Pub Date : 2023-01-28DOI: 10.3390/biophysica3010004
P. Xie
Kinesin motor protein, which is composed of two catalytic domains connected together by a long coiled-coil stalk via two flexible neck linkers (NLs), can step processively on a microtubule towards the plus end by hydrolyzing adenosine triphosphate (ATP) molecules. To understand what the role is that the NL plays in the processive stepping, the dynamics of the kinesin motor are studied theoretically here by considering the mutation or deletion of an N-terminal cover strand that contributes to the docking of the NL in kinesin-1, the extension of the NL in kinesin-1, the mutation of the NL in kinesin-1, the swapping of the NL of kinesin-2 with that of kinesin-1, the joining of the stalk and neck of Ncd that moves towards the minus end of MT to the catalytic domain of kinesin-1, the replacement of catalytic domain of kinesin-1 with that of Ncd, and so on. The theoretical results give a consistent and quantitative explanation of various available experimental results about the effects of these mutations on motor dynamics and, moreover, provide predicted results. Additionally, the processive motility of kinesin-6 MKLP2 without NL docking is also explained. The available experimental data about the effect of NL mutations on the dynamics of the bi-directional kinesin-5 Cin8 are also explained. The studies are critically implicative to the mechanism of the stepping of the kinesin motor.
{"title":"Effect of the Neck Linker on Processive Stepping of Kinesin Motor","authors":"P. Xie","doi":"10.3390/biophysica3010004","DOIUrl":"https://doi.org/10.3390/biophysica3010004","url":null,"abstract":"Kinesin motor protein, which is composed of two catalytic domains connected together by a long coiled-coil stalk via two flexible neck linkers (NLs), can step processively on a microtubule towards the plus end by hydrolyzing adenosine triphosphate (ATP) molecules. To understand what the role is that the NL plays in the processive stepping, the dynamics of the kinesin motor are studied theoretically here by considering the mutation or deletion of an N-terminal cover strand that contributes to the docking of the NL in kinesin-1, the extension of the NL in kinesin-1, the mutation of the NL in kinesin-1, the swapping of the NL of kinesin-2 with that of kinesin-1, the joining of the stalk and neck of Ncd that moves towards the minus end of MT to the catalytic domain of kinesin-1, the replacement of catalytic domain of kinesin-1 with that of Ncd, and so on. The theoretical results give a consistent and quantitative explanation of various available experimental results about the effects of these mutations on motor dynamics and, moreover, provide predicted results. Additionally, the processive motility of kinesin-6 MKLP2 without NL docking is also explained. The available experimental data about the effect of NL mutations on the dynamics of the bi-directional kinesin-5 Cin8 are also explained. The studies are critically implicative to the mechanism of the stepping of the kinesin motor.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49061738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-20DOI: 10.3390/biophysica3010003
J. Sabatier, Farzan Amini
The purpose of this article is to study gloomy eyelet (GE) inside the cell nucleus by using models of warp drive hydro (WDH), swinging spring, Rankine, co-moving reference frame, and Poincare. The beat wave frequency (ω) of blood pressure on the vessel and the swinging spring frequency (Ω) of DNA coincide together on the Rankine model. In this case, it leads to appearing as a sudden pressure drop and an accelerated cavity in the medium of the warp drive hydro (WDH) model. In transient conditions, the vortex flow inside WDH can generate gloomy eyelet (GE), and the tiny distortion of nano space–time revealed inside the gloomy eyelet (GE) inside DNA and the tiny distortion of nano space–time revealed inside the co-moving reference frame (CMRF) model of the gloomy eyelet (GE). The space–time distortion can act as a hidden potential for the cell nucleus and some behaviors of gloomy eyelet can be traced by the frequency responses of human body organs. The interactions between two adjacent different mediums such as the normal cells and abnormal cells, earth’s gravitational effects can lead to changes in the distortion of space–time inside the cell nucleus. Transient bonds between particles can be expected to appear in the gloomy eyelet inside DNA. Identifying the range of changes in the frequency responses and the transient bonds inside the cell nucleus can be introduced as one of the health indicators.
{"title":"Emergence of Gloomy Eyelet inside DNA","authors":"J. Sabatier, Farzan Amini","doi":"10.3390/biophysica3010003","DOIUrl":"https://doi.org/10.3390/biophysica3010003","url":null,"abstract":"The purpose of this article is to study gloomy eyelet (GE) inside the cell nucleus by using models of warp drive hydro (WDH), swinging spring, Rankine, co-moving reference frame, and Poincare. The beat wave frequency (ω) of blood pressure on the vessel and the swinging spring frequency (Ω) of DNA coincide together on the Rankine model. In this case, it leads to appearing as a sudden pressure drop and an accelerated cavity in the medium of the warp drive hydro (WDH) model. In transient conditions, the vortex flow inside WDH can generate gloomy eyelet (GE), and the tiny distortion of nano space–time revealed inside the gloomy eyelet (GE) inside DNA and the tiny distortion of nano space–time revealed inside the co-moving reference frame (CMRF) model of the gloomy eyelet (GE). The space–time distortion can act as a hidden potential for the cell nucleus and some behaviors of gloomy eyelet can be traced by the frequency responses of human body organs. The interactions between two adjacent different mediums such as the normal cells and abnormal cells, earth’s gravitational effects can lead to changes in the distortion of space–time inside the cell nucleus. Transient bonds between particles can be expected to appear in the gloomy eyelet inside DNA. Identifying the range of changes in the frequency responses and the transient bonds inside the cell nucleus can be introduced as one of the health indicators.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46574633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-20DOI: 10.3390/biophysica3010002
O. Abián, S. Vega, A. Velázquez‐Campoy
Calorimetry is an old experimental technique (first instrument developed in S. XVIII), but it is broadly used and still provides key information for understanding biological processes at the molecular level, particularly, cooperative phenomena in protein interactions. Here, we review and highlight some key aspects of biological calorimetry. Several biological systems will be described in which calorimetry was instrumental for modeling the behavior of the protein and obtaining further biological insight.
{"title":"Biological Calorimetry: Old Friend, New Insights","authors":"O. Abián, S. Vega, A. Velázquez‐Campoy","doi":"10.3390/biophysica3010002","DOIUrl":"https://doi.org/10.3390/biophysica3010002","url":null,"abstract":"Calorimetry is an old experimental technique (first instrument developed in S. XVIII), but it is broadly used and still provides key information for understanding biological processes at the molecular level, particularly, cooperative phenomena in protein interactions. Here, we review and highlight some key aspects of biological calorimetry. Several biological systems will be described in which calorimetry was instrumental for modeling the behavior of the protein and obtaining further biological insight.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48912877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-18DOI: 10.3390/biophysica3010001
Carlos Pintado-Grima, O. Bárcenas, Andrea Bartolomé-Nafría, Marc Fornt-Suñé, Valentín Iglesias, J. García-Pardo, S. Ventura
The presence of insoluble protein deposits in tissues and organs is a hallmark of many human pathologies. In addition, the formation of protein aggregates is considered one of the main bottlenecks to producing protein-based therapeutics. Thus, there is a high interest in rationalizing and predicting protein aggregation. For almost two decades, our laboratory has been working to provide solutions for these needs. We have traditionally combined the core tenets of both bioinformatics and wet lab biophysics to develop algorithms and databases to study protein aggregation and its functional implications. Here, we review the computational toolbox developed by our lab, including programs for identifying sequential or structural aggregation-prone regions at the individual protein and proteome levels, engineering protein solubility, finding and evaluating prion-like domains, studying disorder-to-order protein transitions, or categorizing non-conventional amyloid regions of polar nature, among others. In perspective, the succession of the tools we describe illustrates how our understanding of the protein aggregation phenomenon has evolved over the last fifteen years.
{"title":"A Review of Fifteen Years Developing Computational Tools to Study Protein Aggregation","authors":"Carlos Pintado-Grima, O. Bárcenas, Andrea Bartolomé-Nafría, Marc Fornt-Suñé, Valentín Iglesias, J. García-Pardo, S. Ventura","doi":"10.3390/biophysica3010001","DOIUrl":"https://doi.org/10.3390/biophysica3010001","url":null,"abstract":"The presence of insoluble protein deposits in tissues and organs is a hallmark of many human pathologies. In addition, the formation of protein aggregates is considered one of the main bottlenecks to producing protein-based therapeutics. Thus, there is a high interest in rationalizing and predicting protein aggregation. For almost two decades, our laboratory has been working to provide solutions for these needs. We have traditionally combined the core tenets of both bioinformatics and wet lab biophysics to develop algorithms and databases to study protein aggregation and its functional implications. Here, we review the computational toolbox developed by our lab, including programs for identifying sequential or structural aggregation-prone regions at the individual protein and proteome levels, engineering protein solubility, finding and evaluating prion-like domains, studying disorder-to-order protein transitions, or categorizing non-conventional amyloid regions of polar nature, among others. In perspective, the succession of the tools we describe illustrates how our understanding of the protein aggregation phenomenon has evolved over the last fifteen years.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43372259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-09DOI: 10.3390/biophysica2040047
R. Bocanegra, María Ortiz-Rodríguez, Ismael Plaza Garcia-Abadillo, Carlos R-Pulido, B. Ibarra
Over the last few decades, in vitro single-molecule manipulation techniques have enabled the use of force and displacement as controlled variables in biochemistry. Measuring the effect of mechanical force on the real-time kinetics of a biological process gives us access to the rates, equilibrium constants and free-energy landscapes of the mechanical steps of the reaction; this information is not accessible by ensemble assays. Optical tweezers are the current method of choice in single-molecule manipulation due to their versatility, high force and spatial and temporal resolutions. The aim of this review is to describe the contributions of our lab in the single-molecule manipulation field. We present here several optical tweezers assays refined in our laboratory to probe the dynamics and mechano-chemical properties of biological molecular motors and synthetic molecular devices at the single-molecule level.
{"title":"Optical Tweezers to Force Information out of Biological and Synthetic Systems One Molecule at a Time","authors":"R. Bocanegra, María Ortiz-Rodríguez, Ismael Plaza Garcia-Abadillo, Carlos R-Pulido, B. Ibarra","doi":"10.3390/biophysica2040047","DOIUrl":"https://doi.org/10.3390/biophysica2040047","url":null,"abstract":"Over the last few decades, in vitro single-molecule manipulation techniques have enabled the use of force and displacement as controlled variables in biochemistry. Measuring the effect of mechanical force on the real-time kinetics of a biological process gives us access to the rates, equilibrium constants and free-energy landscapes of the mechanical steps of the reaction; this information is not accessible by ensemble assays. Optical tweezers are the current method of choice in single-molecule manipulation due to their versatility, high force and spatial and temporal resolutions. The aim of this review is to describe the contributions of our lab in the single-molecule manipulation field. We present here several optical tweezers assays refined in our laboratory to probe the dynamics and mechano-chemical properties of biological molecular motors and synthetic molecular devices at the single-molecule level.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49626607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.3390/biophysica2040038
Ming Chih Tsai, Kathrin Spendier
The RBL-2H3 mast cell immunological synapse dynamics is often simulated with reaction-diffusion and Fokker-Planck equations. The equations focus on how the cell synapse captures receptors following an immune response, where the receptor capture at the immunological site appears to be a delayed process. This article investigates the physical nature and mathematics behind such time-dependent delays. Using signal processing methods, convolution and cross-correlation-type delay capture simulations give a -squared range of 22 to 60, in good agreement with experimental results. The cell polarization event is offered as a possible explanation for these capture delays, where polarizing rates measure how fast the cell polarization event occurs. In the case of RBL-2H3 mast cells, polarization appears to be associated with cytoskeletal rearrangement; thus, both cytoskeletal and diffusional components are considered. From these simulations, a maximum polarizing rate ranging from 0.0057 s-2 to 0.031 s-2 is obtained. These results indicate that RBL-2H3 mast cells possess both temporal and spatial memory, and cell polarization is possibly linked to a Turing-type pattern formation.
{"title":"RBL-2H3 Mast Cell Receptor Dynamics in the Immunological Synapse.","authors":"Ming Chih Tsai, Kathrin Spendier","doi":"10.3390/biophysica2040038","DOIUrl":"https://doi.org/10.3390/biophysica2040038","url":null,"abstract":"<p><p>The RBL-2H3 mast cell immunological synapse dynamics is often simulated with reaction-diffusion and Fokker-Planck equations. The equations focus on how the cell synapse captures receptors following an immune response, where the receptor capture at the immunological site appears to be a delayed process. This article investigates the physical nature and mathematics behind such time-dependent delays. Using signal processing methods, convolution and cross-correlation-type delay capture simulations give a <math><mtext>χ</mtext></math>-squared range of 22 to 60, in good agreement with experimental results. The cell polarization event is offered as a possible explanation for these capture delays, where polarizing rates measure how fast the cell polarization event occurs. In the case of RBL-2H3 mast cells, polarization appears to be associated with cytoskeletal rearrangement; thus, both cytoskeletal and diffusional components are considered. From these simulations, a maximum polarizing rate ranging from 0.0057 s<sup>-2</sup> to 0.031 s<sup>-2</sup> is obtained. These results indicate that RBL-2H3 mast cells possess both temporal and spatial memory, and cell polarization is possibly linked to a Turing-type pattern formation.</p>","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":"2 4","pages":"428-439"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470655/pdf/nihms-1926444.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10504506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.3390/biophysica2040046
Isabela C. Fortunato, R. Sunyer
Directed cell migration is an essential building block of life, present when an embryo develops, a dendritic cell migrates toward a lymphatic vessel, or a fibrotic organ fails to restore its normal parenchyma. Directed cell migration is often guided by spatial gradients in a physicochemical property of the cell microenvironment, such as a gradient in chemical factors dissolved in the medium or a gradient in the mechanical properties of the substrate. Single cells and tissues sense these gradients, establish a back-to-front polarity, and coordinate the migration machinery accordingly. Central to these steps we find physical forces. In some cases, these forces are integrated into the gradient sensing mechanism. Other times, they transmit information through cells and tissues to coordinate a collective response. At any time, they participate in the cellular migratory system. In this review, we explore the role of physical forces in gradient sensing, polarization, and coordinating movement from single cells to multicellular collectives. We use the framework proposed by the molecular clutch model and explore to what extent asymmetries in the different elements of the clutch can lead to directional migration.
{"title":"The Forces behind Directed Cell Migration","authors":"Isabela C. Fortunato, R. Sunyer","doi":"10.3390/biophysica2040046","DOIUrl":"https://doi.org/10.3390/biophysica2040046","url":null,"abstract":"Directed cell migration is an essential building block of life, present when an embryo develops, a dendritic cell migrates toward a lymphatic vessel, or a fibrotic organ fails to restore its normal parenchyma. Directed cell migration is often guided by spatial gradients in a physicochemical property of the cell microenvironment, such as a gradient in chemical factors dissolved in the medium or a gradient in the mechanical properties of the substrate. Single cells and tissues sense these gradients, establish a back-to-front polarity, and coordinate the migration machinery accordingly. Central to these steps we find physical forces. In some cases, these forces are integrated into the gradient sensing mechanism. Other times, they transmit information through cells and tissues to coordinate a collective response. At any time, they participate in the cellular migratory system. In this review, we explore the role of physical forces in gradient sensing, polarization, and coordinating movement from single cells to multicellular collectives. We use the framework proposed by the molecular clutch model and explore to what extent asymmetries in the different elements of the clutch can lead to directional migration.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43608063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-29DOI: 10.3390/biophysica2040045
V. Faramarzi, M. Heidari, Nik Humaidi bin Nik Zulkarnine, M. T. Hwang
Rapid, accurate, and label-free detection of biomolecules and chemical substances remains a challenge in healthcare. Optical biosensors have been considered as biomedical diagnostic tools required in numerous areas including the detection of viruses, food monitoring, diagnosing pollutants in the environment, global personalized medicine, and molecular diagnostics. In particular, the broadly emerging and promising technique of surface plasmon resonance has established to provide real-time and label-free detection when used in biosensing applications in a highly sensitive, specific, and cost-effective manner with small footprint platform. In this study we propose a novel plasmonic biosensor based on biaxially crumpled graphene structures, wherein plasmon resonances in graphene are utilized to detect variations in the refractive index of the sample medium. Shifts in the resonance wavelength of the plasmon modes for a given change in the RI of the surrounding analyte are calculated by investigating the optical response of crumpled graphene structures on different substrates using theoretical computations based on the finite element method combined with the semiclassical Drude model. The results reveal a high sensitivity of 4990 nm/RIU, corresponding to a large figure-of-merit of 20 for biaxially crumpled graphene structures on polystyrene substrates. We demonstrate that biaxially crumpled graphene exhibits superior sensing performance compared with a uniaxial structure. According to the results, crumpled graphene structures on a titanium oxide substrate can improve the sensor sensitivity by avoiding the damping effects of polydimethylsiloxane substrates. The enhanced sensitivity and broadband mechanical tunability of the biaxially crumpled graphene render it a promising platform for biosensing applications.
{"title":"Plasmonic Biosensors Based on Deformed Graphene","authors":"V. Faramarzi, M. Heidari, Nik Humaidi bin Nik Zulkarnine, M. T. Hwang","doi":"10.3390/biophysica2040045","DOIUrl":"https://doi.org/10.3390/biophysica2040045","url":null,"abstract":"Rapid, accurate, and label-free detection of biomolecules and chemical substances remains a challenge in healthcare. Optical biosensors have been considered as biomedical diagnostic tools required in numerous areas including the detection of viruses, food monitoring, diagnosing pollutants in the environment, global personalized medicine, and molecular diagnostics. In particular, the broadly emerging and promising technique of surface plasmon resonance has established to provide real-time and label-free detection when used in biosensing applications in a highly sensitive, specific, and cost-effective manner with small footprint platform. In this study we propose a novel plasmonic biosensor based on biaxially crumpled graphene structures, wherein plasmon resonances in graphene are utilized to detect variations in the refractive index of the sample medium. Shifts in the resonance wavelength of the plasmon modes for a given change in the RI of the surrounding analyte are calculated by investigating the optical response of crumpled graphene structures on different substrates using theoretical computations based on the finite element method combined with the semiclassical Drude model. The results reveal a high sensitivity of 4990 nm/RIU, corresponding to a large figure-of-merit of 20 for biaxially crumpled graphene structures on polystyrene substrates. We demonstrate that biaxially crumpled graphene exhibits superior sensing performance compared with a uniaxial structure. According to the results, crumpled graphene structures on a titanium oxide substrate can improve the sensor sensitivity by avoiding the damping effects of polydimethylsiloxane substrates. The enhanced sensitivity and broadband mechanical tunability of the biaxially crumpled graphene render it a promising platform for biosensing applications.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47368193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-24DOI: 10.3390/biophysica2040044
Xiaolin Zhou, Wan Wei
Based on the coarse-grained model, we used molecular dynamics methods to calculate and simulate a semiflexible long ring–semiflexible short ring blended polymer system confined in a hard sphere. We systematically studied the distribution and motion characteristics of the long ring chain. The results show that when the short ring is short enough (Lshort < 20), the long ring (Llong = 50) is separated from the blend system and then distributed against the inner wall. As the length of the short ring increases (Lshort ≥ 20), the long ring can no longer be separated from the blending system. Moreover, we found that the long ring demonstrates a random direction of adherent walking behavior on the inner surface of the hard sphere. The velocity of the long ring decreases with the increase in the short ring length Lshort. Specifically for Lshort ≥ 20, the system does not undergo phase separation and the speed of the long ring decreases sharply along with the long ring distributed inside the confined bulk. This is related to the inner wall layer moving faster than the inside bulk of the restricted system. Our simulation results can help us to understand the distribution of macromolecules in biological systems in confined systems, including the restricted chromosome partitioning distribution and packing structure of circular DNA molecules.
{"title":"Adherent Moving of Polymers in Spherical Confined Binary Semiflexible Ring Polymer Mixtures","authors":"Xiaolin Zhou, Wan Wei","doi":"10.3390/biophysica2040044","DOIUrl":"https://doi.org/10.3390/biophysica2040044","url":null,"abstract":"Based on the coarse-grained model, we used molecular dynamics methods to calculate and simulate a semiflexible long ring–semiflexible short ring blended polymer system confined in a hard sphere. We systematically studied the distribution and motion characteristics of the long ring chain. The results show that when the short ring is short enough (Lshort < 20), the long ring (Llong = 50) is separated from the blend system and then distributed against the inner wall. As the length of the short ring increases (Lshort ≥ 20), the long ring can no longer be separated from the blending system. Moreover, we found that the long ring demonstrates a random direction of adherent walking behavior on the inner surface of the hard sphere. The velocity of the long ring decreases with the increase in the short ring length Lshort. Specifically for Lshort ≥ 20, the system does not undergo phase separation and the speed of the long ring decreases sharply along with the long ring distributed inside the confined bulk. This is related to the inner wall layer moving faster than the inside bulk of the restricted system. Our simulation results can help us to understand the distribution of macromolecules in biological systems in confined systems, including the restricted chromosome partitioning distribution and packing structure of circular DNA molecules.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42811168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-21DOI: 10.3390/biophysica2040043
David Polanco, Alejandra Carrancho, P. Gracia, N. Cremades
Protein amyloid aggregation has been associated with more than 50 human disorders, including the most common neurodegenerative disorders Alzheimer’s and Parkinson’s disease. Interfering with this process is considered as a promising therapeutic strategy for these diseases. Our understanding of the process of amyloid aggregation and its role in disease has typically been limited by the use of ensemble-based biochemical and biophysical techniques, owing to the intrinsic heterogeneity and complexity of the process. Single-molecule techniques, and particularly diffusion-based single-molecule fluorescence approaches, have been instrumental to obtain meaningful information on the dynamic nature of the fibril-forming process, as well as the characterisation of the heterogeneity of the amyloid aggregates and the understanding of the molecular basis of inhibition of a number of molecules with therapeutic interest. In this article, we reviewed some recent contributions on the characterisation of the amyloid aggregation process, the identification of distinct structural groups of aggregates in homotypic or heterotypic aggregation, as well as on the study of the interaction of amyloid aggregates with other molecules, allowing the estimation of the binding sites, affinities, and avidities as examples of the type of relevant information we can obtain about these processes using these techniques.
{"title":"Characterisation of Amyloid Aggregation and Inhibition by Diffusion-Based Single-Molecule Fluorescence Techniques","authors":"David Polanco, Alejandra Carrancho, P. Gracia, N. Cremades","doi":"10.3390/biophysica2040043","DOIUrl":"https://doi.org/10.3390/biophysica2040043","url":null,"abstract":"Protein amyloid aggregation has been associated with more than 50 human disorders, including the most common neurodegenerative disorders Alzheimer’s and Parkinson’s disease. Interfering with this process is considered as a promising therapeutic strategy for these diseases. Our understanding of the process of amyloid aggregation and its role in disease has typically been limited by the use of ensemble-based biochemical and biophysical techniques, owing to the intrinsic heterogeneity and complexity of the process. Single-molecule techniques, and particularly diffusion-based single-molecule fluorescence approaches, have been instrumental to obtain meaningful information on the dynamic nature of the fibril-forming process, as well as the characterisation of the heterogeneity of the amyloid aggregates and the understanding of the molecular basis of inhibition of a number of molecules with therapeutic interest. In this article, we reviewed some recent contributions on the characterisation of the amyloid aggregation process, the identification of distinct structural groups of aggregates in homotypic or heterotypic aggregation, as well as on the study of the interaction of amyloid aggregates with other molecules, allowing the estimation of the binding sites, affinities, and avidities as examples of the type of relevant information we can obtain about these processes using these techniques.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46495558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}