Pub Date : 2025-02-01DOI: 10.1016/j.bbih.2024.100940
Roger McIntosh
Skews in the neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) increasingly demonstrate prognostic capability in a range of acute and chronic mental health conditions. There has been a recent uptick in structural and functional magnetic responance imaging data corroborating the role of NLR and MLR in a cluster of neuropsychiatric disorders that are characterized by cognitive, affective, and psychomotor dysfunction. Moreover, these deficits are mostly evident in setting of acute and chronic disease comorbidity implicating aging and immunosenescent processes in the manifestation of these geriatric syndromes. The studies reviewed in this special edition implicate neutrophil and monocyte expansion relative to lymphocytopenia in the sequelae of depression, cognitive and functional decline, as well as provide support from a range of neuroimaging techniques that identify brain alteartions concommitant with expansion of the NLR or MLR and the sequelae of depression, dementia, and functional decline.
{"title":"Structural and functional brain correlates of the neutrophil- and monocyte-to-lymphocyte ratio in neuropsychiatric disorders","authors":"Roger McIntosh","doi":"10.1016/j.bbih.2024.100940","DOIUrl":"10.1016/j.bbih.2024.100940","url":null,"abstract":"<div><div>Skews in the neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) increasingly demonstrate prognostic capability in a range of acute and chronic mental health conditions. There has been a recent uptick in structural and functional magnetic responance imaging data corroborating the role of NLR and MLR in a cluster of neuropsychiatric disorders that are characterized by cognitive, affective, and psychomotor dysfunction. Moreover, these deficits are mostly evident in setting of acute and chronic disease comorbidity implicating aging and immunosenescent processes in the manifestation of these geriatric syndromes. The studies reviewed in this special edition implicate neutrophil and monocyte expansion relative to lymphocytopenia in the sequelae of depression, cognitive and functional decline, as well as provide support from a range of neuroimaging techniques that identify brain alteartions concommitant with expansion of the NLR or MLR and the sequelae of depression, dementia, and functional decline.</div></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"43 ","pages":"Article 100940"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bbih.2024.100930
Shenglong Lai, Haiyang Li, Yazhou Xing, Du Wu, Lin Wang, Qinghua Liang
Background
Trigeminal neuralgia (TN) is a severe facial pain disorder with complex etiology. Inflammation has been suggested as a contributing factor to TN pathogenesis. This study investigates the causal relationship between inflammatory biomarkers, including 41 circulating inflammatory cytokines, C-reactive protein (CRP), and procalcitonin (PCT), and TN using Mendelian randomization (MR) analysis.
Methods
A two-sample MR approach was employed using genome-wide association study (GWAS) data from 8293 Finnish individuals for inflammatory cytokines and data from the FinnGen database for TN. Instrumental variables (IVs) were selected based on genome-wide significance and clumping thresholds to avoid linkage disequilibrium. Inverse variance weighting (IVW) was used as the primary method, complemented by MR Egger regression, weighted median, simple mode, and weighted mode methods. Additionally, Bayesian Weighted MR (BWMR) and Multivariable MR (MVMR) were utilized to validate the findings and explore potential confounders.
Results
The present MR analysis identified significant causal associations for three inflammatory cytokines with TN. Stem cell growth factor beta (SCGF-β) (OR = 1.362, 95% CI = 1.049–1.770, p = 0.021) and Interleukin-4 (IL-4) (OR = 1.533, 95% CI = 1.014–2.316, p = 0.043) were positively associated with TN, while Interleukin-16 (IL-16) (OR = 0.720, 95% CI = 0.563–0.921, p = 0.009) had a protective effect. CRP levels were also linked to TN risk (OR = 0.751, 95% CI = 0.593–0.951, p = 0.017). No significant causal effect of PCT on TN was observed. Sensitivity analyses confirmed the robustness of these findings, showing no evidence of horizontal pleiotropy or heterogeneity.
Conclusion
This study highlights specific inflammatory biomarkers that may play pivotal roles in TN pathogenesis. SCGF-β and IL-4 are potential therapeutic targets due to their facilitative effects on TN, while IL-16 could offer protective benefits. CRP's association with TN further supports the involvement of systemic inflammation in this condition. These findings provide novel insights into TN's inflammatory mechanisms, suggesting new avenues for targeted interventions.
背景:三叉神经痛是一种病因复杂的严重面部疼痛疾病。炎症被认为是TN发病的一个促进因素。本研究利用孟德尔随机化(MR)分析探讨了炎症生物标志物(包括41种循环炎症细胞因子、c反应蛋白(CRP)和降钙素原(PCT))与TN之间的因果关系。方法:采用双样本MR方法,使用来自8293名芬兰个体的全基因组关联研究(GWAS)数据和FinnGen数据库的TN数据。工具变量(IVs)是根据全基因组显著性和聚集阈值选择的,以避免连锁不平衡。以方差逆加权(IVW)为主要方法,辅以MR Egger回归、加权中位数、简单模态和加权模态方法。此外,贝叶斯加权磁共振(BWMR)和多变量磁共振(MVMR)被用来验证研究结果并探索潜在的混杂因素。结果:本MR分析发现三种炎症因子与TN有显著的因果关系。干细胞生长因子β (SCGF-β) (OR = 1.362, 95% CI = 1.049-1.770, p = 0.021)和白细胞介素-4 (OR = 1.533, 95% CI = 1.014-2.316, p = 0.043)与TN呈正相关,而白细胞介素-16 (OR = 0.720, 95% CI = 0.563-0.921, p = 0.009)具有保护作用。CRP水平也与TN风险相关(OR = 0.751, 95% CI = 0.593-0.951, p = 0.017)。未观察到PCT对TN的显著因果效应。敏感性分析证实了这些发现的稳健性,没有显示水平多效性或异质性的证据。结论:本研究强调了可能在TN发病机制中起关键作用的特异性炎症生物标志物。SCGF-β和IL-4因其对TN的促进作用而成为潜在的治疗靶点,而IL-16可能具有保护作用。CRP与TN的关联进一步支持全身性炎症在这种情况下的参与。这些发现为TN的炎症机制提供了新的见解,为有针对性的干预提供了新的途径。
{"title":"Exploring the role of inflammatory biomarkers in trigeminal neuralgia","authors":"Shenglong Lai, Haiyang Li, Yazhou Xing, Du Wu, Lin Wang, Qinghua Liang","doi":"10.1016/j.bbih.2024.100930","DOIUrl":"10.1016/j.bbih.2024.100930","url":null,"abstract":"<div><h3>Background</h3><div>Trigeminal neuralgia (TN) is a severe facial pain disorder with complex etiology. Inflammation has been suggested as a contributing factor to TN pathogenesis. This study investigates the causal relationship between inflammatory biomarkers, including 41 circulating inflammatory cytokines, C-reactive protein (CRP), and procalcitonin (PCT), and TN using Mendelian randomization (MR) analysis.</div></div><div><h3>Methods</h3><div>A two-sample MR approach was employed using genome-wide association study (GWAS) data from 8293 Finnish individuals for inflammatory cytokines and data from the FinnGen database for TN. Instrumental variables (IVs) were selected based on genome-wide significance and clumping thresholds to avoid linkage disequilibrium. Inverse variance weighting (IVW) was used as the primary method, complemented by MR Egger regression, weighted median, simple mode, and weighted mode methods. Additionally, Bayesian Weighted MR (BWMR) and Multivariable MR (MVMR) were utilized to validate the findings and explore potential confounders.</div></div><div><h3>Results</h3><div>The present MR analysis identified significant causal associations for three inflammatory cytokines with TN. Stem cell growth factor beta (SCGF-β) (OR = 1.362, 95% CI = 1.049–1.770, p = 0.021) and Interleukin-4 (IL-4) (OR = 1.533, 95% CI = 1.014–2.316, p = 0.043) were positively associated with TN, while Interleukin-16 (IL-16) (OR = 0.720, 95% CI = 0.563–0.921, p = 0.009) had a protective effect. CRP levels were also linked to TN risk (OR = 0.751, 95% CI = 0.593–0.951, p = 0.017). No significant causal effect of PCT on TN was observed. Sensitivity analyses confirmed the robustness of these findings, showing no evidence of horizontal pleiotropy or heterogeneity.</div></div><div><h3>Conclusion</h3><div>This study highlights specific inflammatory biomarkers that may play pivotal roles in TN pathogenesis. SCGF-β and IL-4 are potential therapeutic targets due to their facilitative effects on TN, while IL-16 could offer protective benefits. CRP's association with TN further supports the involvement of systemic inflammation in this condition. These findings provide novel insights into TN's inflammatory mechanisms, suggesting new avenues for targeted interventions.</div></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"43 ","pages":"Article 100930"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bbih.2024.100926
Luz Andreone
Pancreatic β-cells are specialized in secreting insulin in response to circulating nutrients, mainly glucose.
Diabetes is one of the most prevalent endocrine-metabolic diseases characterized by an imbalance in glucose homeostasis, which result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and peripheral insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Pancreatic β-cell dysfunction and islet inflammation are common characteristics of both types of the disease. Pancreatic islets are a highly innervated tissue whose function can be influenced by the brain, either directly through the autonomic nervous system or indirectly via neuroendocrine mechanisms. In addition, it is well-established that there is a fine-tuned communication between the immune and neuroendocrine tissues in maintaining endocrine pancreas homeostasis.
Various psycho-social, physico-chemical and lifestyle environmental factors have been associated with diabetes risk. In this review, I briefly comment on certain aspects of the psycho-neuro-immune interactions that link environmental factors and the endocrine pancreas, leading to metabolic health or diabetes.
Interdisciplinary research, embracing new and broader perspectives, should be conducted to explore strategies for preventing or slowing down the constant increase in diabetes worldwide.
{"title":"Neuroimmune axis: Linking environmental factors to pancreatic β-cell dysfunction in Diabetes","authors":"Luz Andreone","doi":"10.1016/j.bbih.2024.100926","DOIUrl":"10.1016/j.bbih.2024.100926","url":null,"abstract":"<div><div>Pancreatic β-cells are specialized in secreting insulin in response to circulating nutrients, mainly glucose.</div><div>Diabetes is one of the most prevalent endocrine-metabolic diseases characterized by an imbalance in glucose homeostasis, which result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and peripheral insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Pancreatic β-cell dysfunction and islet inflammation are common characteristics of both types of the disease. Pancreatic islets are a highly innervated tissue whose function can be influenced by the brain, either directly through the autonomic nervous system or indirectly via neuroendocrine mechanisms. In addition, it is well-established that there is a fine-tuned communication between the immune and neuroendocrine tissues in maintaining endocrine pancreas homeostasis.</div><div>Various psycho-social, physico-chemical and lifestyle environmental factors have been associated with diabetes risk. In this review, I briefly comment on certain aspects of the psycho-neuro-immune interactions that link environmental factors and the endocrine pancreas, leading to metabolic health or diabetes<strong>.</strong></div><div>Interdisciplinary research, embracing new and broader perspectives, should be conducted to explore strategies for preventing or slowing down the constant increase in diabetes worldwide.</div></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"43 ","pages":"Article 100926"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bbih.2024.100920
Paul Denver , Lucas Tortorelli , Karen Hov , Jens Petter Berg , Lasse M. Giil , Arshed Nazmi , Ana Lopez-Rodriguez , Daire Healy , Carol Murray , Robyn Barry , Leiv Otto Watne , Colm Cunningham
Delirium is a highly prevalent neuropsychiatric syndrome characterised by acute and fluctuating impairments in attention and cognition. Mechanisms driving delirium are poorly understood but it has been suggested that blood cytokines and chemokines cross the blood brain barrier during delirium, directly impairing brain function. It is not known whether these molecules reach higher brain levels when the blood cerebrospinal fluid barrier (BCSFB) is impaired. Here, in human hip-fracture patients, we tested the influence of BCSFB integrity on CSF levels of chemokines and assessed their association with delirium. CSF levels of IP-10, eotaxin, eotaxin 3 and TARC showed weak to moderate correlations with BCSFB permeability, as measured by the Qalbumin ratio, while MCP1, IL-8, MIP1α and MIP1β showed no significant correlation. Chemokines were not associated with delirium in univariate analysis or when stratified on dementia status, but exploratory analyses showed that elevated Eotaxin (CCL11) and MIP1α (CCL3) were associated with prevalent delirium. Modelling acute systemic inflammation, we used bacterial LPS (250 μg/kg) or sterile laparotomy surgery in mice to demonstrate de novo synthesis of chemokines at the choroid plexus (CP) and microvasculature. Gene expression data showed CP-enriched expression of Il1b, Tnfa, Cxcl1 and Ccl3 in both models and immunohistochemistry showed cytokine and chemokine synthesis in CP stromal (IL-1β, CCL2/MCP1) or epithelial cells (CXCL10/IP-10) cells and at the microvasculature. Larger studies are required to confirm these human findings on chemokine associations with BCSFB permeability and prevalent delirium. Preclinical studies are warranted to determine whether chemokines might play a role in the pathophysiology of delirium.
{"title":"Chemokine associations with blood cerebrospinal fluid (CSF) barrier permeability and delirium","authors":"Paul Denver , Lucas Tortorelli , Karen Hov , Jens Petter Berg , Lasse M. Giil , Arshed Nazmi , Ana Lopez-Rodriguez , Daire Healy , Carol Murray , Robyn Barry , Leiv Otto Watne , Colm Cunningham","doi":"10.1016/j.bbih.2024.100920","DOIUrl":"10.1016/j.bbih.2024.100920","url":null,"abstract":"<div><div>Delirium is a highly prevalent neuropsychiatric syndrome characterised by acute and fluctuating impairments in attention and cognition. Mechanisms driving delirium are poorly understood but it has been suggested that blood cytokines and chemokines cross the blood brain barrier during delirium, directly impairing brain function. It is not known whether these molecules reach higher brain levels when the blood cerebrospinal fluid barrier (BCSFB) is impaired. Here, in human hip-fracture patients, we tested the influence of BCSFB integrity on CSF levels of chemokines and assessed their association with delirium. CSF levels of IP-10, eotaxin, eotaxin 3 and TARC showed weak to moderate correlations with BCSFB permeability, as measured by the Q<sub>albumin</sub> ratio, while MCP1, IL-8, MIP1α and MIP1β showed no significant correlation. Chemokines were not associated with delirium in univariate analysis or when stratified on dementia status, but exploratory analyses showed that elevated Eotaxin (CCL11) and MIP1α (CCL3) were associated with prevalent delirium. Modelling acute systemic inflammation, we used bacterial LPS (250 μg/kg) or sterile laparotomy surgery in mice to demonstrate <em>de novo</em> synthesis of chemokines at the choroid plexus (CP) and microvasculature. Gene expression data showed CP-enriched expression of <em>Il1b, Tnfa, Cxcl1</em> and <em>Ccl3</em> in both models and immunohistochemistry showed cytokine and chemokine synthesis in CP stromal (IL-1β, CCL2/MCP1) or epithelial cells (CXCL10/IP-10) cells and at the microvasculature. Larger studies are required to confirm these human findings on chemokine associations with BCSFB permeability and prevalent delirium. Preclinical studies are warranted to determine whether chemokines might play a role in the pathophysiology of delirium.</div></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"43 ","pages":"Article 100920"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Major Depressive Disorder (MDD) is a widespread psychiatric condition impacting social and occupational functioning, making it a leading cause of disability. The diagnosis of MDD remains clinical, based on the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 criteria, as biomarkers have not yet been validated for diagnostic purposes or as predictors of treatment response. Traditional treatment strategies often follow a one-size-fits-all approach obtaining suboptimal outcomes for many patients who fail to experience response or recovery. Several studies have reported an association between MDD and immune system dysregulation, but few have focused on the deep characterization of circulating cells, during the acute phase of MDD. This work aimed at immunophenotyping peripheral blood cells in the relapse phase of the disorder, to identify relevant cell populations for clinical monitoring of patients. Multiparametric analysis was performed on the peripheral blood of 60 MDD patients using flow cytometry to identify lymphocytes (naïve/effector, memory, regulatory) and myeloid cells (dendritic cells, monocytes). We studied the associations between immunophenotype and depressive symptoms, social and working functioning, and subjective quality of life during the acute phase and after three months of treatment. Multivariate analysis showed that CD4+ terminally differentiated effector memory (TEMRA) were associated with more depressive symptoms with a particular emphasis on anhedonic features and worse social and working functioning and quality of life. CD8+ TEMRA were associated with those depressive symptoms related to hopelessness. Conversely, ICOS + Tregs were associated with low-intensity suicidal ideation, suggestive of a protective role. Baseline T CD4+ effector memory (EM) was a negative predictor of reduction of depressive symptoms after three months of treatment, whilst plasmacytoid dendritic cells (pDC) were predicting reduction of hopelessness. These results confirm the involvement of the immune system in MDD and demonstrate the existence of immunological signatures associated with the severity of major depressive episodes and treatment response that could guide clinical monitoring and future personalized therapies.
{"title":"Deep immunophenotyping of circulating immune cells in major depressive disorder patients reveals immune correlates of clinical course and treatment response","authors":"Fabiola Stolfi , Claudio Brasso , Davide Raineri , Virginia Landra , Camilla Barbero Mazzucca , Ali Ghazanfar , Lorenza Scotti , Riccardo Sinella , Vincenzo Villari , Giuseppe Cappellano , Paola Rocca , Annalisa Chiocchetti","doi":"10.1016/j.bbih.2024.100942","DOIUrl":"10.1016/j.bbih.2024.100942","url":null,"abstract":"<div><div>Major Depressive Disorder (MDD) is a widespread psychiatric condition impacting social and occupational functioning, making it a leading cause of disability. The diagnosis of MDD remains clinical, based on the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 criteria, as biomarkers have not yet been validated for diagnostic purposes or as predictors of treatment response. Traditional treatment strategies often follow a one-size-fits-all approach obtaining suboptimal outcomes for many patients who fail to experience response or recovery. Several studies have reported an association between MDD and immune system dysregulation, but few have focused on the deep characterization of circulating cells, during the acute phase of MDD. This work aimed at immunophenotyping peripheral blood cells in the relapse phase of the disorder, to identify relevant cell populations for clinical monitoring of patients. Multiparametric analysis was performed on the peripheral blood of 60 MDD patients using flow cytometry to identify lymphocytes (naïve/effector, memory, regulatory) and myeloid cells (dendritic cells, monocytes). We studied the associations between immunophenotype and depressive symptoms, social and working functioning, and subjective quality of life during the acute phase and after three months of treatment. Multivariate analysis showed that CD4<sup>+</sup> terminally differentiated effector memory (TEMRA) were associated with more depressive symptoms with a particular emphasis on anhedonic features and worse social and working functioning and quality of life. CD8<sup>+</sup> TEMRA were associated with those depressive symptoms related to hopelessness. Conversely, ICOS + Tregs were associated with low-intensity suicidal ideation, suggestive of a protective role. Baseline T CD4<sup>+</sup> effector memory (EM) was a negative predictor of reduction of depressive symptoms after three months of treatment, whilst plasmacytoid dendritic cells (pDC) were predicting reduction of hopelessness. These results confirm the involvement of the immune system in MDD and demonstrate the existence of immunological signatures associated with the severity of major depressive episodes and treatment response that could guide clinical monitoring and future personalized therapies.</div></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"43 ","pages":"Article 100942"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bbih.2024.100908
Rebecca G. Biltz , Wenyuan Yin , Ethan J. Goodman , Lynde M. Wangler , Amara C. Davis , Braedan T. Oliver , Jonathan P. Godbout , John F. Sheridan
Chronic stress increases the incidence of psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Repeated Social Defeat (RSD) in mice recapitulates several key physiological, immune, and behavioral changes evident after chronic stress in humans. For instance, neurons in the prefrontal cortex, amygdala, and hippocampus are involved in the interpretation of and response to fear and threatful stimuli after RSD. Therefore, the purpose of this study was to determine how stress influenced the RNA profile of hippocampal neurons and neurons that project into the hippocampus from threat appraisal centers. Here, RSD increased anxiety-like behavior in the elevated plus maze and reduced hippocampal-dependent novel object location memory in male mice. Next, pan-neuronal (Baf53 b-Cre) RiboTag mice were generated to capture ribosomal bound mRNA (i.e., active translation) activated by RSD in the hippocampus. RNAseq revealed that there were 1694 differentially expressed genes (DEGs) in hippocampal neurons after RSD. These DEGs were associated with an increase in oxidative stress, synaptic long-term potentiation, and neuroinflammatory signaling. To further examine region-specific neural circuitry associated with fear and anxiety, a retrograde-adeno-associated-virus (AAV2rg) expressing Cre-recombinase was injected into the hippocampus of male RiboTag mice. This induced expression of a hemagglutinin epitope in neurons that project into the hippocampus. These AAV2rg-RiboTag mice were subjected to RSD and ribosomal-bound mRNA was collected from the amygdala for RNA-sequencing. RSD induced 677 DEGs from amygdala projections. Amygdala neurons that project into the hippocampus had RNA profiles associated with increased synaptogenesis, interleukin-1 signaling, nitric oxide, and reactive oxygen species production. Using a similar approach, there were 1132 DEGs in neurons that project from the prefrontal cortex. These prefrontal cortex neurons had RNA profiles associated with increased synaptogenesis, integrin signaling, and dopamine feedback signaling after RSD. Collectively, there were unique RNA profiles of stress-influenced projection neurons and these profiles were associated with hippocampal-dependent behavioral and cognitive deficits.
{"title":"Repeated social defeat in male mice induced unique RNA profiles in projection neurons from the amygdala to the hippocampus","authors":"Rebecca G. Biltz , Wenyuan Yin , Ethan J. Goodman , Lynde M. Wangler , Amara C. Davis , Braedan T. Oliver , Jonathan P. Godbout , John F. Sheridan","doi":"10.1016/j.bbih.2024.100908","DOIUrl":"10.1016/j.bbih.2024.100908","url":null,"abstract":"<div><div>Chronic stress increases the incidence of psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Repeated Social Defeat (RSD) in mice recapitulates several key physiological, immune, and behavioral changes evident after chronic stress in humans. For instance, neurons in the prefrontal cortex, amygdala, and hippocampus are involved in the interpretation of and response to fear and threatful stimuli after RSD. Therefore, the purpose of this study was to determine how stress influenced the RNA profile of hippocampal neurons and neurons that project into the hippocampus from threat appraisal centers. Here, RSD increased anxiety-like behavior in the elevated plus maze and reduced hippocampal-dependent novel object location memory in male mice. Next, pan-neuronal (Baf53 b-Cre) RiboTag mice were generated to capture ribosomal bound mRNA (i.e., active translation) activated by RSD in the hippocampus. RNAseq revealed that there were 1694 differentially expressed genes (DEGs) in hippocampal neurons after RSD. These DEGs were associated with an increase in oxidative stress, synaptic long-term potentiation, and neuroinflammatory signaling. To further examine region-specific neural circuitry associated with fear and anxiety, a retrograde-adeno-associated-virus (AAV2rg) expressing Cre-recombinase was injected into the hippocampus of male RiboTag mice. This induced expression of a hemagglutinin epitope in neurons that project into the hippocampus. These AAV2rg-RiboTag mice were subjected to RSD and ribosomal-bound mRNA was collected from the amygdala for RNA-sequencing. RSD induced 677 DEGs from amygdala projections. Amygdala neurons that project into the hippocampus had RNA profiles associated with increased synaptogenesis, interleukin-1 signaling, nitric oxide, and reactive oxygen species production. Using a similar approach, there were 1132 DEGs in neurons that project from the prefrontal cortex. These prefrontal cortex neurons had RNA profiles associated with increased synaptogenesis, integrin signaling, and dopamine feedback signaling after RSD. Collectively, there were unique RNA profiles of stress-influenced projection neurons and these profiles were associated with hippocampal-dependent behavioral and cognitive deficits.</div></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"43 ","pages":"Article 100908"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bbih.2024.100937
Mohammad Abdurrehman Sheikh , Michelle P. Moon , Clinton B. Wright , Jose Gutierrez , Minghua Liu , Tatjana Rundek , Ken Cheung , Mady Hornig , Mitchell S.V. Elkind
Objective
To determine whether a panel of immune markers adds significant information to known correlates of risk of dementia and cognitive impairment.
Background
The impact of immune mechanisms on dementia risk is incompletely characterized.
Design/methods
A subsample of the Northern Manhattan Study, a prospective cohort study in the racially/ethnically diverse population of New York City, underwent comprehensive neuropsychological testing up to three times, at approximately 5-year intervals. Cognitive outcomes were adjudicated as no cognitive impairment, mild cognitive impairment (MCI), or dementia. Immune markers were assessed using a multiplex immunoassay on plasma samples collected at the time of the first neuropsychological test. Least absolute shrinkage and selection operator (LASSO) techniques were employed to yield a panel of immune markers linearly related to the outcome of dementia/MCI vs. no cognitive impairment. Nested logistic regression models were run to determine the independent association of the immune marker panel with dementia/MCI after adjusting for other predictors of risk.
Results
Among 1179 participants (mean age 70.0 ± 8.9 years, 60% women, 68% Hispanic), immune markers improved model fit above demographic and vascular risk factors (p-value for likelihood ratio test <0.0001) as correlates of MCI/dementia. Individual immune markers found to be associated with dementia/MCI were C-X-C Motif Chemokine Ligand 9 (CXCL9) and C-C Motif Chemokine Ligand 2 (CCL2). The effect of the immune markers was comparable to traditional risk factors, with CCL2 (per SD) having almost the same effect as 1 year of aging and CXCL9 (per SD) showing approximately twice this magnitude.
Conclusion
Immune markers are associated with cognitive decline and dementia outcomes in a multi-ethnic cohort. More work is needed to further characterize these associations and determine therapeutic strategies. (Funded by the National Institute of Health/National Institute of Neurological Disorders and Stroke; grant number R01 29993 (Sacco/Elkind)).
{"title":"Association of a multiplex immune marker panel with incident cognitive impairment and dementia: The Northern Manhattan Study","authors":"Mohammad Abdurrehman Sheikh , Michelle P. Moon , Clinton B. Wright , Jose Gutierrez , Minghua Liu , Tatjana Rundek , Ken Cheung , Mady Hornig , Mitchell S.V. Elkind","doi":"10.1016/j.bbih.2024.100937","DOIUrl":"10.1016/j.bbih.2024.100937","url":null,"abstract":"<div><h3>Objective</h3><div>To determine whether a panel of immune markers adds significant information to known correlates of risk of dementia and cognitive impairment.</div></div><div><h3>Background</h3><div>The impact of immune mechanisms on dementia risk is incompletely characterized.</div></div><div><h3>Design/methods</h3><div>A subsample of the Northern Manhattan Study, a prospective cohort study in the racially/ethnically diverse population of New York City, underwent comprehensive neuropsychological testing up to three times, at approximately 5-year intervals. Cognitive outcomes were adjudicated as no cognitive impairment, mild cognitive impairment (MCI), or dementia. Immune markers were assessed using a multiplex immunoassay on plasma samples collected at the time of the first neuropsychological test. Least absolute shrinkage and selection operator (LASSO) techniques were employed to yield a panel of immune markers linearly related to the outcome of dementia/MCI vs. no cognitive impairment. Nested logistic regression models were run to determine the independent association of the immune marker panel with dementia/MCI after adjusting for other predictors of risk.</div></div><div><h3>Results</h3><div>Among 1179 participants (mean age 70.0 ± 8.9 years, 60% women, 68% Hispanic), immune markers improved model fit above demographic and vascular risk factors (p-value for likelihood ratio test <0.0001) as correlates of MCI/dementia. Individual immune markers found to be associated with dementia/MCI were C-X-C Motif Chemokine Ligand 9 (CXCL9) and C-C Motif Chemokine Ligand 2 (CCL2). The effect of the immune markers was comparable to traditional risk factors, with CCL2 (per SD) having almost the same effect as 1 year of aging and CXCL9 (per SD) showing approximately twice this magnitude.</div></div><div><h3>Conclusion</h3><div>Immune markers are associated with cognitive decline and dementia outcomes in a multi-ethnic cohort. More work is needed to further characterize these associations and determine therapeutic strategies. (Funded by the National Institute of Health/National Institute of Neurological Disorders and Stroke; grant number R01 29993 (Sacco/Elkind)).</div></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"43 ","pages":"Article 100937"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143048863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bbih.2024.100928
Shixin Lai, Xiaomin Wu, Yue Liu, Bo Liu, Haiqi Wu, Kongyang Ma
{"title":"Interaction between Th17 and central nervous system in multiple sclerosis","authors":"Shixin Lai, Xiaomin Wu, Yue Liu, Bo Liu, Haiqi Wu, Kongyang Ma","doi":"10.1016/j.bbih.2024.100928","DOIUrl":"10.1016/j.bbih.2024.100928","url":null,"abstract":"","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"43 ","pages":"Article 100928"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bbih.2024.100938
Aidan D. Tyrrell , Giulia Cisbani , Mackenzie E. Smith , Chuck T. Chen , Yue-Tong Chen , Raphael Chouinard-Watkins , Kathryn E. Hopperton , Ameer Y. Taha , Richard P. Bazinet
A proposed contributor to Alzheimer's disease (AD) pathology is the induction of neuroinflammation due to tau and beta-amyloid protein accumulation causing neuronal injury and dysfunction. Dysregulation of lipid mediators derived from polyunsaturated fatty acids may contribute to this inflammatory response in the brain of patients with AD, yet the literature has not yet been systematically reviewed. A systematic search was conducted in Medline, Embase and PsychINFO for articles published up to April 22, 2024. Papers were included if they measured levels of lipid mediators and/or enzymes involved in their production in post-mortem brain samples from patients with AD and control without neurological disease. A total of 50 relevant studies were identified. Despite heterogeneity in the results, pro-inflammatory lipid mediators, including 5-, 11-, 12- and 15-hydroxyeicosatetraenoic acid oxylipins and prostaglandin D2, were significantly higher, while anti-inflammatory lipoxin A4 and DHA-derived docosanoids were significantly lower in brains of patients with AD compared to control (16 studies). Thirty-seven articles reported on enzymes, with 32 reporting values for enzyme level changes between AD and controls. Among the 32 articles, the majority reported on levels of cyclooxygenase (COX) (18/32), with fewer studies reporting on phospholipase (8/32), lipoxygenase (LOX) (4/32) and prostaglandin E synthase (4/32). Enzyme levels also exhibited variability in the literature, with a trend towards elevated expression of enzymes involved in the pro-inflammatory response, including COX and LOX enzymes. Overall, these results are consistent with the involvement of neuroinflammation in the pathogenesis of AD measured by lipid mediators. However, the specific contribution of each lipid metabolite and enzymes to either the progression or persistence of AD remains unclear, and more research is required.
{"title":"Lipid mediators in post-mortem brain samples from patients with Alzheimer's disease: A systematic review","authors":"Aidan D. Tyrrell , Giulia Cisbani , Mackenzie E. Smith , Chuck T. Chen , Yue-Tong Chen , Raphael Chouinard-Watkins , Kathryn E. Hopperton , Ameer Y. Taha , Richard P. Bazinet","doi":"10.1016/j.bbih.2024.100938","DOIUrl":"10.1016/j.bbih.2024.100938","url":null,"abstract":"<div><div>A proposed contributor to Alzheimer's disease (AD) pathology is the induction of neuroinflammation due to tau and beta-amyloid protein accumulation causing neuronal injury and dysfunction. Dysregulation of lipid mediators derived from polyunsaturated fatty acids may contribute to this inflammatory response in the brain of patients with AD, yet the literature has not yet been systematically reviewed. A systematic search was conducted in Medline, Embase and PsychINFO for articles published up to April 22, 2024. Papers were included if they measured levels of lipid mediators and/or enzymes involved in their production in <em>post-mortem</em> brain samples from patients with AD and control without neurological disease. A total of 50 relevant studies were identified. Despite heterogeneity in the results, pro-inflammatory lipid mediators, including 5-, 11-, 12- and 15-hydroxyeicosatetraenoic acid oxylipins and prostaglandin D2, were significantly higher, while anti-inflammatory lipoxin A4 and DHA-derived docosanoids were significantly lower in brains of patients with AD compared to control (16 studies). Thirty-seven articles reported on enzymes, with 32 reporting values for enzyme level changes between AD and controls. Among the 32 articles, the majority reported on levels of cyclooxygenase (COX) (18/32), with fewer studies reporting on phospholipase (8/32), lipoxygenase (LOX) (4/32) and prostaglandin E synthase (4/32). Enzyme levels also exhibited variability in the literature, with a trend towards elevated expression of enzymes involved in the pro-inflammatory response, including COX and LOX enzymes. Overall, these results are consistent with the involvement of neuroinflammation in the pathogenesis of AD measured by lipid mediators. However, the specific contribution of each lipid metabolite and enzymes to either the progression or persistence of AD remains unclear, and more research is required.</div></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"43 ","pages":"Article 100938"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}