首页 > 最新文献

Biomedical materials (Bristol, England)最新文献

英文 中文
Biomimetic and soft lab-on-a-chip platform based on enzymatic-crosslinked silk fibroin hydrogel for 3D cell co-culture. 基于酶交联丝纤维素水凝胶的仿生软芯片实验室平台,用于三维细胞共培养。
Pub Date : 2024-10-24 DOI: 10.1088/1748-605X/ad8829
Mariana R Carvalho, David Caballero, Subhas C Kundu, Rui L Reis, Joaquim M Oliveira

Integrating biological material within soft microfluidic systems made of hydrogels offers countless possibilities in biomedical research to overcome the intrinsic limitations of traditional microfluidics based on solid, non-biodegradable, and non-biocompatible materials. Hydrogel-based microfluidic technologies have the potential to transformin vitrocell/tissue culture and modeling. However, most hydrogel-based microfluidic platforms are associated with device deformation, poor structural definition, reduced stability/reproducibility due to swelling, and a limited range in rigidity, which threatens their applicability. Herein, we describe a new methodological approach for developing a soft cell-laden microfluidic device based on enzymatically-crosslinked silk fibroin (SF) hydrogels. Its unique mechano-chemical properties and high structural fidelity, make this platform especially suited forin vitrodisease modelling, as demonstrated by reproducing the native dynamic 3D microenvironment of colorectal cancer and its response to chemotherapeutics in a simplistic way. Results show that from all the tested concentrations, 14 wt% enzymatically-crosslinked SF microfluidic platform has outstanding structural stability and the ability to perfuse fluid while displayingin vivo-like biological responses. Overall, this work shows a novel technique to obtain an enzymatically-crosslinked SF microfluidic platform that can be employed for developing soft lab-on-a-chipin vitromodels.

在由水凝胶制成的软性微流体系统中集成生物材料,为生物医学研究提供了无数可能性,从而克服了基于固体、不可生物降解和非生物相容性材料的传统微流体技术的内在局限性。基于水凝胶的微流体技术有可能改变体外细胞/组织培养和模型制作。然而,大多数基于水凝胶的微流体平台都存在装置变形、结构清晰度差、因溶胀而导致稳定性/可重复性降低以及刚性范围有限等问题,这威胁着它们的适用性。在此,我们介绍了一种基于酶交联丝纤维素水凝胶的软细胞载体微流体装置的新方法。其独特的机械化学特性和高结构保真度使这一平台特别适用于体外疾病建模,以简单的方式再现了结直肠癌的原生动态三维微环境及其对化疗药物的反应。结果表明,在所有测试浓度中,14wt% 的酶交联丝纤维素微流体平台具有出色的结构稳定性和流体灌注能力,同时显示出类似活体的生物反应。总之,这项工作展示了一种获得酶交联丝纤维素微流控平台的新技术,该平台可用于开发软芯片实验室体外模型。
{"title":"Biomimetic and soft lab-on-a-chip platform based on enzymatic-crosslinked silk fibroin hydrogel for 3D cell co-culture.","authors":"Mariana R Carvalho, David Caballero, Subhas C Kundu, Rui L Reis, Joaquim M Oliveira","doi":"10.1088/1748-605X/ad8829","DOIUrl":"10.1088/1748-605X/ad8829","url":null,"abstract":"<p><p>Integrating biological material within soft microfluidic systems made of hydrogels offers countless possibilities in biomedical research to overcome the intrinsic limitations of traditional microfluidics based on solid, non-biodegradable, and non-biocompatible materials. Hydrogel-based microfluidic technologies have the potential to transform<i>in vitro</i>cell/tissue culture and modeling. However, most hydrogel-based microfluidic platforms are associated with device deformation, poor structural definition, reduced stability/reproducibility due to swelling, and a limited range in rigidity, which threatens their applicability. Herein, we describe a new methodological approach for developing a soft cell-laden microfluidic device based on enzymatically-crosslinked silk fibroin (SF) hydrogels. Its unique mechano-chemical properties and high structural fidelity, make this platform especially suited for<i>in vitro</i>disease modelling, as demonstrated by reproducing the native dynamic 3D microenvironment of colorectal cancer and its response to chemotherapeutics in a simplistic way. Results show that from all the tested concentrations, 14 wt% enzymatically-crosslinked SF microfluidic platform has outstanding structural stability and the ability to perfuse fluid while displaying<i>in vivo</i>-like biological responses. Overall, this work shows a novel technique to obtain an enzymatically-crosslinked SF microfluidic platform that can be employed for developing soft lab-on-a-chip<i>in vitro</i>models.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silk fibroin microspheres with photothermal nanocarrier encapsulation for anticancer drug delivery. 具有光热纳米载体封装的丝纤维微球用于抗癌药物输送。
Pub Date : 2024-10-24 DOI: 10.1088/1748-605X/ad8850
Changsheng Lu, Runqing Shen, Xiao Wang

Controlled drug release systems are pivotal in optimizing therapeutic outcomes and mitigating side effects in treatment protocols. While traditional delivery vectors such as liposomes, micro/nanoparticles, and microspheres are effective, they often struggle with consistency in drug release rates. This study addresses these issues by integrating stimuli-responsive elements specifically magnetic, thermal, and pH-responsive components into drug delivery systems for precise control. Central to our approach is the use of silk fibroin (SF), chosen for its superior biocompatibility and tunable degradation kinetics. We developed uniform carrier microspheres (CMs) by embedding polydopamine nanoparticles (PDA NPs) into SF microspheres using a custom-designed microfluidic platform. The development process and the application of this platform are detailed, highlighting the precision in control achievable. These CMs showcased enhanced photothermal effects, with the thermal response finely adjustable by altering the PDA NPs concentration, achieving a notable temperature increase of 24.5°C at 7.4 wt% concentration. High drug loading capacity (7.5%) and encapsulation efficiency (91.6%) were achieved, along with a pH-responsive release profile under near-infrared irradiation, paving the way for targeted anticancer drug delivery systems using the model drug doxorubicin hydrochloride. These findings underscore the potential of the developed CMs for external topical application, offering promising prospects for targeted cancer therapy utilizing drug-loaded microspheres.

药物控释系统对优化治疗效果和减轻治疗方案的副作用至关重要。虽然脂质体、微/纳米颗粒和微球等传统给药载体很有效,但它们在药物释放率的一致性方面往往存在问题。为了解决这些问题,本研究将刺激响应元件(特别是磁响应、热响应和 pH 响应元件)整合到给药系统中,以实现精确控制。我们的方法的核心是使用蚕丝纤维素(SF),选择它是因为它具有优异的生物相容性和可调降解动力学。我们利用定制设计的微流体平台,将多巴胺纳米颗粒(PDA NPs)嵌入蚕丝纤维微球(SFMs),从而开发出均匀的载体微球(CMs)。本文详细介绍了这一平台的开发过程和应用,突出强调了可实现的精确控制。这些 CMs 展示了增强的光热效应,其热响应可通过改变 PDA NPs 浓度进行微调,在 7.4 wt% 浓度时,温度显著升高 24.5°C。在近红外照射(NIR)条件下,药物负载能力(7.5%)和包封效率(91.6%)都很高,同时还具有 pH 值响应的释放曲线,这为使用模型药物盐酸多柔比星(DOX-HCl)的靶向抗癌药物递送系统铺平了道路。这些发现强调了所开发的微球具有局部外用的潜力,为利用载药微球进行癌症靶向治疗提供了广阔的前景。
{"title":"Silk fibroin microspheres with photothermal nanocarrier encapsulation for anticancer drug delivery.","authors":"Changsheng Lu, Runqing Shen, Xiao Wang","doi":"10.1088/1748-605X/ad8850","DOIUrl":"10.1088/1748-605X/ad8850","url":null,"abstract":"<p><p>Controlled drug release systems are pivotal in optimizing therapeutic outcomes and mitigating side effects in treatment protocols. While traditional delivery vectors such as liposomes, micro/nanoparticles, and microspheres are effective, they often struggle with consistency in drug release rates. This study addresses these issues by integrating stimuli-responsive elements specifically magnetic, thermal, and pH-responsive components into drug delivery systems for precise control. Central to our approach is the use of silk fibroin (SF), chosen for its superior biocompatibility and tunable degradation kinetics. We developed uniform carrier microspheres (CMs) by embedding polydopamine nanoparticles (PDA NPs) into SF microspheres using a custom-designed microfluidic platform. The development process and the application of this platform are detailed, highlighting the precision in control achievable. These CMs showcased enhanced photothermal effects, with the thermal response finely adjustable by altering the PDA NPs concentration, achieving a notable temperature increase of 24.5<b>°</b>C at 7.4 wt% concentration. High drug loading capacity (7.5%) and encapsulation efficiency (91.6%) were achieved, along with a pH-responsive release profile under near-infrared irradiation, paving the way for targeted anticancer drug delivery systems using the model drug doxorubicin hydrochloride. These findings underscore the potential of the developed CMs for external topical application, offering promising prospects for targeted cancer therapy utilizing drug-loaded microspheres.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myco-nanotechnological approach to synthesize gold nanoparticles using a fungal endophyte,Penicillium oxalicum, and unravelling its antibacterial activity and anti-breast cancer role via metabolic reprogramming. 利用真菌内生菌草青霉合成金纳米粒子的霉菌纳米技术方法,以及通过新陈代谢重编程揭示其抗菌活性和抗乳腺癌作用。
Pub Date : 2024-10-18 DOI: 10.1088/1748-605X/ad7e6a
Priyamvada Gupta, Amrit Chattopadhaya, Vibhav Gautam

The present study has been designed to fabricate fungal endophyte-assisted gold nanoparticles (AuNPs) and elucidate their anti-breast cancer potential. The aqueous extract of fungal endophytePenicillium oxalicum(PO), associated with the medicinal plantAmoora rohituka, was used for the fabrication of AuNPs (POAuNPs). Physico-chemical characterization using Ultraviolet-visible spectroscopy, Fourier transform infrared, X-ray diffraction, Dynamic light scattering, Zeta potential, Transmission electron microscopy and Field emission scanning electron microscopy analysis revealed stable, uniform distribution, spherical shape and crystalline nature of POAuNPs with a size range of 3-46 nm. Furthermore, the POAuNPs potentially inhibited the growth of pathogenic bacterial strainsEscherichia coliandStaphylococcus aureus. The synthesized POAuNPs have shown potential antioxidant effects against 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide and nitric oxide (NO) radical scavenging assays with an EC50value of 8.875 ± 0.082, 52.593 ± 2.506 and 43.717 ± 1.449 µg mL-1, respectively. Moreover, the value of EC50for the total antioxidant capacity of POAuNPs was found to be 23.667 ± 1.361 µg mL-1. The cell viability of human breast cancer cells, MDA-MB-231 and MCF-7, was found to be reduced after treatment with POAuNPs, and IC50values were found to be 19.753 ± 0.640 and 35.035 ± 0.439 µg mL-1, respectively. Further,in vitrobiochemical assays revealed that POAuNPs induces metabolic reprogramming in terms of reduced glucose uptake, increased lactate dehydrogenase (LDH) release and, disruption of oxidative balance through depletion of glutathione levels, increased nitric oxide (NO) and lipid peroxidation levels as a possible pathway to suppress human breast cancer cell proliferation. Apoptosis-specific nuclear modulations induced by POAuNPs in human breast cancer cells were validated through 4',6-diamidino-2-phenylindole (DAPI) nuclear staining. The present investigation thus attempts to show the first ever fabrication of AuNPs using an aqueous extract ofP. oxalicumassociated withA. rohituka. The results revealed unique physico-chemical characteristics of mycogenic AuNPs, and screening their effect against breast cancer via metabolic reprogramming and induction of apoptosis thus adds great significance for cancer therapeutics, suggesting further exploration to develop nanotherapeutic drugs.

本研究旨在制造真菌内生菌辅助金纳米粒子,并阐明其抗乳腺癌的潜力。与药用植物 Amoora rohituka 相关的真菌内生菌青霉的水提取物被用于制造金纳米粒子(POAuNPs)。利用紫外可见光谱、傅立叶变换红外光谱、XRD、DLS、Zeta 电位、TEM 和 FESEM 分析进行的理化表征显示,POAuNPs 具有稳定、分布均匀、球形和结晶的性质,尺寸范围为 3-46 nm。此外,POAuNPs 还能抑制致病菌大肠杆菌和金黄色葡萄球菌的生长。合成的 POAuNPs 对 DPPH、超氧化物和一氧化氮自由基清除试验具有潜在的抗氧化作用,其 EC50 值分别为 8.875±0.082、52.593±2.506 和 43.717±1.449 µg/mL。此外,还发现 POAuNPs 总抗氧化能力的 EC50 值为 23.667±1.361 µg/mL。经 POAuNPs 处理后,人乳腺癌细胞 MDA-MB-231 和 MCF-7 的细胞活力降低,IC50 值分别为 19.753±0.640 和 35.035±0.439 µg/mL。此外,体外生化试验表明,POAuNPs 可通过降低葡萄糖摄取量和增加 LDH 释放来诱导代谢重编程,并通过消耗 GSH 水平、增加一氧化氮水平和脂质过氧化来破坏氧化平衡,这是抑制人类乳腺癌细胞增殖的可能途径。通过 DAPI 核染色验证了 POAuNPs 在人类乳腺癌细胞中诱导的凋亡特异性核调节。因此,本研究首次尝试利用草金莲和 A. rohituka 的水提取物制造金纳米粒子。研究结果揭示了肌源性金纳米粒子的独特物理化学特性,并通过新陈代谢重编程和诱导细胞凋亡筛选出其对乳腺癌的作用,从而为癌症治疗增添了重要意义,建议进一步探索开发纳米治疗药物。
{"title":"Myco-nanotechnological approach to synthesize gold nanoparticles using a fungal endophyte,<i>Penicillium oxalicum</i>, and unravelling its antibacterial activity and anti-breast cancer role via metabolic reprogramming.","authors":"Priyamvada Gupta, Amrit Chattopadhaya, Vibhav Gautam","doi":"10.1088/1748-605X/ad7e6a","DOIUrl":"10.1088/1748-605X/ad7e6a","url":null,"abstract":"<p><p>The present study has been designed to fabricate fungal endophyte-assisted gold nanoparticles (AuNPs) and elucidate their anti-breast cancer potential. The aqueous extract of fungal endophyte<i>Penicillium oxalicum</i>(PO), associated with the medicinal plant<i>Amoora rohituka</i>, was used for the fabrication of AuNPs (POAuNPs). Physico-chemical characterization using Ultraviolet-visible spectroscopy, Fourier transform infrared, X-ray diffraction, Dynamic light scattering, Zeta potential, Transmission electron microscopy and Field emission scanning electron microscopy analysis revealed stable, uniform distribution, spherical shape and crystalline nature of POAuNPs with a size range of 3-46 nm. Furthermore, the POAuNPs potentially inhibited the growth of pathogenic bacterial strains<i>Escherichia coli</i>and<i>Staphylococcus aureus</i>. The synthesized POAuNPs have shown potential antioxidant effects against 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide and nitric oxide (NO) radical scavenging assays with an EC<sub>50</sub>value of 8.875 ± 0.082, 52.593 ± 2.506 and 43.717 ± 1.449 µg mL<sup>-1</sup>, respectively. Moreover, the value of EC<sub>50</sub>for the total antioxidant capacity of POAuNPs was found to be 23.667 ± 1.361 µg mL<sup>-1</sup>. The cell viability of human breast cancer cells, MDA-MB-231 and MCF-7, was found to be reduced after treatment with POAuNPs, and IC<sub>50</sub>values were found to be 19.753 ± 0.640 and 35.035 ± 0.439 µg mL<sup>-1</sup>, respectively. Further,<i>in vitro</i>biochemical assays revealed that POAuNPs induces metabolic reprogramming in terms of reduced glucose uptake, increased lactate dehydrogenase (LDH) release and, disruption of oxidative balance through depletion of glutathione levels, increased nitric oxide (NO) and lipid peroxidation levels as a possible pathway to suppress human breast cancer cell proliferation. Apoptosis-specific nuclear modulations induced by POAuNPs in human breast cancer cells were validated through 4',6-diamidino-2-phenylindole (DAPI) nuclear staining. The present investigation thus attempts to show the first ever fabrication of AuNPs using an aqueous extract of<i>P. oxalicum</i>associated with<i>A. rohituka</i>. The results revealed unique physico-chemical characteristics of mycogenic AuNPs, and screening their effect against breast cancer via metabolic reprogramming and induction of apoptosis thus adds great significance for cancer therapeutics, suggesting further exploration to develop nanotherapeutic drugs.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable bioinspired materials for regenerative medicine: balancing toxicology, environmental impact, and ethical considerations. 用于再生医学的可持续生物启发材料:平衡毒理学、环境影响和伦理考虑。
Pub Date : 2024-10-18 DOI: 10.1088/1748-605X/ad85bb
Ajay Vikram Singh, Vaisali Chandrasekar, Varsha M Prabhu, Jolly Bhadra, Peter Laux, Preeti Bhardwaj, Abdulla A Al-Ansari, Omar M Aboumarzouk, Andreas Luch, Sarada Prasad Dakua

The pursuit of sustainable bioinspired materials for regenerative medicine demands a nuanced balance between scientific advancement, ethical considerations, and environmental consciousness. This abstract encapsulates a comprehensive perspective paper exploring the intricate dynamics of toxicology, environmental impact, and ethical concerns within the realm of bioinspired materials. As the landscape of regenerative medicine evolves, ensuring the biocompatibility and safety of these materials emerges as a pivotal challenge. Our paper delves into the multidimensional aspects of toxicity assessment, encompassing cytotoxicity, genotoxicity, and immunotoxicity analyses. Additionally, we shed light on the complexities of evaluating the environmental impact of bioinspired materials, discussing methodologies such as life cycle assessment, biodegradability testing, and sustainable design approaches. Amid these scientific endeavors, we emphasize the paramount importance of ethical considerations in bioinspired material development, navigating the intricate web of international regulations and ethical frameworks guiding medical materials. Furthermore, our abstract underscores the envisioned future directions and challenges in toxicology techniques, computational modeling, and holistic evaluation, aiming for a comprehensive understanding of the synergistic interplay between sustainable bioinspired materials, toxicity assessment, environmental stewardship, and ethical deliberation.

在再生医学领域追求可持续的生物启发材料,需要在科学创新、道德意识和环境责任之间取得微妙的平衡。本摘要概括了一篇综合视角论文的精髓,探讨了生物启发材料领域中毒理学、环境影响和伦理考虑之间错综复杂的相互作用。随着再生医学领域的不断发展,生物启发材料的生物相容性和安全性评估成为了一个重要的关注点。本文深入探讨了毒性评估的多维方面,包括细胞毒性、遗传毒性和免疫毒性分析。此外,论文还阐明了评估这些材料对环境影响的挑战性任务,阐明了生命周期评估、生物降解性测试和可持续设计方法等方法。在这些科学努力中,生物启发材料开发的伦理层面仍然至关重要。论文探讨了指导医疗材料的国际法规和伦理框架的复杂网络,强调了创新与伦理标准相一致的重要性。此外,摘要还强调了毒理学技术、计算建模和整体评估方面的未来发展方向和挑战,最终对可持续生物启发材料、毒性评估、环境管理和伦理审议之间的协同作用有了全面的了解。
{"title":"Sustainable bioinspired materials for regenerative medicine: balancing toxicology, environmental impact, and ethical considerations.","authors":"Ajay Vikram Singh, Vaisali Chandrasekar, Varsha M Prabhu, Jolly Bhadra, Peter Laux, Preeti Bhardwaj, Abdulla A Al-Ansari, Omar M Aboumarzouk, Andreas Luch, Sarada Prasad Dakua","doi":"10.1088/1748-605X/ad85bb","DOIUrl":"10.1088/1748-605X/ad85bb","url":null,"abstract":"<p><p>The pursuit of sustainable bioinspired materials for regenerative medicine demands a nuanced balance between scientific advancement, ethical considerations, and environmental consciousness. This abstract encapsulates a comprehensive perspective paper exploring the intricate dynamics of toxicology, environmental impact, and ethical concerns within the realm of bioinspired materials. As the landscape of regenerative medicine evolves, ensuring the biocompatibility and safety of these materials emerges as a pivotal challenge. Our paper delves into the multidimensional aspects of toxicity assessment, encompassing cytotoxicity, genotoxicity, and immunotoxicity analyses. Additionally, we shed light on the complexities of evaluating the environmental impact of bioinspired materials, discussing methodologies such as life cycle assessment, biodegradability testing, and sustainable design approaches. Amid these scientific endeavors, we emphasize the paramount importance of ethical considerations in bioinspired material development, navigating the intricate web of international regulations and ethical frameworks guiding medical materials. Furthermore, our abstract underscores the envisioned future directions and challenges in toxicology techniques, computational modeling, and holistic evaluation, aiming for a comprehensive understanding of the synergistic interplay between sustainable bioinspired materials, toxicity assessment, environmental stewardship, and ethical deliberation.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-printed magnesium-doped micro-nano bioactive glass composite scaffolds repair critical bone defects by promoting osteogenesis, angiogenesis, and immunomodulation. 三维打印掺镁微纳米生物活性玻璃复合支架通过促进骨生成、血管生成和免疫调节修复关键性骨缺损。
Pub Date : 2024-10-16 DOI: 10.1088/1748-605X/ad7e8e
Kun Dai, Fujian Zhao, Wen Zhang, Dafu Chen, Fei Hang, Xuenong Zou, Xiaofeng Chen

Magnesium ions play an important immune-regulatory role during bone repair. For this study, we prepared micro-nano bioactive glass (MNBG) containing magnesium, which can release magnesium, silicon, and calcium ions and has a positive impact on osteogenic differentiation and vascular regeneration. In this study, MgMNBG was compounded and combined with poly(lactic-co-glycolic acid (PLGA) and polycaprolactone (PCL) for 3D printing. Afterwards, the physicochemical properties and bone repair performance of the scaffolds were evaluated throughin vitroandin vivoexperiments. We also investigated the effects of MgMNBG on osteogenic differentiation, immune regulation, and vascular regeneration. The results showed that MgMNBG can inhibit inflammation and promote osteogenesis and angiogenesis by regulating macrophages. PLGA/PCL/MgMNBG scaffolds have good osteogenic and angiogenic effects, and the composite scaffolds have excellent bone repair performance and potential application value.

镁离子在骨修复过程中发挥着重要的免疫调节作用。在这项研究中,我们制备了含镁的微纳米生物活性玻璃,它能释放镁、硅和钙离子,对成骨分化和血管再生有积极影响。在这项研究中,MgMNBG 与 PLGA 和 PCL 复合并进行 3D 打印。随后,通过体外和体内实验评估了支架的理化性质和骨修复性能。我们还研究了 MgMNBG 对成骨分化、免疫调节和血管再生的影响。结果表明,MgMNBG 可抑制炎症,并通过调节巨噬细胞促进成骨和血管生成。PLGA/PCL/MgMNBG支架具有良好的成骨和血管生成作用,复合支架具有优异的骨修复性能和潜在的应用价值。
{"title":"3D-printed magnesium-doped micro-nano bioactive glass composite scaffolds repair critical bone defects by promoting osteogenesis, angiogenesis, and immunomodulation.","authors":"Kun Dai, Fujian Zhao, Wen Zhang, Dafu Chen, Fei Hang, Xuenong Zou, Xiaofeng Chen","doi":"10.1088/1748-605X/ad7e8e","DOIUrl":"10.1088/1748-605X/ad7e8e","url":null,"abstract":"<p><p>Magnesium ions play an important immune-regulatory role during bone repair. For this study, we prepared micro-nano bioactive glass (MNBG) containing magnesium, which can release magnesium, silicon, and calcium ions and has a positive impact on osteogenic differentiation and vascular regeneration. In this study, MgMNBG was compounded and combined with poly(lactic-co-glycolic acid (PLGA) and polycaprolactone (PCL) for 3D printing. Afterwards, the physicochemical properties and bone repair performance of the scaffolds were evaluated through<i>in vitro</i>and<i>in vivo</i>experiments. We also investigated the effects of MgMNBG on osteogenic differentiation, immune regulation, and vascular regeneration. The results showed that MgMNBG can inhibit inflammation and promote osteogenesis and angiogenesis by regulating macrophages. PLGA/PCL/MgMNBG scaffolds have good osteogenic and angiogenic effects, and the composite scaffolds have excellent bone repair performance and potential application value.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyaluronic acid modified Cu/Mn-doped metal-organic framework nanocatalyst for chemodynamic therapy. 用于化学动力疗法的透明质酸修饰铜/锰掺杂金属有机框架纳米催化剂。
Pub Date : 2024-10-10 DOI: 10.1088/1748-605X/ad82c7
Xiaohuan Guo, Qi Fang, Nan Leng, Yuan Liu, Bingbing Cai, Yuzhu Zhou, Changchun Wen

Chemodynamic therapy (CDT) is a new method for cancer treatment that produces highly toxic reactive oxygen species (ROS) in the tumor microenvironment to induce cancer cell apoptosis or necrosis. However, the therapeutic effect of CDT is often hindered by intracellular H2O2deficiency and the activity of antioxidants such as glutathione (GSH). In this study, a nano-catalyst HCM was developed using a self-assembled Cu/Mn-doped metal-organic framework, and its surface was modified with hyaluronic acid to construct a tumor-targeting CDT therapeutic agent with improved the efficiency and specificity. Three substances HHTP (2, 3, 6, 7, 10, 11-hexahydroxybenzophenanthrene), Cu2+, and Mn2+were shown to be decomposed and released under weakly acidic conditions in tumor cells. HHTP produces exogenous H2O2in the presence of oxygen to increase the H2O2content in tumors, Cu2+reduces GSH content and generates Cu+in the tumor, and Cu+and Mn2+catalyze H2O2to produce ∙OH in a Fenton-like reaction. Together, these three factors change the tumor microenvironment and improve the efficiency of ROS production. HCM showed selective and efficient cytotoxicity to cancer cells, and could effectively inhibit tumor growthin vivo, indicating a good CDT effect.

化学动力疗法(CDT)是一种新的癌症治疗方法,它能在肿瘤微环境中产生高毒性活性氧(ROS),诱导癌细胞凋亡或坏死。然而,细胞内 H2O2 的缺乏和谷胱甘肽等抗氧化剂的活性往往会阻碍 CDT 的治疗效果。本研究利用自组装铜/锰掺杂金属有机框架开发了一种纳米催化剂 HCM,并用透明质酸修饰其表面,从而构建了一种具有更高的效率和特异性的肿瘤靶向 CDT 治疗剂。研究表明,HHTP(2, 3, 6, 7, 10, 11- hexahydroxybenzophenanthrene)、Cu2+和Mn2+三种物质在弱酸性条件下可在肿瘤细胞中分解释放。HHTP 在有氧的情况下会产生外源 H2O2,从而增加肿瘤中的 H2O2 含量;Cu2+ 会降低谷胱甘肽的含量,并在肿瘤中生成 Cu+;Cu+ 和 Mn2+ 会催化 H2O2,从而在类似芬顿的反应中产生 ∙OH。这三个因素共同改变了肿瘤微环境,提高了 ROS 生成的效率。HCM 对癌细胞具有选择性和高效的细胞毒性,并能有效抑制肿瘤在体内的生长,具有良好的 CDT 效果。
{"title":"Hyaluronic acid modified Cu/Mn-doped metal-organic framework nanocatalyst for chemodynamic therapy.","authors":"Xiaohuan Guo, Qi Fang, Nan Leng, Yuan Liu, Bingbing Cai, Yuzhu Zhou, Changchun Wen","doi":"10.1088/1748-605X/ad82c7","DOIUrl":"10.1088/1748-605X/ad82c7","url":null,"abstract":"<p><p>Chemodynamic therapy (CDT) is a new method for cancer treatment that produces highly toxic reactive oxygen species (ROS) in the tumor microenvironment to induce cancer cell apoptosis or necrosis. However, the therapeutic effect of CDT is often hindered by intracellular H<sub>2</sub>O<sub>2</sub>deficiency and the activity of antioxidants such as glutathione (GSH). In this study, a nano-catalyst HCM was developed using a self-assembled Cu/Mn-doped metal-organic framework, and its surface was modified with hyaluronic acid to construct a tumor-targeting CDT therapeutic agent with improved the efficiency and specificity. Three substances HHTP (2, 3, 6, 7, 10, 11-hexahydroxybenzophenanthrene), Cu<sup>2+</sup>, and Mn<sup>2+</sup>were shown to be decomposed and released under weakly acidic conditions in tumor cells. HHTP produces exogenous H<sub>2</sub>O<sub>2</sub>in the presence of oxygen to increase the H<sub>2</sub>O<sub>2</sub>content in tumors, Cu<sup>2+</sup>reduces GSH content and generates Cu<sup>+</sup>in the tumor, and Cu<sup>+</sup>and Mn<sup>2+</sup>catalyze H<sub>2</sub>O<sub>2</sub>to produce ∙OH in a Fenton-like reaction. Together, these three factors change the tumor microenvironment and improve the efficiency of ROS production. HCM showed selective and efficient cytotoxicity to cancer cells, and could effectively inhibit tumor growth<i>in vivo</i>, indicating a good CDT effect.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalisation of the yield stress measurement in three point bending collapse tests: application to 3D printed flax fibre reinforced hydrogels. 三点弯曲塌陷试验中屈服应力测量的通用化:应用于三维打印亚麻纤维增强水凝胶。
Pub Date : 2024-10-10 DOI: 10.1088/1748-605X/ad82c6
Charles de Kergariou, Hind Saidani Scott, Adam W Perriman, Graham J Day, James Armstrong, Fabrizio Scarpa

This paper describes the extrusion pressure's effect on composite hydrogel inks' filaments subjected to three point bending collapse tests. The composite considered in this work consists of an alginate-poloxamer hydrogel reinforced with flax fibres. Increased extrusion pressure resulted in more asymmetrical filaments between the support pillars. Furthermore, the material and printing conditions used in the present study led to the production of curved specimens. These two characteristics implicitly limit the validity of the yield stress equations commonly used in open literature. Therefore, a new system of equations was derived for the case of asymmetrical and curved filaments. A post-processing method was also created to obtain the properties required to evaluate this yield stress. This new equation was then implemented to identify the strength of failed hydrogels without flax fibre reinforcement. A statistical analysis showed this new equation's significance, which yielded statistically higher (i.e. 1.15 times larger) strength values compared to the numbers obtained with the open literature equations. At larger extrusion pressures, longer periods were needed for the material to converge towards its final shape. Larger extrusion pressure values led to lower yield stresses within the composite hydrogel filament: a 5 kPa increase in extrusion pressure lowered the yield stress by 19%. In comparison, a 15 kPa increase led to a 29% decrease in the yield stress. Overall this study provides guidelines to standardize three point bending collapse tests and analysis comparison between different materials.

本文介绍了挤出压力对复合水凝胶油墨丝在塌陷试验中的影响。这项工作中考虑的复合材料由亚麻纤维增强的藻酸盐-聚羟氨醇水凝胶组成。挤出压力的增加导致支撑柱之间的丝更不对称。此外,本研究中使用的材料和印刷条件也导致了弯曲试样的产生。这两个特点隐含地限制了公开文献中常用的屈服应力方程的有效性。因此,我们针对不对称和弯曲丝材的情况推导出了一套新的方程。此外,还创建了一种后处理方法,以获得评估屈服应力所需的属性。然后,利用这一新方程来确定无亚麻纤维增强的失效水凝胶的强度。统计分析表明了这一新方程的重要性,与公开文献方程得出的数值相比,新方程得出的强度值在统计上更高(即高出 1.15 倍)。挤压压力越大,材料向最终形状收敛所需的时间就越长。挤压压力值越大,复合水凝胶丝的屈服应力就越低:挤压压力每增加 5 千帕,屈服应力就降低 19%。相比之下,增加 15 千帕可使屈服应力降低 29%。总之,这项研究为标准化塌陷测试和不同材料之间的分析比较提供了指导。
{"title":"Generalisation of the yield stress measurement in three point bending collapse tests: application to 3D printed flax fibre reinforced hydrogels.","authors":"Charles de Kergariou, Hind Saidani Scott, Adam W Perriman, Graham J Day, James Armstrong, Fabrizio Scarpa","doi":"10.1088/1748-605X/ad82c6","DOIUrl":"10.1088/1748-605X/ad82c6","url":null,"abstract":"<p><p>This paper describes the extrusion pressure's effect on composite hydrogel inks' filaments subjected to three point bending collapse tests. The composite considered in this work consists of an alginate-poloxamer hydrogel reinforced with flax fibres. Increased extrusion pressure resulted in more asymmetrical filaments between the support pillars. Furthermore, the material and printing conditions used in the present study led to the production of curved specimens. These two characteristics implicitly limit the validity of the yield stress equations commonly used in open literature. Therefore, a new system of equations was derived for the case of asymmetrical and curved filaments. A post-processing method was also created to obtain the properties required to evaluate this yield stress. This new equation was then implemented to identify the strength of failed hydrogels without flax fibre reinforcement. A statistical analysis showed this new equation's significance, which yielded statistically higher (i.e. 1.15 times larger) strength values compared to the numbers obtained with the open literature equations. At larger extrusion pressures, longer periods were needed for the material to converge towards its final shape. Larger extrusion pressure values led to lower yield stresses within the composite hydrogel filament: a 5 kPa increase in extrusion pressure lowered the yield stress by 19%. In comparison, a 15 kPa increase led to a 29% decrease in the yield stress. Overall this study provides guidelines to standardize three point bending collapse tests and analysis comparison between different materials.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MPS blockade with liposomes controls pharmacokinetics of nanoparticles in a size-dependent manner. 用脂质体阻断 MPS 可控制纳米粒子的药代动力学,其方式取决于纳米粒子的大小。
Pub Date : 2024-10-09 DOI: 10.1088/1748-605X/ad7e6f
Iaroslav B Belyaev, Aziz B Mirkasymov, Vladislav I Rodionov, Julia S Babkova, Petr I Nikitin, Sergey M Deyev, Ivan V Zelepukin

Pharmacokinetics of nanomedicines can be improved by a temporal blockade of mononuclear phagocyte system (MPS) through the interaction with other biocompatible nanoparticles. Liposomes are excellent candidates as blocking agents, but the efficiency of the MPS blockade can greatly depend on the liposome properties. Here, we investigated the dependence of the efficiency of the induced MPS blockadein vitroandin vivoon the size of blocking liposomes in the 100-500 nm range. Saturation of RAW 264.7 macrophage uptake was observed for phosphatidylcholine/cholesterol liposomes larger than 200 nmin vitro. In mice, liposomes of all sizes exhibited a blocking effect on liver macrophages, prolonging the circulation of subsequently administrated magnetic nanoparticles in the bloodstream, reducing their liver uptake, and increasing accumulation in the spleen and lungs. Importantly, these effects became more pronounced with the increase of liposome size. Optimization of the size of the blocking liposomes holds the potential to enhance drug delivery and improve cancer therapy.

纳米药物的药代动力学可以通过与其他生物相容性纳米颗粒的相互作用,对单核吞噬细胞系统(MPS)进行暂时性阻断而得到改善。脂质体是阻断剂的最佳候选者,但 MPS 的阻断效率在很大程度上取决于脂质体的特性。在此,我们研究了体外和体内诱导的 MPS 阻断效率与 100-500 nm 范围内阻断脂质体大小的关系。在体外,大于 200 nm 的磷脂酰胆碱/胆固醇脂质体对 RAW 264.7 巨噬细胞的摄取达到饱和。在小鼠体内,各种尺寸的脂质体都对肝脏巨噬细胞有阻滞作用,延长了随后给药的磁性纳米粒子在血液中的循环时间,减少了肝脏对它们的摄取,增加了在脾脏和肺部的积聚。重要的是,随着脂质体体积的增大,这些效果会变得更加明显。优化阻断脂质体的大小有望增强药物输送和改善癌症治疗。
{"title":"MPS blockade with liposomes controls pharmacokinetics of nanoparticles in a size-dependent manner.","authors":"Iaroslav B Belyaev, Aziz B Mirkasymov, Vladislav I Rodionov, Julia S Babkova, Petr I Nikitin, Sergey M Deyev, Ivan V Zelepukin","doi":"10.1088/1748-605X/ad7e6f","DOIUrl":"10.1088/1748-605X/ad7e6f","url":null,"abstract":"<p><p>Pharmacokinetics of nanomedicines can be improved by a temporal blockade of mononuclear phagocyte system (MPS) through the interaction with other biocompatible nanoparticles. Liposomes are excellent candidates as blocking agents, but the efficiency of the MPS blockade can greatly depend on the liposome properties. Here, we investigated the dependence of the efficiency of the induced MPS blockade<i>in vitro</i>and<i>in vivo</i>on the size of blocking liposomes in the 100-500 nm range. Saturation of RAW 264.7 macrophage uptake was observed for phosphatidylcholine/cholesterol liposomes larger than 200 nm<i>in vitro</i>. In mice, liposomes of all sizes exhibited a blocking effect on liver macrophages, prolonging the circulation of subsequently administrated magnetic nanoparticles in the bloodstream, reducing their liver uptake, and increasing accumulation in the spleen and lungs. Importantly, these effects became more pronounced with the increase of liposome size. Optimization of the size of the blocking liposomes holds the potential to enhance drug delivery and improve cancer therapy.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermo-responsible PNIPAM-grafted polystyrene microspheres for mesenchymal stem cells culture and detachment. 用于间充质干细胞培养和分离的热响应 PNIPAM 接枝聚苯乙烯微球。
Pub Date : 2024-10-09 DOI: 10.1088/1748-605X/ad7e6e
Yuanyuan Zhao, Zida Cao, Jingwei Zhang, Jia Tian, Haibo Cai

The preparation of cells is a critical step in cell therapy. To ensure the effectiveness of cells used for clinical treatments, it is essential to harvest adherent cells from the culture media in a way that preserves their high viability and full functionality. In this study, we developed temperature-responsive poly(N-isopropylacrylamide) (PNIPAM)-grafted polystyrene (PS) microspheres using reversible addition-fragmentation chain transfer polymerization. These microspheres allow for the non-destructive harvesting of cultured cells through temperature changes. The composition and physicochemical properties of the PNIPAM-grafted PS microspheres were confirmed using infrared spectroscopy, elemental analysis, dynamic light scattering, and thermogravimetric analysis.In vitroexperiments demonstrated that these microspheres exhibit excellent biocompatibility, supporting the adhesion and proliferation of various cells. Moreover, the microspheres showed good temperature responsiveness in thermosensitive detachment experiments with GFP-HepG2cells and umbilical cord mesenchymal stem cells (UC-MSCs). Additionally, through orthogonal experiments, we identified a cell detachment aid mixture that significantly improved the dispersibility of cells detached from the microspheres, enhancing the efficiency of thermosensitive cell detachment by approximately 40%. The harvested UC-MSCs retained their capacity for re-proliferation and trilineage differentiation. Consequently, the temperature-responsive microspheres developed in this study, combined with the cell detachment aid mixtures, hold great potential for large-scale culture and harvesting of therapeutic cells in clinical applications.

细胞制备是细胞疗法的关键步骤。为确保用于临床治疗的细胞的有效性,从培养基中收获附着细胞时必须保持其高度活力和完整功能。在这项研究中,我们利用可逆加成-碎片链转移聚合技术开发了温度响应型 PNIPAM 接枝聚苯乙烯微球。这些微球可通过温度变化无损地收获培养细胞。红外光谱、元素分析、动态光散射和热重分析证实了 PNIPAM 接枝聚苯乙烯微球的成分和理化性质。体外实验表明,这些微球具有良好的生物相容性,支持各种细胞的粘附和增殖。此外,在与 GFP-HepG2 细胞和脐带间充质干细胞(UC-MSCs)的热敏分离实验中,微球显示出良好的温度响应性。此外,通过正交实验,我们确定了一种细胞分离辅助混合物,它能显著改善从微球分离出来的细胞的分散性,将热敏细胞分离的效率提高了约 40%。收获的 UC 间充质干细胞保留了其再增殖和三系分化的能力。因此,本研究开发的温度响应微球与细胞分离辅助混合物相结合,在临床应用中大规模培养和收获治疗细胞方面具有巨大潜力。
{"title":"Thermo-responsible PNIPAM-grafted polystyrene microspheres for mesenchymal stem cells culture and detachment.","authors":"Yuanyuan Zhao, Zida Cao, Jingwei Zhang, Jia Tian, Haibo Cai","doi":"10.1088/1748-605X/ad7e6e","DOIUrl":"10.1088/1748-605X/ad7e6e","url":null,"abstract":"<p><p>The preparation of cells is a critical step in cell therapy. To ensure the effectiveness of cells used for clinical treatments, it is essential to harvest adherent cells from the culture media in a way that preserves their high viability and full functionality. In this study, we developed temperature-responsive poly(N-isopropylacrylamide) (PNIPAM)-grafted polystyrene (PS) microspheres using reversible addition-fragmentation chain transfer polymerization. These microspheres allow for the non-destructive harvesting of cultured cells through temperature changes. The composition and physicochemical properties of the PNIPAM-grafted PS microspheres were confirmed using infrared spectroscopy, elemental analysis, dynamic light scattering, and thermogravimetric analysis.<i>In vitro</i>experiments demonstrated that these microspheres exhibit excellent biocompatibility, supporting the adhesion and proliferation of various cells. Moreover, the microspheres showed good temperature responsiveness in thermosensitive detachment experiments with GFP-HepG<sub>2</sub>cells and umbilical cord mesenchymal stem cells (UC-MSCs). Additionally, through orthogonal experiments, we identified a cell detachment aid mixture that significantly improved the dispersibility of cells detached from the microspheres, enhancing the efficiency of thermosensitive cell detachment by approximately 40%. The harvested UC-MSCs retained their capacity for re-proliferation and trilineage differentiation. Consequently, the temperature-responsive microspheres developed in this study, combined with the cell detachment aid mixtures, hold great potential for large-scale culture and harvesting of therapeutic cells in clinical applications.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polylysine in biomedical applications: from composites to breakthroughs. 生物医学应用中的聚赖氨酸:从复合材料到突破。
Pub Date : 2024-10-09 DOI: 10.1088/1748-605X/ad8541
Deepak Arun Annamalai, Erina Hilaj, Manisha Singh, Manjunath C, Ahmed Raheem Rayshan, Manish Sharma, Pankaj Nainwal, Ambati Vijay Kumar, Alka N Choudhary

Polylysine-based composites have emerged as promising materials in biomedical applications due to their versatility, biocompatibility, and tunable properties. In drug delivery, polylysine-based composites furnish a novel platform for targeted and controlled release of therapeutic agents. Their high loading capacity and capability to encapsulate diverse drugs make them ideal candidates for addressing challenges such as drug stability and controlled release kinetics. Additionally, their biocompatibility ensures minimal cytotoxicity, vital for biomedical applications. They also hold substantial potential in tissue engineering by providing a scaffold with tunable mechanical characteristics and surface properties, and can support cell adhesion, proliferation, and differentiation. Furthermore, their bioactive nature facilitates cellular interactions, promoting tissue regeneration and integration. Wound healing is another area where polylysine-based composites show promise. Their antimicrobial properties help prevent infections, while their ability to foster cell migration and proliferation accelerates the wound healing procedure. Incorporation of growth factors or other bioactive molecules further enhances their therapeutic effectiveness. In biosensing applications, they serve as robust substrates for immobilizing biomolecules and sensing elements. Their high surface area-to-volume ratio and excellent biocompatibility improve sensor sensitivity and selectivity, enabling accurate detection of biomarkers or analytes in biological samples. Polylysine-based composites offer potential as contrast agents in bioimaging, aiding in diagnosis and monitoring of diseases. Overall, polylysine-based composites represent a versatile platform with diverse applications in biomedical research and clinical practice, holding great promise for addressing various healthcare challenges. .

聚赖氨酸基复合材料因其多功能性、生物兼容性和可调特性,已成为生物医学应用中颇具前景的材料。在给药方面,聚赖氨酸基复合材料为治疗药物的定向和控制释放提供了一个新平台。聚赖氨酸基复合材料的高负载能力和封装多种药物的能力使其成为解决药物稳定性和控释动力学等难题的理想候选材料。此外,它们的生物相容性确保了最小的细胞毒性,这对生物医学应用至关重要。它们还能提供具有可调机械特性和表面性质的支架,支持细胞粘附、增殖和分化,因此在组织工程方面具有巨大的潜力。此外,它们的生物活性还有利于细胞相互作用,促进组织再生和整合。伤口愈合是聚赖氨酸基复合材料大有可为的另一个领域。聚赖氨酸的抗菌特性有助于防止感染,而其促进细胞迁移和增殖的能力则可加速伤口愈合过程。加入生长因子或其他生物活性分子可进一步提高其治疗效果。在生物传感应用中,它们是固定生物分子和传感元件的坚固基底。它们的高表面积体积比和出色的生物相容性提高了传感器的灵敏度和选择性,从而能够准确检测生物样本中的生物标记物或分析物。总之,聚赖氨酸基复合材料是一种多功能平台,在生物医学研究和临床实践中有多种应用,在应对各种医疗挑战方面大有可为。
{"title":"Polylysine in biomedical applications: from composites to breakthroughs.","authors":"Deepak Arun Annamalai, Erina Hilaj, Manisha Singh, Manjunath C, Ahmed Raheem Rayshan, Manish Sharma, Pankaj Nainwal, Ambati Vijay Kumar, Alka N Choudhary","doi":"10.1088/1748-605X/ad8541","DOIUrl":"https://doi.org/10.1088/1748-605X/ad8541","url":null,"abstract":"<p><p>Polylysine-based composites have emerged as promising materials in biomedical applications due to their versatility, biocompatibility, and tunable properties. In drug delivery, polylysine-based composites furnish a novel platform for targeted and controlled release of therapeutic agents. Their high loading capacity and capability to encapsulate diverse drugs make them ideal candidates for addressing challenges such as drug stability and controlled release kinetics. Additionally, their biocompatibility ensures minimal cytotoxicity, vital for biomedical applications. They also hold substantial potential in tissue engineering by providing a scaffold with tunable mechanical characteristics and surface properties, and can support cell adhesion, proliferation, and differentiation. Furthermore, their bioactive nature facilitates cellular interactions, promoting tissue regeneration and integration. Wound healing is another area where polylysine-based composites show promise. Their antimicrobial properties help prevent infections, while their ability to foster cell migration and proliferation accelerates the wound healing procedure. Incorporation of growth factors or other bioactive molecules further enhances their therapeutic effectiveness. In biosensing applications, they serve as robust substrates for immobilizing biomolecules and sensing elements. Their high surface area-to-volume ratio and excellent biocompatibility improve sensor sensitivity and selectivity, enabling accurate detection of biomarkers or analytes in biological samples. Polylysine-based composites offer potential as contrast agents in bioimaging, aiding in diagnosis and monitoring of diseases.&#xD;Overall, polylysine-based composites represent a versatile platform with diverse applications in biomedical research and clinical practice, holding great promise for addressing various healthcare challenges.&#xD.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomedical materials (Bristol, England)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1