understand their contribution to the agriculture sector and the simultaneous comparison of each based on its usefulness and popularity. This work investigates the comparative analysis of three essential phases of agriculture: Cultivation, Monitoring, and Harvesting, by knowing the depth of AI involved and the robots utilized. The current study presents a systematic review of more than 150 papers based on the existing automation application in agriculture from 1960 to 2021. It highlights the future research gap in making intelligent autonomous systems in agriculture. The paper concludes with tabular data and charts comparing the frequency of individual AI approaches for specific applications in the agriculture field.
{"title":"Application of AI techniques and robotics in agriculture: A review","authors":"Manas Wakchaure , B.K. Patle , A.K. Mahindrakar","doi":"10.1016/j.ailsci.2023.100057","DOIUrl":"10.1016/j.ailsci.2023.100057","url":null,"abstract":"<div><p>The aim of the proposed work is to review the various AI techniques (fuzzy logic (FL), artificial neural network (ANN), genetic algorithm (GA), particle swarm optimization (PSO), artificial potential field (APF), simulated annealing (SA), ant colony optimization (ACO), artificial bee colony algorithm (ABC), harmony search algorithm (HS), bat algorithm (BA), cell decomposition (CD) and firefly algorithm (FA)) in agriculture, focusing on expert systems, robots developed for agriculture, sensors technology for collecting and transmitting data, in an attempt to reveal their potential impact in the field of agriculture. None of the literature highlights the application of AI techniques and robots in (Cultivation, Monitoring, and Harvesting) to understand their contribution to the agriculture sector and the simultaneous comparison of each based on its usefulness and popularity. This work investigates the comparative analysis of three essential phases of agriculture: Cultivation, Monitoring, and Harvesting, by knowing the depth of AI involved and the robots utilized. The current study presents a systematic review of more than 150 papers based on the existing automation application in agriculture from 1960 to 2021. It highlights the future research gap in making intelligent autonomous systems in agriculture. The paper concludes with tabular data and charts comparing the frequency of individual AI approaches for specific applications in the agriculture field.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100057"},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44719076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-05DOI: 10.1016/j.ailsci.2022.100056
Andrea Volkamer , Sereina Riniker , Eva Nittinger , Jessica Lanini , Francesca Grisoni , Emma Evertsson , Raquel Rodríguez-Pérez , Nadine Schneider
Academic and pharmaceutical industry research are both key for progresses in the field of molecular machine learning. Despite common open research questions and long-term goals, the nature and scope of investigations typically differ between academia and industry. Herein, we highlight the opportunities that machine learning models offer to accelerate and improve compound selection. All parts of the model life cycle are discussed, including data preparation, model building, validation, and deployment. Main challenges in molecular machine learning as well as differences between academia and industry are highlighted. Furthermore, application aspects in the design-make-test-analyze cycle are discussed. We close with strategies that could improve collaboration between academic and industrial institutions and will advance the field even further.
{"title":"Machine learning for small molecule drug discovery in academia and industry","authors":"Andrea Volkamer , Sereina Riniker , Eva Nittinger , Jessica Lanini , Francesca Grisoni , Emma Evertsson , Raquel Rodríguez-Pérez , Nadine Schneider","doi":"10.1016/j.ailsci.2022.100056","DOIUrl":"10.1016/j.ailsci.2022.100056","url":null,"abstract":"<div><p>Academic and pharmaceutical industry research are both key for progresses in the field of molecular machine learning. Despite common open research questions and long-term goals, the nature and scope of investigations typically differ between academia and industry. Herein, we highlight the opportunities that machine learning models offer to accelerate and improve compound selection. All parts of the model life cycle are discussed, including data preparation, model building, validation, and deployment. Main challenges in molecular machine learning as well as differences between academia and industry are highlighted. Furthermore, application aspects in the design-make-test-analyze cycle are discussed. We close with strategies that could improve collaboration between academic and industrial institutions and will advance the field even further.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100056"},"PeriodicalIF":0.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47508788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.ailsci.2023.100078
Negin Sadat Babaiha , Hassan Elsayed , Bide Zhang , Abish Kaladharan , Priya Sethumadhavan , Bruce Schultz , Jürgen Klein , Bruno Freudensprung , Vanessa Lage-Rupprecht , Alpha Tom Kodamullil , Marc Jacobs , Stefan Geissler , Sumit Madan , Martin Hofmann-Apitius
{"title":"A natural language processing system for the efficient updating of highly curated pathophysiology mechanism knowledge graphs","authors":"Negin Sadat Babaiha , Hassan Elsayed , Bide Zhang , Abish Kaladharan , Priya Sethumadhavan , Bruce Schultz , Jürgen Klein , Bruno Freudensprung , Vanessa Lage-Rupprecht , Alpha Tom Kodamullil , Marc Jacobs , Stefan Geissler , Sumit Madan , Martin Hofmann-Apitius","doi":"10.1016/j.ailsci.2023.100078","DOIUrl":"https://doi.org/10.1016/j.ailsci.2023.100078","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"4 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49711376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.ailsci.2023.100074
James Thompson , W Patrick Walters , Jianwen A Feng , Nicolas A Pabon , Hongcheng Xu , Brian B Goldman , Demetri Moustakas , Molly Schmidt , Forrest York
{"title":"Corrigendum to “Optimizing active learning for free energy Calculations” [Artificial Intelligence in the Life Sciences, 2 (2022) 100050]","authors":"James Thompson , W Patrick Walters , Jianwen A Feng , Nicolas A Pabon , Hongcheng Xu , Brian B Goldman , Demetri Moustakas , Molly Schmidt , Forrest York","doi":"10.1016/j.ailsci.2023.100074","DOIUrl":"https://doi.org/10.1016/j.ailsci.2023.100074","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49775001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.ailsci.2023.100076
{"title":"Erratum regarding missing Conflict of Interest Statement & Ethical Statement in previously published articles","authors":"","doi":"10.1016/j.ailsci.2023.100076","DOIUrl":"https://doi.org/10.1016/j.ailsci.2023.100076","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49775002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.ailsci.2023.100079
Astrid Stroobants , Lewis H. Mervin , Ola Engkvist , Graeme R. Robb
{"title":"An industrial evaluation of proteochemometric modelling: Predicting drug-target affinities for kinases","authors":"Astrid Stroobants , Lewis H. Mervin , Ola Engkvist , Graeme R. Robb","doi":"10.1016/j.ailsci.2023.100079","DOIUrl":"https://doi.org/10.1016/j.ailsci.2023.100079","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"4 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49711377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-22DOI: 10.1016/j.ailsci.2022.100055
José Teófilo Moreira-Filho , Meryck Felipe Brito da Silva , Joyce Villa Verde Bastos Borba , Arlindo Rodrigues Galvão Filho , Eugene N Muratov , Carolina Horta Andrade , Rodolpho de Campos Braga , Bruno Junior Neves
Designing magic shotgun compounds, i.e., compounds hitting multiple targets using artificial intelligence (AI) systems based on machine learning (ML) and deep learning (DL) approaches, has a huge potential to revolutionize drug discovery. Such intelligent systems enable computers to create new chemical structures and predict their multi-target properties at a low cost and in a time-efficient manner. Most examples of AI applied to drug discovery are single-target oriented and there is still a lack of concise information regarding the application of this technology for the discovery of multi-target drugs or drugs with broad-spectrum action. In this review, we focus on current developments in AI systems for the next generation of automated design of multi-target drugs. We discuss how classical ML methods, cutting-edge generative models, and multi-task deep neural networks can help de novo design and hit-to-lead optimization of multi-target drugs. Moreover, we present state-of-the-art workflows and highlight some studies demonstrating encouraging experimental results, which pave the way for de novo drug design and multi-target drug discovery.
{"title":"Artificial intelligence systems for the design of magic shotgun drugs","authors":"José Teófilo Moreira-Filho , Meryck Felipe Brito da Silva , Joyce Villa Verde Bastos Borba , Arlindo Rodrigues Galvão Filho , Eugene N Muratov , Carolina Horta Andrade , Rodolpho de Campos Braga , Bruno Junior Neves","doi":"10.1016/j.ailsci.2022.100055","DOIUrl":"10.1016/j.ailsci.2022.100055","url":null,"abstract":"<div><p>Designing magic shotgun compounds, i.e., compounds hitting multiple targets using artificial intelligence (AI) systems based on machine learning (ML) and deep learning (DL) approaches, has a huge potential to revolutionize drug discovery. Such intelligent systems enable computers to create new chemical structures and predict their multi-target properties at a low cost and in a time-efficient manner. Most examples of AI applied to drug discovery are single-target oriented and there is still a lack of concise information regarding the application of this technology for the discovery of multi-target drugs or drugs with broad-spectrum action. In this review, we focus on current developments in AI systems for the next generation of automated design of multi-target drugs. We discuss how classical ML methods, cutting-edge generative models, and multi-task deep neural networks can help <em>de novo</em> design and hit-to-lead optimization of multi-target drugs. Moreover, we present state-of-the-art workflows and highlight some studies demonstrating encouraging experimental results, which pave the way for <em>de novo</em> drug design and multi-target drug discovery.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100055"},"PeriodicalIF":0.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43297571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-11DOI: 10.1016/j.ailsci.2022.100052
Jürgen Bajorath
{"title":"Specific contributions of artificial intelligence to interdisciplinary life science research – exploring and communicating new opportunities","authors":"Jürgen Bajorath","doi":"10.1016/j.ailsci.2022.100052","DOIUrl":"10.1016/j.ailsci.2022.100052","url":null,"abstract":"","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100052"},"PeriodicalIF":0.0,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41990897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1016/j.ailsci.2022.100034
Ivan Erjavac , Daniela Kalafatovic , Goran Mauša
Current application of machine learning in the process of antimicrobial peptide discovery call for the reduction of the false positive predictions that are produced by the classification models. Considering that the positive predictions of high confidence drive modern experimental design, the model’s sensitivity is crucial to reduce the number of unnecessary in vitro tests. Furthermore, taking into account the expert-based design approaches that employ random mutations on confirmed sequences, the machine learning models are required to distinguish between subtle differences among shuffled sequences. With the goal of reducing the false positive rate and improving sensitivity, we propose a hybrid approach to antimicrobial peptide prediction that utilizes combined encoding models. To this end, we implement models that employ both the physico-chemical features and sequence ordering information to stress the importance of using both representations. We also investigate the usage of binary encoding for peptide representation purposes, a method that is insufficiently represented in related research, which proved to act as a viable low dimensional alternative to the one-hot encoding. Our results, supported by Cochran and McNemar statistical tests and Spearman correlation analysis, indicate that the sequence-based encodings complement the physico-chemical features and their synergic effect yields improvement in terms of every evaluation metric. Finally, the proposed hybrid approach that combines physico-chemical features and binary encoding using logical conjunction was shown to be superior to other single models by a factor of 2.96 in terms of fall-out and up to 6.1% in terms of precision.
{"title":"Coupled encoding methods for antimicrobial peptide prediction: How sensitive is a highly accurate model?","authors":"Ivan Erjavac , Daniela Kalafatovic , Goran Mauša","doi":"10.1016/j.ailsci.2022.100034","DOIUrl":"10.1016/j.ailsci.2022.100034","url":null,"abstract":"<div><p>Current application of machine learning in the process of antimicrobial peptide discovery call for the reduction of the false positive predictions that are produced by the classification models. Considering that the positive predictions of high confidence drive modern experimental design, the model’s sensitivity is crucial to reduce the number of unnecessary <em>in vitro</em> tests. Furthermore, taking into account the expert-based design approaches that employ random mutations on confirmed sequences, the machine learning models are required to distinguish between subtle differences among shuffled sequences. With the goal of reducing the false positive rate and improving sensitivity, we propose a hybrid approach to antimicrobial peptide prediction that utilizes combined encoding models. To this end, we implement models that employ both the physico-chemical features and sequence ordering information to stress the importance of using both representations. We also investigate the usage of binary encoding for peptide representation purposes, a method that is insufficiently represented in related research, which proved to act as a viable low dimensional alternative to the one-hot encoding. Our results, supported by Cochran and McNemar statistical tests and Spearman correlation analysis, indicate that the sequence-based encodings complement the physico-chemical features and their synergic effect yields improvement in terms of every evaluation metric. Finally, the proposed hybrid approach that combines physico-chemical features and binary encoding using logical conjunction was shown to be superior to other single models by a factor of 2.96 in terms of fall-out and up to 6.1% in terms of precision.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"2 ","pages":"Article 100034"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318522000058/pdfft?md5=3f5cf3ee0ab97ece8587283b98a0d00f&pid=1-s2.0-S2667318522000058-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49610236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}