The central role of RNAs in health and disease calls for robust tools to visualize RNAs in living systems through fluorescence microscopy. Live zebrafish embryos are a popular system to investigate multicellular complexity as disease models. However, RNA visualization approaches in whole organisms are notably underdeveloped. Here, we establish our RNA tagging and imaging platform Riboglow-FLIM for complex cellular imaging applications by systematically evaluating FLIM capabilities. We use adherent mammalian cells as models for RNA visualization. Additional complexity of analyzing RNAs in whole mammalian animals is achieved by injecting these cells into a zebrafish embryo system for cell-by-cell analysis in this model of multicellularity. We first evaluate all variable elements of Riboglow-FLIM quantitatively before assessing optimal use in whole animals. In this way, we demonstrate that a model noncoding RNA can be detected robustly and quantitatively inside live zebrafish embryos using a far-red Cy5-based variant of the Riboglow platform. We can clearly resolve cell-to-cell heterogeneity of different RNA populations by this methodology, promising applicability in diverse fields.
During zygotic mitosis in many species, forces generated at the cell cortex are required for the separation and migration of paternally provided centrosomes, pronuclear migration, segregation of genetic material, and cell division. Furthermore, in some species, force-generating interactions between spindle microtubules and the cortex position the mitotic spindle asymmetrically within the zygote, an essential step in asymmetric cell division. Understanding the mechanical and molecular mechanisms of microtubule-dependent force generation and therefore asymmetric cell division requires identification of individual cortical force-generating units in vivo. There is no current method for identifying individual force-generating units with high spatiotemporal resolution. Here, we present a method to determine both the location and the relative number of microtubule-dependent cortical force-generating units using single-molecule imaging of fluorescently labeled dynein. Dynein behavior is modeled to classify trajectories of cortically bound dynein according to whether they are interacting with a microtubule. The categorization strategy recapitulates well-known force asymmetries in C. elegans zygote mitosis. To evaluate the robustness of categorization, we used RNAi to deplete the tubulin subunit TBA-2. As predicted, this treatment reduced the number of trajectories categorized as engaged with a microtubule. Our technique will be a valuable tool to define the molecular mechanisms of dynein cortical force generation and its regulation as well as other instances wherein anchored motors interact with biopolymers (e.g., actin, tubulin, DNA).
Quantifying biomolecular dynamics has become a major task of single-molecule fluorescence spectroscopy methods. In single-molecule Förster resonance energy transfer (smFRET), kinetic information is extracted from the stream of photons emitted by attached donor and acceptor fluorophores. Here, we describe a time-resolved version of burst variance analysis that can quantify kinetic rates at microsecond to millisecond timescales in smFRET experiments of diffusing molecules. Bursts are partitioned into segments with a fixed number of photons. The FRET variance is computed from these segments and compared with the variance expected from shot noise. By systematically varying the segment size, dynamics at different timescales can be captured. We provide a theoretical framework to extract kinetic rates from the decay of the FRET variance with increasing segment size. Compared to other methods such as filtered fluorescence correlation spectroscopy, recurrence analysis of single particles, and two-dimensional lifetime correlation spectroscopy, fewer photons are needed to obtain reliable timescale estimates, which reduces the required measurement time.
Calcium ions (Ca2+) enter mitochondria via the mitochondrial Ca2+ uniporter, driven by electrical and concentration gradients. In this regard, transgenic mouse models, such as calsequestrin knockout (CSQ-KO) mice, with higher mitochondrial Ca2+ concentrations ([Ca2+]mito), should display higher cytosolic Ca2+ concentrations ([Ca2+]cyto). However, repeated measurements of [Ca2+]cyto in quiescent CSQ-KO fibers never showed a difference between WT and CSQ-KO. Starting from the consideration that fluorescent Ca2+ probes (Fura-2 and Indo-1) measure averaged global cytosolic concentrations, in this report we explored the role of local Ca2+ concentrations (i.e., Ca2+ microdomains) in regulating mitochondrial Ca2+ in resting cells, using a multicompartmental diffusional Ca2+ model. Progressively including the inward and outward fluxes of sarcoplasmic reticulum (SR), extracellular space, and mitochondria, we explored their contribution to the local Ca2+ distribution within the cell. The model predicts Ca2+ concentration gradients with hot spots or microdomains even at rest, minor but similar to those of evoked Ca2+ release. Due to their specific localization close to Ca2+ release units (CRU), mitochondria could take up Ca2+ directly from high-concentration microdomains, thus sensibly raising [Ca2+]mito, despite minor, possibly undetectable, modifications of the average [Ca2+]cyto.
Viruses have a profound influence on all forms of life, motivating the development of rapid and minimally invasive methods for virus detection. In this study, we present a novel methodology that enables quantitative measurement of the interaction between individual biotic nanoparticles and antibodies in solution. Our approach employs a label-free, full-field common-path interferometric technique to detect and track biotic nanoparticles and their interactions with antibodies. It is based on the interferometric detection of light scattered by viruses in aqueous samples for the detection of individual viruses. We employ single-particle tracking analysis to characterize the size and properties of the detected nanoparticles, and to monitor the changes in their diffusive mobility resulting from interactions. To validate the sensitivity of our detection approach, we distinguish between particles having identical diffusion coefficients but different scattering signals, using DNA-loaded and DNA-devoid capsids of the Escherichia coli T5 virus phage. In addition, we have been able to monitor, in real time, the interaction between the bacteriophage T5 and purified antibodies targeting its major capsid protein pb8, as well as between the phage SPP1 and nonpurified anti-SPP1 antibodies present in rabbit serum. Interestingly, these virus-antibody interactions are observed within minutes. Finally, by estimating the number of viral particles interacting with antibodies at different concentrations, we successfully quantify the dissociation constant of the virus-antibody reaction using single-particle tracking analysis.
The HIV-1 protease is one of several common key targets of combination drug therapies for human immunodeficiency virus infection and acquired immunodeficiency syndrome. During the progression of the disease, some individual patients acquire drug resistance due to mutational hotspots on the viral proteins targeted by combination drug therapies. It has recently been discovered that drug-resistant mutations accumulate on the "flap region" of the HIV-1 protease, which is a critical dynamic region involved in nonspecific polypeptide binding during invasion and infection of the host cell. In this study, we utilize machine learning-assisted comparative molecular dynamics, conducted at single amino acid site resolution, to investigate the dynamic changes that occur during functional dimerization and drug binding of wild-type and common drug-resistant versions of the main protease. We also use a multiagent machine learning model to identify conserved dynamics of the HIV-1 main protease that are preserved across simian and feline protease orthologs. We find that a key conserved functional site in the flap region, a solvent-exposed isoleucine (Ile50) that controls flap dynamics is functionally targeted by drug resistance mutations, leading to amplified molecular dynamics affecting the functional ability of the flap region to hold the drugs. We conclude that better long-term patient outcomes may be achieved by designing drugs that target protease regions that are less dependent upon single sites with large functional binding effects.
Fluorescence lifetime imaging microscopy (FLIM) is a popular modality to create additional contrast in fluorescence images. By carefully analyzing pixel-based nanosecond lifetime patterns, FLIM allows studying complex molecular populations. At the single-molecule or single-particle level, however, image series often suffer from low signal intensities per pixel, rendering it difficult to quantitatively disentangle different lifetime species, such as during Förster resonance energy transfer (FRET) analysis in the presence of a significant donor-only fraction. In this article we investigate whether an object localization strategy and the phasor approach to FLIM have beneficial effects when carrying out FRET analyses of single particles. Using simulations, we first showed that an average of ∼300 photons, spread over the different pixels encompassing single fluorescing particles and without background, is enough to determine a correct phasor signature (SD < 5% for a 4-ns lifetime). For immobilized single- or double-labeled dsDNA molecules, we next validated that particle-based phasor-FLIM-FRET readily allows estimating fluorescence lifetimes and FRET from single molecules. Thirdly, we applied particle-based phasor-FLIM-FRET to investigate protein-protein interactions in subdiffraction HIV-1 viral particles. To do this, we first quantitatively compared the fluorescence brightness, lifetime, and photostability of different popular fluorescent protein-based FRET probes when genetically fused to the HIV-1 integrase enzyme in viral particles, and conclude that eGFP, mTurquoise2, and mScarlet perform best. Finally, for viral particles coexpressing FRET-donor/acceptor-labeled IN, we determined the absolute FRET efficiency of IN oligomers. Available in a convenient open-source graphical user interface, we believe that particle-based phasor-FLIM-FRET is a promising tool to provide detailed insights in samples suffering from low overall signal intensities.
Single-molecule localization microscopy achieves nanometer spatial resolution by localizing single fluorophores separated in space and time. A major challenge of single-molecule localization microscopy is the long acquisition time, leading to low throughput, as well as to a poor temporal resolution that limits its use to visualize the dynamics of cellular structures in live cells. Another challenge is photobleaching, which reduces information density over time and limits throughput and the available observation time in live-cell applications. To address both challenges, we combine two concepts: first, we integrate the neural network DeepSTORM to predict super-resolution images from high-density imaging data, which increases acquisition speed. Second, we employ a direct protein label, HaloTag7, in combination with exchangeable ligands (xHTLs), for fluorescence labeling. This labeling method bypasses photobleaching by providing a constant signal over time and is compatible with live-cell imaging. The combination of both a neural network and a weak-affinity protein label reduced the acquisition time up to ∼25-fold. Furthermore, we demonstrate live-cell imaging with increased temporal resolution, and capture the dynamics of the endoplasmic reticulum over extended time without signal loss.