Pub Date : 2022-03-09DOI: 10.1016/j.bpr.2021.100042
Anne R Shim, Kai Huang, Vadim Backman, Igal Szleifer
With a growing understanding of the chromatin structure, many efforts remain focused on bridging the gap between what is suggested by population-averaged data and what is visualized for single cells. A popular approach to traversing these scales is to fit a polymer model to Hi-C contact data. However, Hi-C is an average of millions to billions of cells, and each cell may not contain all population-averaged contacts. Therefore, we employ a novel approach of summing individual chromosome trajectories-determined by our Self-Returning Random Walk model-to create populations of cells. We allow single cells to consist of disparate structures and reproduce a variety of experimentally relevant contact maps. We show that the amount of shared topology between cells, and their mechanism of formation, changes the population-averaged structure. Therefore, we present a modeling technique that, with few constraints and little oversight, can be used to understand which single-cell chromatin structures underlie population-averaged behavior.
{"title":"Chromatin as self-returning walks: From population to single cell and back.","authors":"Anne R Shim, Kai Huang, Vadim Backman, Igal Szleifer","doi":"10.1016/j.bpr.2021.100042","DOIUrl":"https://doi.org/10.1016/j.bpr.2021.100042","url":null,"abstract":"<p><p>With a growing understanding of the chromatin structure, many efforts remain focused on bridging the gap between what is suggested by population-averaged data and what is visualized for single cells. A popular approach to traversing these scales is to fit a polymer model to Hi-C contact data. However, Hi-C is an average of millions to billions of cells, and each cell may not contain all population-averaged contacts. Therefore, we employ a novel approach of summing individual chromosome trajectories-determined by our Self-Returning Random Walk model-to create populations of cells. We allow single cells to consist of disparate structures and reproduce a variety of experimentally relevant contact maps. We show that the amount of shared topology between cells, and their mechanism of formation, changes the population-averaged structure. Therefore, we present a modeling technique that, with few constraints and little oversight, can be used to understand which single-cell chromatin structures underlie population-averaged behavior.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"2 1","pages":"100042"},"PeriodicalIF":0.0,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/24/c6/main.PMC9680733.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9252291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-08DOI: 10.1016/j.bpr.2021.100023
Pablo Carravilla, Anindita Dasgupta, Gaukhar Zhurgenbayeva, Dmytro I Danylchuk, Andrey S Klymchenko, Erdinc Sezgin, Christian Eggeling
Understanding the plasma membrane nanoscale organization and dynamics in living cells requires microscopy techniques with high spatial and temporal resolution that permit for long acquisition times and allow for the quantification of membrane biophysical properties, such as lipid ordering. Among the most popular super-resolution techniques, stimulated emission depletion (STED) microscopy offers one of the highest temporal resolutions, ultimately defined by the scanning speed. However, monitoring live processes using STED microscopy is significantly limited by photobleaching, which recently has been circumvented by exchangeable membrane dyes that only temporarily reside in the membrane. Here, we show that NR4A, a polarity-sensitive exchangeable plasma membrane probe based on Nile red, permits the super-resolved quantification of membrane biophysical parameters in real time with high temporal and spatial resolution as well as long acquisition times. The potential of this polarity-sensitive exchangeable dye is showcased by live-cell real-time three-dimensional STED recordings of bleb formation and lipid exchange during membrane fusion as well as by STED-fluorescence correlation spectroscopy experiments for the simultaneous quantification of membrane dynamics and lipid packing that correlate in model and live-cell membranes.
要了解活细胞中质膜的纳米级组织和动态,需要具有高空间和时间分辨率的显微镜技术,这样才能进行长时间的采集,并对膜的生物物理特性(如脂质有序化)进行量化。在最流行的超分辨率技术中,受激发射耗尽(STED)显微镜是时间分辨率最高的显微镜之一,最终取决于扫描速度。然而,使用 STED 显微镜监测活体过程受到光漂白的严重限制,而可交换的膜染料只能暂时驻留在膜中,这就避免了光漂白的问题。在这里,我们展示了一种基于尼罗河红的极性敏感可交换质膜探针 NR4A,它能以较高的时空分辨率和较长的采集时间实时对膜生物物理参数进行超分辨量化。通过活细胞实时三维 STED 记录膜融合过程中泡的形成和脂质交换,以及 STED-荧光相关光谱实验同时量化模型膜和活细胞膜中相关的膜动力学和脂质堆积,展示了这种极性敏感可交换染料的潜力。
{"title":"Long-term STED imaging of membrane packing and dynamics by exchangeable polarity-sensitive dyes.","authors":"Pablo Carravilla, Anindita Dasgupta, Gaukhar Zhurgenbayeva, Dmytro I Danylchuk, Andrey S Klymchenko, Erdinc Sezgin, Christian Eggeling","doi":"10.1016/j.bpr.2021.100023","DOIUrl":"10.1016/j.bpr.2021.100023","url":null,"abstract":"<p><p>Understanding the plasma membrane nanoscale organization and dynamics in living cells requires microscopy techniques with high spatial and temporal resolution that permit for long acquisition times and allow for the quantification of membrane biophysical properties, such as lipid ordering. Among the most popular super-resolution techniques, stimulated emission depletion (STED) microscopy offers one of the highest temporal resolutions, ultimately defined by the scanning speed. However, monitoring live processes using STED microscopy is significantly limited by photobleaching, which recently has been circumvented by exchangeable membrane dyes that only temporarily reside in the membrane. Here, we show that NR4A, a polarity-sensitive exchangeable plasma membrane probe based on Nile red, permits the super-resolved quantification of membrane biophysical parameters in real time with high temporal and spatial resolution as well as long acquisition times. The potential of this polarity-sensitive exchangeable dye is showcased by live-cell real-time three-dimensional STED recordings of bleb formation and lipid exchange during membrane fusion as well as by STED-fluorescence correlation spectroscopy experiments for the simultaneous quantification of membrane dynamics and lipid packing that correlate in model and live-cell membranes.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"1 2","pages":"None"},"PeriodicalIF":0.0,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39837845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-08DOI: 10.1016/j.bpr.2021.100034
Pablo Campomanes, Janak Prabhu, Valeria Zoni, Stefano Vanni
Neutral lipids (NLs) are an abundant class of cellular lipids. They are characterized by the total lack of charged chemical groups in their structure, and, as a consequence, they play a major role in intracellular lipid storage. NLs that carry a glycerol backbone, such as triacylglycerols (TGs) and diacylglycerols (DGs), are also involved in the biosynthetic pathway of cellular phospholipids, and they have recently been the subject of numerous structural investigations by means of atomistic molecular dynamics simulations. However, conflicting results on the physicochemical behavior of NLs were observed depending on the nature of the atomistic force field used. Here, we show that current phospholipid-derived CHARMM36 parameters for DGs and TGs cannot adequately reproduce interfacial properties of these NLs because of excessive hydrophilicity at the glycerol-ester region. By following a CHARMM36-consistent parameterization strategy, we develop improved parameters for both TGs and DGs that are compatible with both cutoff-based and particle mesh Ewald schemes for the treatment of Lennard-Jones interactions. We show that our improved parameters can reproduce interfacial properties of NLs and their behavior in more complex lipid assemblies. We discuss the implications of our findings in the context of intracellular lipid storage and NLs' cellular activity.
{"title":"Recharging your fats: CHARMM36 parameters for neutral lipids triacylglycerol and diacylglycerol.","authors":"Pablo Campomanes, Janak Prabhu, Valeria Zoni, Stefano Vanni","doi":"10.1016/j.bpr.2021.100034","DOIUrl":"https://doi.org/10.1016/j.bpr.2021.100034","url":null,"abstract":"<p><p>Neutral lipids (NLs) are an abundant class of cellular lipids. They are characterized by the total lack of charged chemical groups in their structure, and, as a consequence, they play a major role in intracellular lipid storage. NLs that carry a glycerol backbone, such as triacylglycerols (TGs) and diacylglycerols (DGs), are also involved in the biosynthetic pathway of cellular phospholipids, and they have recently been the subject of numerous structural investigations by means of atomistic molecular dynamics simulations. However, conflicting results on the physicochemical behavior of NLs were observed depending on the nature of the atomistic force field used. Here, we show that current phospholipid-derived CHARMM36 parameters for DGs and TGs cannot adequately reproduce interfacial properties of these NLs because of excessive hydrophilicity at the glycerol-ester region. By following a CHARMM36-consistent parameterization strategy, we develop improved parameters for both TGs and DGs that are compatible with both cutoff-based and particle mesh Ewald schemes for the treatment of Lennard-Jones interactions. We show that our improved parameters can reproduce interfacial properties of NLs and their behavior in more complex lipid assemblies. We discuss the implications of our findings in the context of intracellular lipid storage and NLs' cellular activity.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"1 2","pages":"None"},"PeriodicalIF":0.0,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39837842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-08DOI: 10.1016/j.bpr.2021.100025
Eli Slenders, Eleonora Perego, Mauro Buttafava, Giorgio Tortarolo, Enrico Conca, Sabrina Zappone, Agnieszka Pierzynska-Mach, Federica Villa, Enrica Maria Petrini, Andrea Barberis, Alberto Tosi, Giuseppe Vicidomini
The single-photon timing and sensitivity performance and the imaging ability of asynchronous-readout single-photon avalanche diode (SPAD) array detectors have opened up enormous perspectives in fluorescence (lifetime) laser scanning microscopy (FLSM), such as super-resolution image scanning microscopy and high-information content fluorescence fluctuation spectroscopy. However, the strengths of these FLSM techniques depend on the many different characteristics of the detector, such as dark noise, photon-detection efficiency, after-pulsing probability, and optical cross talk, whose overall optimization is typically a trade-off between these characteristics. To mitigate this trade-off, we present, to our knowledge, a novel SPAD array detector with an active cooling system that substantially reduces the dark noise without significantly deteriorating any other detector characteristics. In particular, we show that lowering the temperature of the sensor to -15°C significantly improves the signal/noise ratio due to a 10-fold decrease in the dark count rate compared with room temperature. As a result, for imaging, the laser power can be decreased by more than a factor of three, which is particularly beneficial for live-cell super-resolution imaging, as demonstrated in fixed and living cells expressing green-fluorescent-protein-tagged proteins. For fluorescence fluctuation spectroscopy, together with the benefit of the reduced laser power, we show that cooling the detector is necessary to remove artifacts in the correlation function, such as spurious negative correlations observed in the hot elements of the detector, i.e., elements for which dark noise is substantially higher than the median value. Overall, this detector represents a further step toward the integration of SPAD array detectors in any FLSM system.
{"title":"Cooled SPAD array detector for low light-dose fluorescence laser scanning microscopy.","authors":"Eli Slenders, Eleonora Perego, Mauro Buttafava, Giorgio Tortarolo, Enrico Conca, Sabrina Zappone, Agnieszka Pierzynska-Mach, Federica Villa, Enrica Maria Petrini, Andrea Barberis, Alberto Tosi, Giuseppe Vicidomini","doi":"10.1016/j.bpr.2021.100025","DOIUrl":"https://doi.org/10.1016/j.bpr.2021.100025","url":null,"abstract":"<p><p>The single-photon timing and sensitivity performance and the imaging ability of asynchronous-readout single-photon avalanche diode (SPAD) array detectors have opened up enormous perspectives in fluorescence (lifetime) laser scanning microscopy (FLSM), such as super-resolution image scanning microscopy and high-information content fluorescence fluctuation spectroscopy. However, the strengths of these FLSM techniques depend on the many different characteristics of the detector, such as dark noise, photon-detection efficiency, after-pulsing probability, and optical cross talk, whose overall optimization is typically a trade-off between these characteristics. To mitigate this trade-off, we present, to our knowledge, a novel SPAD array detector with an active cooling system that substantially reduces the dark noise without significantly deteriorating any other detector characteristics. In particular, we show that lowering the temperature of the sensor to -15°C significantly improves the signal/noise ratio due to a 10-fold decrease in the dark count rate compared with room temperature. As a result, for imaging, the laser power can be decreased by more than a factor of three, which is particularly beneficial for live-cell super-resolution imaging, as demonstrated in fixed and living cells expressing green-fluorescent-protein-tagged proteins. For fluorescence fluctuation spectroscopy, together with the benefit of the reduced laser power, we show that cooling the detector is necessary to remove artifacts in the correlation function, such as spurious negative correlations observed in the hot elements of the detector, i.e., elements for which dark noise is substantially higher than the median value. Overall, this detector represents a further step toward the integration of SPAD array detectors in any FLSM system.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"1 2","pages":"None"},"PeriodicalIF":0.0,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/bd/main.PMC8651514.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39837843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The study of electrical activity in single cells and local circuits of excitable cells, such as neurons, requires an easy-to-use, high-throughput methodology that allows for the measurement of membrane potential. Investigating the electrical properties in specific subcompartments of neurons, or in a specific type of neurons, introduces additional complexity. An optical voltage-imaging technique that allows high spatial and temporal resolution could be an ideal solution. However, most valid voltage-imaging techniques are nonspecific. Those that are more site-directed require a lot of preliminary work and specific adaptations, among other drawbacks. Here, we explore a new method for membrane voltage imaging, based on Förster resonance energy transfer between fluorescent polystyrene (FPS) beads and dipicrylamine. Not only has it been shown that fluorescence intensity correlates with membrane potential, but more importantly, the membrane potential from individual particles can be detected. Among other advantages, FPS beads can be synthesized with surface functional groups and can be targeted to specific proteins by conjugation of recognition molecules. Therefore, in the presence of dipicrylamine, FPS beads represent single-particle detectors of membrane potential that can be localized to specific membrane compartments. This new and easily accessible platform for targeted optical voltage imaging can further elucidate the mechanisms of neuronal electrical activity.
{"title":"Optical probing of local membrane potential with fluorescent polystyrene beads.","authors":"Zehavit Shapira, Nurit Degani-Katzav, Shimon Yudovich, Asaf Grupi, Shimon Weiss","doi":"10.1016/j.bpr.2021.100030","DOIUrl":"https://doi.org/10.1016/j.bpr.2021.100030","url":null,"abstract":"<p><p>The study of electrical activity in single cells and local circuits of excitable cells, such as neurons, requires an easy-to-use, high-throughput methodology that allows for the measurement of membrane potential. Investigating the electrical properties in specific subcompartments of neurons, or in a specific type of neurons, introduces additional complexity. An optical voltage-imaging technique that allows high spatial and temporal resolution could be an ideal solution. However, most valid voltage-imaging techniques are nonspecific. Those that are more site-directed require a lot of preliminary work and specific adaptations, among other drawbacks. Here, we explore a new method for membrane voltage imaging, based on Förster resonance energy transfer between fluorescent polystyrene (FPS) beads and dipicrylamine. Not only has it been shown that fluorescence intensity correlates with membrane potential, but more importantly, the membrane potential from individual particles can be detected. Among other advantages, FPS beads can be synthesized with surface functional groups and can be targeted to specific proteins by conjugation of recognition molecules. Therefore, in the presence of dipicrylamine, FPS beads represent single-particle detectors of membrane potential that can be localized to specific membrane compartments. This new and easily accessible platform for targeted optical voltage imaging can further elucidate the mechanisms of neuronal electrical activity.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"1 2","pages":"None"},"PeriodicalIF":0.0,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ab/d9/main.PMC8651512.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39749775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-08DOI: 10.1016/j.bpr.2021.100017
Noa Gilat, Dena Fridman, Hila Sharim, Sapir Margalit, Natalie R Gassman, Yael Michaeli, Yuval Ebenstein
Mapping DNA damage and its repair has immense potential in understanding environmental exposures, their genotoxicity, and their impact on human health. Monitoring changes in genomic stability also aids in the diagnosis of numerous DNA-related diseases, such as cancer, and assists in monitoring their progression and prognosis. Developments in recent years have enabled unprecedented sensitivity in quantifying the global DNA damage dose in cells via fluorescence-based analysis down to the single-molecule level. However, genome-wide maps of DNA damage distribution are challenging to produce. Here, we describe the localization of DNA damage and repair loci by repair-assisted damage detection sequencing (RADD-seq). Based on the enrichment of damage lesions coupled with a pull-down assay and followed by next-generation sequencing, this method is easy to perform and can produce compelling results with minimal coverage. RADD-seq enables the localization of both DNA damage and repair sites for a wide range of single-strand damage types. Using this technique, we created a genome-wide map of the oxidation DNA damage lesion 8-oxo-7,8-dihydroguanine before and after repair. Oxidation lesions were heterogeneously distributed along the human genome, with less damage occurring in tight chromatin regions. Furthermore, we showed repair is prioritized for highly expressed, essential genes and in open chromatin regions. RADD-seq sheds light on cellular repair mechanisms and is capable of identifying genomic hotspots prone to mutation.
{"title":"From single-molecule to genome-wide mapping of DNA lesions: repair-assisted damage detection sequencing.","authors":"Noa Gilat, Dena Fridman, Hila Sharim, Sapir Margalit, Natalie R Gassman, Yael Michaeli, Yuval Ebenstein","doi":"10.1016/j.bpr.2021.100017","DOIUrl":"https://doi.org/10.1016/j.bpr.2021.100017","url":null,"abstract":"<p><p>Mapping DNA damage and its repair has immense potential in understanding environmental exposures, their genotoxicity, and their impact on human health. Monitoring changes in genomic stability also aids in the diagnosis of numerous DNA-related diseases, such as cancer, and assists in monitoring their progression and prognosis. Developments in recent years have enabled unprecedented sensitivity in quantifying the global DNA damage dose in cells via fluorescence-based analysis down to the single-molecule level. However, genome-wide maps of DNA damage distribution are challenging to produce. Here, we describe the localization of DNA damage and repair loci by repair-assisted damage detection sequencing (RADD-seq). Based on the enrichment of damage lesions coupled with a pull-down assay and followed by next-generation sequencing, this method is easy to perform and can produce compelling results with minimal coverage. RADD-seq enables the localization of both DNA damage and repair sites for a wide range of single-strand damage types. Using this technique, we created a genome-wide map of the oxidation DNA damage lesion 8-oxo-7,8-dihydroguanine before and after repair. Oxidation lesions were heterogeneously distributed along the human genome, with less damage occurring in tight chromatin regions. Furthermore, we showed repair is prioritized for highly expressed, essential genes and in open chromatin regions. RADD-seq sheds light on cellular repair mechanisms and is capable of identifying genomic hotspots prone to mutation.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"1 2","pages":"None"},"PeriodicalIF":0.0,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bpr.2021.100017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39837844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-08DOI: 10.1016/j.bpr.2022.100044
Jeff Y. L. Lam, Yunzhao Wu, Eleni Dimou, Ziwei Zhang, M. Cheetham, Markus Körbel, Zengjie Xia, D. Klenerman, J. S. Danial
{"title":"An economic, square-shaped flat-field illumination module for TIRF-based super-resolution microscopy","authors":"Jeff Y. L. Lam, Yunzhao Wu, Eleni Dimou, Ziwei Zhang, M. Cheetham, Markus Körbel, Zengjie Xia, D. Klenerman, J. S. Danial","doi":"10.1016/j.bpr.2022.100044","DOIUrl":"https://doi.org/10.1016/j.bpr.2022.100044","url":null,"abstract":"","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72724550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.1016/j.bpr.2021.100035
Mariana Sá Santos, Haipei Liu, V. Schittny, R. Vanella, M. A. Nash
{"title":"Correlating single-molecule rupture mechanics with cell population adhesion by yeast display","authors":"Mariana Sá Santos, Haipei Liu, V. Schittny, R. Vanella, M. A. Nash","doi":"10.1016/j.bpr.2021.100035","DOIUrl":"https://doi.org/10.1016/j.bpr.2021.100035","url":null,"abstract":"","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87143788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-16DOI: 10.1101/2021.10.16.464651
Yuting Miao, S. Weiss, Xiyu Yi
Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical super-resolution (SR) without requirement of sophisticated imaging instruments. An open source package for SOFI algorithm is needed to support not only the utilization of SOFI, but also the community adoption and participation for further development of SOFI. In this work, we developed PySOFI, an open source python package for SOFI analysis that offers the flexibility to inspect, test, modify, improve and extend the algorithm. We provide a complete documentation for the package and a collection of Jupyter Notebooks to demonstrate the usage of the package. We discuss the architecture of PySOFI, illustrate how to use each functional module, and demonstrate how to extend the PySOFI package with additional modules. We expect PySOFI to facilitate efficient adoption, testing, modification, dissemination and prototyping of new SOFI-relevant algorithms.
{"title":"PySOFI: an open source Python package for SOFI","authors":"Yuting Miao, S. Weiss, Xiyu Yi","doi":"10.1101/2021.10.16.464651","DOIUrl":"https://doi.org/10.1101/2021.10.16.464651","url":null,"abstract":"Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical super-resolution (SR) without requirement of sophisticated imaging instruments. An open source package for SOFI algorithm is needed to support not only the utilization of SOFI, but also the community adoption and participation for further development of SOFI. In this work, we developed PySOFI, an open source python package for SOFI analysis that offers the flexibility to inspect, test, modify, improve and extend the algorithm. We provide a complete documentation for the package and a collection of Jupyter Notebooks to demonstrate the usage of the package. We discuss the architecture of PySOFI, illustrate how to use each functional module, and demonstrate how to extend the PySOFI package with additional modules. We expect PySOFI to facilitate efficient adoption, testing, modification, dissemination and prototyping of new SOFI-relevant algorithms.","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80345839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}