Pub Date : 2023-01-01Epub Date: 2023-04-10DOI: 10.1007/s43683-023-00109-3
Lyn Denend, Susie Spielman, Ross Venook, Ravinder D Pamnani, David Camarillo, James Wall, Joseph Towles
Many undergraduate educational experiences in biomedical design lack clinical immersion-based needs finding training for students. Convinced of the merits of this type of training for undergraduates, but unable to offer a quarter-long course due to faculty and administrative constraints, we developed an accelerated block-plan course, during which students were dedicated solely to our class for 3 weeks. The course focused on the earliest stages of the health technology innovation process-conducting effective clinical observations and performing comprehensive need research and screening. We grounded the course in experiential learning theory (with hands-on, collaborative, and immersive experiences) and constructivist learning theory (where students integrated prior knowledge with new material on need-driven innovation). This paper describes the design of this intensive block-plan course and the teaching methods intended to support the achievement of five learning objectives. We used pre- and post-course surveys to gather self-reported data about the effect of the course on student learning. Despite the accelerated format, we saw statistically significant gains for all but one sub-measure across the learning objectives. Our experience supports key benefits of the block-plan model, and the results indicate that specific course design choices were effective in achieving positive learning outcomes. These design decisions include (1) opportunities for students to practice observations before entering the clinical setting; (2) a framework for the curriculum that reinforced important concepts iteratively throughout the program; (3) balanced coverage of preparation, clinical immersion, and need research; (4) extensive faculty and peer coaching; and (5) providing hands-on prototyping opportunities while staying focused on need characterization rather than solution development. Based on our experience, we expect that this model is replicable across institutions with limited bandwidth to support clinical immersion opportunities.
{"title":"Using an Accelerated Undergraduate Needs Finding Course to Build Skills, Inspire Confidence, and Promote Interest in Health Technology Innovation.","authors":"Lyn Denend, Susie Spielman, Ross Venook, Ravinder D Pamnani, David Camarillo, James Wall, Joseph Towles","doi":"10.1007/s43683-023-00109-3","DOIUrl":"10.1007/s43683-023-00109-3","url":null,"abstract":"<p><p>Many undergraduate educational experiences in biomedical design lack clinical immersion-based needs finding training for students. Convinced of the merits of this type of training for undergraduates, but unable to offer a quarter-long course due to faculty and administrative constraints, we developed an accelerated block-plan course, during which students were dedicated solely to our class for 3 weeks. The course focused on the earliest stages of the health technology innovation process-conducting effective clinical observations and performing comprehensive need research and screening. We grounded the course in experiential learning theory (with hands-on, collaborative, and immersive experiences) and constructivist learning theory (where students integrated prior knowledge with new material on need-driven innovation). This paper describes the design of this intensive block-plan course and the teaching methods intended to support the achievement of five learning objectives. We used pre- and post-course surveys to gather self-reported data about the effect of the course on student learning. Despite the accelerated format, we saw statistically significant gains for all but one sub-measure across the learning objectives. Our experience supports key benefits of the block-plan model, and the results indicate that specific course design choices were effective in achieving positive learning outcomes. These design decisions include (1) opportunities for students to practice observations before entering the clinical setting; (2) a framework for the curriculum that reinforced important concepts iteratively throughout the program; (3) balanced coverage of preparation, clinical immersion, and need research; (4) extensive faculty and peer coaching; and (5) providing hands-on prototyping opportunities while staying focused on need characterization rather than solution development. Based on our experience, we expect that this model is replicable across institutions with limited bandwidth to support clinical immersion opportunities.</p>","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":"3 2","pages":"319-329"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9988919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/s43683-022-00084-1
Huma Shoaib, Aasakiran Madamanchi, Elsje Pienaar, David M Umulis, Monica E Cardella
In response to the growing computational intensity of the healthcare industry, biomedical engineering (BME) undergraduate education is placing increased emphasis on computation. The presence of substantial gender disparities in many computationally intensive disciplines suggests that the adoption of computational instruction approaches that lack intentionality may exacerbate gender disparities. Educational research suggests that the development of an engineering and computational identity is one factor that can support students' decisions to enter and persist in an engineering major. Discipline-based identity research is used as a lens to understand retention and persistence of students in engineering. Our specific purpose is to apply discipline-based identity research to define and explore the computational identities of undergraduate engineering students who engage in computational environments. This work will inform future studies regarding retention and persistence of students who engage in computational courses. Twenty-eight undergraduate engineering students (20 women, 8 men) from three engineering majors (biomedical engineering, agricultural engineering, and biological engineering) participated in semi-structured interviews. The students discussed their experiences in a computationally-intensive thermodynamics course offered jointly by the Biomedical Engineering and Agricultural & Biological Engineering departments. The transcribed interviews were analyzed through thematic coding. The gender stereotypes associated with computer programming also come part and parcel with computer programming, possibly threatening a student's sense of belonging in engineering. The majority of the participants reported that their computational identity was "in the making." Students' responses also suggested that their engineering identity and their computational identity were in congruence, while some incongruence is found between their engineering identity and a creative identity as well as between computational identity and perceived feminine norms. Responses also indicate that students associate specific skills with having a computational identity. This study's findings present an emergent thematic definition of a computational person constructed from student perceptions and experiences. Instructors can support students' nascent computational identities through intentional mitigation of the gender stereotypes and biases, and by framing assignments to focus on developing specific skills associated with the computational modeling processes.
{"title":"\"I Think I Am Getting There\" Understanding the Computational Identity of Engineering Students Participating in a Computationally Intensive Thermodynamics Course.","authors":"Huma Shoaib, Aasakiran Madamanchi, Elsje Pienaar, David M Umulis, Monica E Cardella","doi":"10.1007/s43683-022-00084-1","DOIUrl":"https://doi.org/10.1007/s43683-022-00084-1","url":null,"abstract":"<p><p>In response to the growing computational intensity of the healthcare industry, biomedical engineering (BME) undergraduate education is placing increased emphasis on computation. The presence of substantial gender disparities in many computationally intensive disciplines suggests that the adoption of computational instruction approaches that lack intentionality may exacerbate gender disparities. Educational research suggests that the development of an engineering and computational identity is one factor that can support students' decisions to enter and persist in an engineering major. Discipline-based identity research is used as a lens to understand retention and persistence of students in engineering. Our specific purpose is to apply discipline-based identity research to define and explore the computational identities of undergraduate engineering students who engage in computational environments. This work will inform future studies regarding retention and persistence of students who engage in computational courses. Twenty-eight undergraduate engineering students (20 women, 8 men) from three engineering majors (biomedical engineering, agricultural engineering, and biological engineering) participated in semi-structured interviews. The students discussed their experiences in a computationally-intensive thermodynamics course offered jointly by the Biomedical Engineering and Agricultural & Biological Engineering departments. The transcribed interviews were analyzed through thematic coding. The gender stereotypes associated with computer programming also come part and parcel with computer programming, possibly threatening a student's sense of belonging in engineering. The majority of the participants reported that their computational identity was \"in the making.\" Students' responses also suggested that their engineering identity and their computational identity were in congruence, while some incongruence is found between their engineering identity and a creative identity as well as between computational identity and perceived feminine norms. Responses also indicate that students associate specific skills with having a computational identity. This study's findings present an emergent thematic definition of a computational person constructed from student perceptions and experiences. Instructors can support students' nascent computational identities through intentional mitigation of the gender stereotypes and biases, and by framing assignments to focus on developing specific skills associated with the computational modeling processes.</p>","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":"3 1","pages":"1-21"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9116292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/s43683-022-00089-w
Sunny Kwok, Rachel Childers
Commercial escape rooms have grown in popularity as an enjoyable experience that also doubles as an exercise in communication and collaboration. Educators can take advantage of these natural qualities to engage and support students in a low-stress learning environment. The primary goal of this study is to share the development and application of an educational escape room as a tool to provide biomedical engineering (BME) students with an immersive and practical experience. A BME laboratory course-specific escape room was developed and beta-tested on an initial group of BME students. The first set of feedback enabled improvements to the design and difficulty of the escape room, which was followed by the final release of the activity for the intended undergraduate BME course. Across an academic year, 74 participants agreed to provide survey feedback for this study. Despite a moderate escape rate (29%), students reported high satisfaction and enthusiasm for the activity. Student survey responses indicated that participants were engaged and empowered to successfully escape even without external motivators. Responses supported the effectiveness of the escape room as a BME learning environment, allowing students to practice and retain course-related knowledge in a challenging but low-risk activity. The foundational structure of escape rooms offers a beneficial environment for experiential knowledge application. We conclude that educational escape rooms show promise as a pedagogical tool in promoting enhanced knowledge retention through immersive, game-based learning.
Supplementary information: The online version contains supplementary material available at 10.1007/s43683-022-00089-w.
{"title":"Escaping the Laboratory: An Escape Room to Reinforce Biomedical Engineering Skills.","authors":"Sunny Kwok, Rachel Childers","doi":"10.1007/s43683-022-00089-w","DOIUrl":"https://doi.org/10.1007/s43683-022-00089-w","url":null,"abstract":"<p><p>Commercial escape rooms have grown in popularity as an enjoyable experience that also doubles as an exercise in communication and collaboration. Educators can take advantage of these natural qualities to engage and support students in a low-stress learning environment. The primary goal of this study is to share the development and application of an educational escape room as a tool to provide biomedical engineering (BME) students with an immersive and practical experience. A BME laboratory course-specific escape room was developed and beta-tested on an initial group of BME students. The first set of feedback enabled improvements to the design and difficulty of the escape room, which was followed by the final release of the activity for the intended undergraduate BME course. Across an academic year, 74 participants agreed to provide survey feedback for this study. Despite a moderate escape rate (29%), students reported high satisfaction and enthusiasm for the activity. Student survey responses indicated that participants were engaged and empowered to successfully escape even without external motivators. Responses supported the effectiveness of the escape room as a BME learning environment, allowing students to practice and retain course-related knowledge in a challenging but low-risk activity. The foundational structure of escape rooms offers a beneficial environment for experiential knowledge application. We conclude that educational escape rooms show promise as a pedagogical tool in promoting enhanced knowledge retention through immersive, game-based learning.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43683-022-00089-w.</p>","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":"3 1","pages":"75-86"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9486318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2022-11-04DOI: 10.1007/s43683-022-00087-y
Christopher J Panebianco, Poorna Dutta, Jillian R Frost, Angela Huang, Olivia S Kim, James C Iatridis, Andrea J Vernengo, Jennifer R Weiser
Bioadhesives are an important class of biomaterials for wound healing, hemostasis, and tissue repair. To develop the next generation of bioadhesives, there is a societal need to teach trainees about their design, engineering, and testing. This study designed, implemented, and evaluated a hands-on, inquiry-based learning (IBL) module to teach bioadhesives to undergraduate, master's, and PhD/postdoctoral trainees. Approximately 30 trainees across three international institutions participated in this IBL bioadhesives module, which was designed to last approximately 3 h. This IBL module was designed to teach trainees about how bioadhesives are used for tissue repair, how to engineer bioadhesives for different biomedical applications, and how to assess the efficacy of bioadhesives. The IBL bioadhesives module resulted in significant learning gains for all cohorts; whereby, trainees scored an average of 45.5% on the pre-test assessment and 69.0% on the post-test assessment. The undergraduate cohort experienced the greatest learning gains of 34.2 points, which was expected since they had the least theoretical and applied knowledge about bioadhesives. Validated pre/post-survey assessments showed that trainees also experienced significant improvements in scientific literacy from completing this module. Similar to the pre/post-test, improvements in scientific literacy were most significant for the undergraduate cohort since they had the least amount of experience with scientific inquiry. Instructors can use this module, as described, to introduce undergraduate, master's, and PhD/postdoctoral trainees to principles of bioadhesives.
{"title":"Teaching Tissue Repair Through an Inquiry-Based Learning Bioadhesives Module.","authors":"Christopher J Panebianco, Poorna Dutta, Jillian R Frost, Angela Huang, Olivia S Kim, James C Iatridis, Andrea J Vernengo, Jennifer R Weiser","doi":"10.1007/s43683-022-00087-y","DOIUrl":"10.1007/s43683-022-00087-y","url":null,"abstract":"<p><p>Bioadhesives are an important class of biomaterials for wound healing, hemostasis, and tissue repair. To develop the next generation of bioadhesives, there is a societal need to teach trainees about their design, engineering, and testing. This study designed, implemented, and evaluated a hands-on, inquiry-based learning (IBL) module to teach bioadhesives to undergraduate, master's, and PhD/postdoctoral trainees. Approximately 30 trainees across three international institutions participated in this IBL bioadhesives module, which was designed to last approximately 3 h. This IBL module was designed to teach trainees about how bioadhesives are used for tissue repair, how to engineer bioadhesives for different biomedical applications, and how to assess the efficacy of bioadhesives. The IBL bioadhesives module resulted in significant learning gains for all cohorts; whereby, trainees scored an average of 45.5% on the pre-test assessment and 69.0% on the post-test assessment. The undergraduate cohort experienced the greatest learning gains of 34.2 points, which was expected since they had the least theoretical and applied knowledge about bioadhesives. Validated pre/post-survey assessments showed that trainees also experienced significant improvements in scientific literacy from completing this module. Similar to the pre/post-test, improvements in scientific literacy were most significant for the undergraduate cohort since they had the least amount of experience with scientific inquiry. Instructors can use this module, as described, to introduce undergraduate, master's, and PhD/postdoctoral trainees to principles of bioadhesives.</p>","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":"3 1","pages":"61-74"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9495374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/s43683-022-00096-x
Duncan Davis-Hall, Laura L. Farrelly, Melissa Risteff, Chelsea M. Magin
{"title":"Evaluating How Exposure to Scientific Role Models and Work-Based Microbadging Influences STEM Career Mindsets in Underrepresented Groups","authors":"Duncan Davis-Hall, Laura L. Farrelly, Melissa Risteff, Chelsea M. Magin","doi":"10.1007/s43683-022-00096-x","DOIUrl":"https://doi.org/10.1007/s43683-022-00096-x","url":null,"abstract":"","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":"39 1","pages":"23-38"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77328425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-01-19DOI: 10.1007/s43683-022-00099-8
Leann Norman
{"title":"Development and Implementation of a Bioinnovation Focused Course-Based Research Experience for Undergraduate Students.","authors":"Leann Norman","doi":"10.1007/s43683-022-00099-8","DOIUrl":"10.1007/s43683-022-00099-8","url":null,"abstract":"","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":"3 2","pages":"225-233"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9988925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/s43683-022-00088-x
Dimitris Glotsos, Spiros Kostopoulos, Panagiotis Liaparinos, Pantelis Asvestas, Ioannis Kalatzis
In this study, we have evaluated the real-world conditions, the job outlook and the job satisfaction in the Biomedical Engineering (BME) sector in Greece on the basis of the experience of about 12% of the graduates of the BME Department of the University of West Attica, Greece. An anonymous online questionnaire, implemented on the Microsoft Forms platform using multiple choice questions, short text answers and Likert-based scales, became publicly available to the graduates of the BME department. About 12% of the department's graduates responded to the survey. Results show that the time to first employment is very fast for both men and women. About 51.4% of men and 69.4% of women find their first job employment in the BME sector even before their graduation. The internship is considered important for first job placement by more than 50.6% of participants. BME jobs are perceived as most interesting (73.6%), in a good environment (71.9%), with satisfactory career prospects (45.9%), with satisfactory monthly net salary (44.2%) and satisfactory working hours (52.8%). Men are mostly employed in Service (40.5%), whereas women are mostly employed in Sales (33.3%). Most graduates with BSc degree are employed in Service (39.1%) and Sales (21.8%), most graduates with MSc degree are employed in Service (34.6%) and Hospitals/Health care centers (21.2%), and most graduates with PhD degree are employed in Academia and R&D (62.5%). Most well-paid participants (>1500 euros net salary) were PhD holders (71.5%), followed by MSc holders (25%) and BSc holders (16.2%). Maximum monthly salaries were found for those with more than 10 years of experience. In terms of BME sector, most well-paid participants (>1500 euros monthly net salary) are those working with R&D (86.7%), Sales (86.7%) and Management (60%). There is a high demand for biomedical engineers in the labor market in Greece, despite the continuing economic recession that the country is suffering from the past 12 years.
{"title":"The Biomedical Engineering Labor Market in Greece: A Survey Investigating Job Outlook, Satisfaction and Placement.","authors":"Dimitris Glotsos, Spiros Kostopoulos, Panagiotis Liaparinos, Pantelis Asvestas, Ioannis Kalatzis","doi":"10.1007/s43683-022-00088-x","DOIUrl":"https://doi.org/10.1007/s43683-022-00088-x","url":null,"abstract":"<p><p>In this study, we have evaluated the real-world conditions, the job outlook and the job satisfaction in the Biomedical Engineering (BME) sector in Greece on the basis of the experience of about 12% of the graduates of the BME Department of the University of West Attica, Greece. An anonymous online questionnaire, implemented on the Microsoft Forms platform using multiple choice questions, short text answers and Likert-based scales, became publicly available to the graduates of the BME department. About 12% of the department's graduates responded to the survey. Results show that the time to first employment is very fast for both men and women. About 51.4% of men and 69.4% of women find their first job employment in the BME sector even before their graduation. The internship is considered important for first job placement by more than 50.6% of participants. BME jobs are perceived as most interesting (73.6%), in a good environment (71.9%), with satisfactory career prospects (45.9%), with satisfactory monthly net salary (44.2%) and satisfactory working hours (52.8%). Men are mostly employed in Service (40.5%), whereas women are mostly employed in Sales (33.3%). Most graduates with BSc degree are employed in Service (39.1%) and Sales (21.8%), most graduates with MSc degree are employed in Service (34.6%) and Hospitals/Health care centers (21.2%), and most graduates with PhD degree are employed in Academia and R&D (62.5%). Most well-paid participants (>1500 euros net salary) were PhD holders (71.5%), followed by MSc holders (25%) and BSc holders (16.2%). Maximum monthly salaries were found for those with more than 10 years of experience. In terms of BME sector, most well-paid participants (>1500 euros monthly net salary) are those working with R&D (86.7%), Sales (86.7%) and Management (60%). There is a high demand for biomedical engineers in the labor market in Greece, despite the continuing economic recession that the country is suffering from the past 12 years.</p>","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":"3 1","pages":"51-60"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651877/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9118151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-07DOI: 10.1007/s43683-022-00094-z
Noah Goshi, Gregory Girardi, Hyehyun Kim, Erkin Seker
There is a need for novel teaching approaches to train biomedical engineers that are conversant across disciplines and have the technical skills to address interdisciplinary scientific and technological challenges. Here, we describe a graduate-level miniaturized biomedical device engineering course that has been taught over the last decade in in-person, remote, and hybrid formats. The course employs experiential learning components, including a proposal development and review that mimic the National Institutes of Health process and technical assignments that use raw research data to simulate a research experience. The effectiveness of the course was measured via pre-/post-course concept inventory surveys as well as course evaluations with targeted questions on the learning instruments. Statistical comparison of pre-/post-course survey scores suggests that the course was effective in students achieving the learning objectives, and comparison of relative increase in pre-/post-course survey scores across different instruction formats (i.e., in-person, remote, hybrid) showed minimal difference, suggesting that the teaching elements are readily transferrable to remote instruction.
Supplementary information: The online version contains supplementary material available at 10.1007/s43683-022-00094-z.
{"title":"Experiential Learning in a Biomedical Device Engineering Course: Proposal Development and Raw Research Data-Based Assignments.","authors":"Noah Goshi, Gregory Girardi, Hyehyun Kim, Erkin Seker","doi":"10.1007/s43683-022-00094-z","DOIUrl":"10.1007/s43683-022-00094-z","url":null,"abstract":"<p><p>There is a need for novel teaching approaches to train biomedical engineers that are conversant across disciplines and have the technical skills to address interdisciplinary scientific and technological challenges. Here, we describe a graduate-level miniaturized biomedical device engineering course that has been taught over the last decade in in-person, remote, and hybrid formats. The course employs experiential learning components, including a proposal development and review that mimic the National Institutes of Health process and technical assignments that use raw research data to simulate a research experience. The effectiveness of the course was measured via pre-/post-course concept inventory surveys as well as course evaluations with targeted questions on the learning instruments. Statistical comparison of pre-/post-course survey scores suggests that the course was effective in students achieving the learning objectives, and comparison of relative increase in pre-/post-course survey scores across different instruction formats (i.e., in-person, remote, hybrid) showed minimal difference, suggesting that the teaching elements are readily transferrable to remote instruction.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43683-022-00094-z.</p>","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":" ","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10255703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-30DOI: 10.1007/s43683-022-00095-y
Jessica E. Nesmith, Constanza Miranda
{"title":"Teaching Tips: Model for a Flipped Wet Laboratory Course for a Heterogenous Student Base","authors":"Jessica E. Nesmith, Constanza Miranda","doi":"10.1007/s43683-022-00095-y","DOIUrl":"https://doi.org/10.1007/s43683-022-00095-y","url":null,"abstract":"","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":"29 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90483592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-28DOI: 10.1007/s43683-022-00090-3
Alicia Fernandez-Fernandez, Walter Lee Murfee, Jeffrey A LaMack, Teresa A Murray
The main purpose of this paper is to share the Mentoring for INnovative Design Solutions (MINDS) Scholars Program developed by Alpha Eta Mu Beta, the International Biomedical Engineering Honor Society. The program's goals are to (1) introduce biomedical engineering students to an open-ended design experience as part of interuniversity teams with industry and faculty mentors, and (2) develop the ability to create designs considering clinical translatability on teams with different backgrounds and areas of expertise. MINDS uses an experiential learning approach to (1) enrich student curricular experiences through inter-institutional collaboration, (2) build engineering design skills, including three key design considerations for clinical/commercial success: intellectual property protection, regulatory strategy, and market identification; and (3) emphasize the importance of end-user considerations. From 2015 to 2022, MINDS has involved 131 students from 50 universities and 22 faculty and industry mentors. Pre- and post-program surveys show statistically significant improvements in understanding of the design process, regulatory strategy, intellectual property protection, market definition, and key product requirements and features. Students also improved communication and teamwork skills. Many students indicated that MINDS participation made them more likely to choose careers that involve product development and/or entrepreneurship. Students attained a working ability to integrate market needs, regulatory strategy, and intellectual property considerations into the design process. They also further developed soft skills, such as conflict resolution, time management, and effective communication through the challenges of inter-institutional collaboration. Additionally, the program heightened their awareness of how biomedical devices and technologies can benefit society.
{"title":"Mentoring for INnovative Design Solutions (MINDS): Key Design Considerations and Collaborative Teamwork across Universities for Clinical Translation.","authors":"Alicia Fernandez-Fernandez, Walter Lee Murfee, Jeffrey A LaMack, Teresa A Murray","doi":"10.1007/s43683-022-00090-3","DOIUrl":"10.1007/s43683-022-00090-3","url":null,"abstract":"<p><p>The main purpose of this paper is to share the Mentoring for INnovative Design Solutions (MINDS) Scholars Program developed by Alpha Eta Mu Beta, the International Biomedical Engineering Honor Society. The program's goals are to (1) introduce biomedical engineering students to an open-ended design experience as part of interuniversity teams with industry and faculty mentors, and (2) develop the ability to create designs considering clinical translatability on teams with different backgrounds and areas of expertise. MINDS uses an experiential learning approach to (1) enrich student curricular experiences through inter-institutional collaboration, (2) build engineering design skills, including three key design considerations for clinical/commercial success: intellectual property protection, regulatory strategy, and market identification; and (3) emphasize the importance of end-user considerations. From 2015 to 2022, MINDS has involved 131 students from 50 universities and 22 faculty and industry mentors. Pre- and post-program surveys show statistically significant improvements in understanding of the design process, regulatory strategy, intellectual property protection, market definition, and key product requirements and features. Students also improved communication and teamwork skills. Many students indicated that MINDS participation made them more likely to choose careers that involve product development and/or entrepreneurship. Students attained a working ability to integrate market needs, regulatory strategy, and intellectual property considerations into the design process. They also further developed soft skills, such as conflict resolution, time management, and effective communication through the challenges of inter-institutional collaboration. Additionally, the program heightened their awareness of how biomedical devices and technologies can benefit society.</p>","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":" ","pages":"1-21"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35254357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}