Pub Date : 2024-05-24DOI: 10.1007/s11085-024-10249-8
Antoine Casadebaigt, Daniel Monceau, Jonathan Hugues
Ti–6Al–4V alloys manufactured by laser or electron powder bed fusion (L-PBF and E-PBF) with or without hipping treatment have different microstructures from foundry alloys. Their oxidation kinetics at high temperatures between 500 and 600 °C for durations up to 2,000 h were compared. The effect of oxidation on their room temperature tensile embrittlement was quantified. It was shown that the growth kinetics of the brittle fracture zone, of the zone with cracks at 1% strain, and of the oxygen diffusion zone were perfectly correlated. Therefore, the embrittlement was confirmed to be due to oxygen ingress below the oxide scale and the kinetics were independent of the microstructure.
{"title":"Oxygen Embrittlement Kinetics at 500–600 °C of the Ti–6Al–4V Alloy Fabricated by Laser and Electron Powder Bed Fusion","authors":"Antoine Casadebaigt, Daniel Monceau, Jonathan Hugues","doi":"10.1007/s11085-024-10249-8","DOIUrl":"10.1007/s11085-024-10249-8","url":null,"abstract":"<div><p>Ti–6Al–4V alloys manufactured by laser or electron powder bed fusion (L-PBF and E-PBF) with or without hipping treatment have different microstructures from foundry alloys. Their oxidation kinetics at high temperatures between 500 and 600 °C for durations up to 2,000 h were compared. The effect of oxidation on their room temperature tensile embrittlement was quantified. It was shown that the growth kinetics of the brittle fracture zone, of the zone with cracks at 1% strain, and of the oxygen diffusion zone were perfectly correlated. Therefore, the embrittlement was confirmed to be due to oxygen ingress below the oxide scale and the kinetics were independent of the microstructure.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 1 supplement","pages":"107 - 122"},"PeriodicalIF":2.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1007/s11085-024-10245-y
James L. Smialek
Paralinear oxidation models provide a description of parabolic scale growth combined with linear loss, as might occur for scales forming volatile oxide, hydroxide, chloride, or fluoride scales. Classic weight change exhibits an initial parabolic oxygen gain, a maximum (ΔWmax at tmax), then a linear loss. The magnitude of these features is determined by the parabolic growth rate, kp, the linear volatility rate, kv, and the stoichiometric constant of the reaction, S (fixed by the atomic weights and stoichiometry of the reaction). Model curves were generated (at constant kp and kv) to show that, for typical oxides, increases in S only moderately decrease ΔWmax and tmax, but directly increase the rate of mass loss. Universal oxidative behavior can be produced using normalized ½ kp/kv weight and ½ kp/kv2 time constants. Furthermore, it is shown that, on average, kp ≈ 4.1 (ΔWmax)2/tmax and kv ≈ 1.2 (ΔWmax)/tmax. These relations apply for a broad spectrum of scale molecular weights, ranging from low mass SiO2 to high mass Ta2O5 oxides. Oxidation of carbides and nitrides may release C and N elements and thus increase the effective Seff, with concomitant effects on the paralinear curves.
抛物线氧化模型描述了鳞片的抛物线增长和线性损耗,这可能发生在鳞片形成挥发性氧化物、氢氧化物、氯化物或氟化物鳞片时。典型的重量变化表现为最初的抛物线氧增量、最大值(tmax 时的ΔWmax),然后是线性损耗。这些特征的大小由抛物线增长速率 kp、线性挥发速率 kv 和反应的化学计量常数 S(由原子量和反应的化学计量固定)决定。生成的模型曲线(在 kp 和 kv 不变的情况下)表明,对于典型的氧化物,S 的增加只会适度降低 ΔWmax 和 tmax,但会直接增加质量损失率。使用归一化的 ½ kp/kv 重量和 ½ kp/kv2 时间常数可以产生通用的氧化行为。此外,研究还表明,平均而言,kp ≈ 4.1 (ΔWmax)2/tmax 和 kv ≈ 1.2 (ΔWmax)/tmax 。这些关系适用于从低质量的 SiO2 到高分子量的 Ta2O5 氧化物等各种鳞片分子量。碳化物和氮化物的氧化可能会释放出 C 和 N 元素,从而增加有效 Seff,并对准线性曲线产生影响。
{"title":"Stoichiometry Effects on Paralinear Oxidation","authors":"James L. Smialek","doi":"10.1007/s11085-024-10245-y","DOIUrl":"10.1007/s11085-024-10245-y","url":null,"abstract":"<div><p>Paralinear oxidation models provide a description of parabolic scale <i>growth</i> combined with linear <i>loss</i>, as might occur for scales forming volatile oxide, hydroxide, chloride, or fluoride scales. Classic weight change exhibits an initial parabolic oxygen gain, a maximum (<i>ΔW</i><sub><i>max</i></sub> at <i>t</i><sub><i>max</i></sub>), then a linear loss. The magnitude of these features is determined by the parabolic growth rate, <i>k</i><sub><i>p</i></sub>, the linear volatility rate, <i>k</i><sub><i>v</i></sub>, and the stoichiometric constant of the reaction, <i>S</i> (fixed by the atomic weights and stoichiometry of the reaction). Model curves were generated (at constant <i>k</i><sub><i>p</i></sub> and <i>k</i><sub><i>v</i></sub>) to show that, for typical oxides, increases in <i>S</i> only moderately decrease <i>ΔW</i><sub><i>max</i></sub> and <i>t</i><sub><i>max</i></sub>, but directly increase the rate of mass loss. Universal oxidative behavior can be produced using normalized ½ <i>k</i><sub><i>p</i></sub><i>/k</i><sub><i>v</i></sub> weight and ½ <i>k</i><sub><i>p</i></sub>/<i>k</i><sub><i>v</i></sub><sup>2</sup> time constants. Furthermore, it is shown that, on average, <i>k</i><sub><i>p</i></sub> ≈ 4.1 (<i>ΔW</i><sub><i>max</i></sub>)<sup>2</sup>/<i>t</i><sub><i>max</i></sub> and <i>k</i><sub><i>v</i></sub> ≈ 1.2 (<i>ΔW</i><sub><i>max</i></sub>)/<i>t</i><sub><i>max</i></sub>. These relations apply for a broad spectrum of scale molecular weights, ranging from low mass SiO<sub>2</sub> to high mass Ta<sub>2</sub>O<sub>5</sub> oxides. Oxidation of carbides and nitrides may release C and N elements and thus increase the effective <i>S</i><sub><i>eff</i></sub>, with concomitant effects on the paralinear curves.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"843 - 857"},"PeriodicalIF":2.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141115558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18DOI: 10.1007/s11085-024-10247-w
Lavina Backman, Kyle Graham, Michael Dion, Elizabeth J. Opila
The need for advanced materials that can meet application requirements at ultra-high temperatures in oxidizing environments is an area of active research. One challenge facing the high temperature materials community is the ability to conduct controlled ultra-high temperature oxidation tests with minimal to no contamination or reaction with the chamber. A unique resistive heating system (RHS) capable of achieving ultra-high temperatures (> 1700 °C) to enable such experimentation is described. A concern of such a system is the potential presence of thermal gradients in directions not reflective of actual material applications, e.g., the hottest region being in the center of the sample. Experimental results from the oxidation of ZrB2 specimens at nominal temperatures of 1500°, 1700° and 1800 °C in low pO2 (0.1–1% O2 in Ar) environments are presented. Specimen thermal gradients generated during oxidation were evaluated using finite element analysis models. Thermal gradients on the order of the uncertainty in temperature measurements were calculated, confirming the RHS suitability for conducting ultra-high temperature oxidation exposures on ultra-high temperature ceramics.
{"title":"Analysis of Test Specimen Temperature Gradients Incurred in Resistive Heating System Oxidation Studies of Ultra-High Temperature Ceramics","authors":"Lavina Backman, Kyle Graham, Michael Dion, Elizabeth J. Opila","doi":"10.1007/s11085-024-10247-w","DOIUrl":"10.1007/s11085-024-10247-w","url":null,"abstract":"<div><p>The need for advanced materials that can meet application requirements at ultra-high temperatures in oxidizing environments is an area of active research. One challenge facing the high temperature materials community is the ability to conduct controlled ultra-high temperature oxidation tests with minimal to no contamination or reaction with the chamber. A unique resistive heating system (RHS) capable of achieving ultra-high temperatures (> 1700 °C) to enable such experimentation is described. A concern of such a system is the potential presence of thermal gradients in directions not reflective of actual material applications, e.g., the hottest region being in the center of the sample. Experimental results from the oxidation of ZrB<sub>2</sub> specimens at nominal temperatures of 1500°, 1700° and 1800 °C in low pO<sub>2</sub> (0.1–1% O<sub>2</sub> in Ar) environments are presented. Specimen thermal gradients generated during oxidation were evaluated using finite element analysis models. Thermal gradients on the order of the uncertainty in temperature measurements were calculated, confirming the RHS suitability for conducting ultra-high temperature oxidation exposures on ultra-high temperature ceramics.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 1 supplement","pages":"85 - 105"},"PeriodicalIF":2.1,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10247-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-12DOI: 10.1007/s11085-024-10248-9
Olga Samoilova, Ilsiya Suleymanova, Nataliya Shaburova, Ahmad Ostovari Moghaddam, Evgeny Trofimov
The quest for high-entropy alloys (HEAs) with superior resistance against oxidation at elevated temperatures is one of the urgent problems in materials society, since HEAs are candidates for coating machinery parts operating in aggressive conditions (such as turbine blades, turbojet and jet engines, etc.). In this study, the effect of minor platinum alloying on the microstructure, phase composition and high-temperature oxidation resistance of Al0.5CoCrFeNiCuPt0.3 HEA was studied. It was demonstrated that platinum does not precipitate as an intermetallic phases; rather, it dissolves in the solid solution phases. High-temperature oxidation tests were carried out in a muffle furnace at 900 °C and 1000 °C for 50 h in air. It was found out that platinum alloying significantly increases oxidation resistance of Al0.5CoCrFeNiCuPt0.3 HEA at elevated temperatures with specific weight change of 0.139 mg/cm2 and 0.238 mg/cm2 after 50 h of isothermal exposure to 900 °C and 1000 °C, respectively. A dense oxide layer, mainly composed of Al2O3, without defects and pores protected the surface of the alloy.
由于高熵合金是在侵蚀性条件下工作的机械部件(如涡轮叶片、涡轮喷气发动机和喷气发动机等)的涂层候选材料,因此寻求具有优异高温抗氧化性的高熵合金(HEAs)是材料界亟待解决的问题之一。在这项研究中,研究了少量铂合金化对 Al0.5CoCrFeNiCuPt0.3 HEA 的微观结构、相组成和高温抗氧化性的影响。结果表明,铂不会以金属间相的形式析出,而是溶解在固溶相中。在马弗炉中进行了高温氧化试验,空气温度分别为 900 °C 和 1000 °C,时间为 50 小时。结果发现,铂合金化能显著提高 Al0.5CoCrFeNiCuPt0.3 HEA 在高温下的抗氧化性,在 900 °C 和 1000 °C 等温暴露 50 小时后,比重变化分别为 0.139 mg/cm2 和 0.238 mg/cm2。合金表面有一层致密的氧化层,主要由 Al2O3 组成,没有缺陷和气孔。
{"title":"The Behavior of Al0.5CoCrFeNiCuPt0.3 High-Entropy Alloy During High-Temperature Oxidation","authors":"Olga Samoilova, Ilsiya Suleymanova, Nataliya Shaburova, Ahmad Ostovari Moghaddam, Evgeny Trofimov","doi":"10.1007/s11085-024-10248-9","DOIUrl":"10.1007/s11085-024-10248-9","url":null,"abstract":"<div><p>The quest for high-entropy alloys (HEAs) with superior resistance against oxidation at elevated temperatures is one of the urgent problems in materials society, since HEAs are candidates for coating machinery parts operating in aggressive conditions (such as turbine blades, turbojet and jet engines, etc.). In this study, the effect of minor platinum alloying on the microstructure, phase composition and high-temperature oxidation resistance of Al<sub>0.5</sub>CoCrFeNiCuPt<sub>0.3</sub> HEA was studied. It was demonstrated that platinum does not precipitate as an intermetallic phases; rather, it dissolves in the solid solution phases. High-temperature oxidation tests were carried out in a muffle furnace at 900 °C and 1000 °C for 50 h in air. It was found out that platinum alloying significantly increases oxidation resistance of Al<sub>0.5</sub>CoCrFeNiCuPt<sub>0.3</sub> HEA at elevated temperatures with specific weight change of 0.139 mg/cm<sup>2</sup> and 0.238 mg/cm<sup>2</sup> after 50 h of isothermal exposure to 900 °C and 1000 °C, respectively. A dense oxide layer, mainly composed of Al<sub>2</sub>O<sub>3</sub>, without defects and pores protected the surface of the alloy.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"811 - 825"},"PeriodicalIF":2.1,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1007/s11085-024-10246-x
Isabela Dainezi, Brian Gleeson, Bruno Resende Buzatti, Artur Mariano de Sousa Malafaia, Carlos Alberto Della Rovere
The isothermal and cyclic oxidation behavior of a multi-principal element (MPE) TiNbCr alloy at 800–1000 °C in air was studied and compared to Co-based alloy 188. The phase constitution of the MPE alloy consisted of a Nb-rich body-centered cubic (BCC) matrix and Cr-rich Laves precipitates. While isothermal tests conducted at 800 °C led to the formation of a complex mixture of Nb, Ti and Cr oxides, tests at 900 and 1000 °C resulted in the formation of an innermost Cr2O3-rich scale layer which provided improved oxidation resistance. However, for all exposure temperatures, the scaling kinetics of the alloy were linear and therefore deemed non-protective. In contrast, alloy 188 exhibited parabolic scaling kinetics and smaller mass gain per area than the MPE alloy. The similarity between isothermal and cyclic test results for the MPE alloy confirmed that the scale does not offer much protection. Additionally, for all tests, there was extensive internal oxidation and nitridation.
{"title":"TiNbCr Multi-Principal Element Alloy Oxidation Behavior in Air at 800–1000 °C","authors":"Isabela Dainezi, Brian Gleeson, Bruno Resende Buzatti, Artur Mariano de Sousa Malafaia, Carlos Alberto Della Rovere","doi":"10.1007/s11085-024-10246-x","DOIUrl":"10.1007/s11085-024-10246-x","url":null,"abstract":"<div><p>The isothermal and cyclic oxidation behavior of a multi-principal element (MPE) TiNbCr alloy at 800–1000 °C in air was studied and compared to Co-based alloy 188. The phase constitution of the MPE alloy consisted of a Nb-rich body-centered cubic (BCC) matrix and Cr-rich Laves precipitates. While isothermal tests conducted at 800 °C led to the formation of a complex mixture of Nb, Ti and Cr oxides, tests at 900 and 1000 °C resulted in the formation of an innermost Cr<sub>2</sub>O<sub>3</sub>-rich scale layer which provided improved oxidation resistance. However, for all exposure temperatures, the scaling kinetics of the alloy were linear and therefore deemed non-protective. In contrast, alloy 188 exhibited parabolic scaling kinetics and smaller mass gain per area than the MPE alloy. The similarity between isothermal and cyclic test results for the MPE alloy confirmed that the scale does not offer much protection. Additionally, for all tests, there was extensive internal oxidation and nitridation.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"789 - 810"},"PeriodicalIF":2.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10246-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1007/s11085-024-10244-z
S. Ariharan, Milan Parchovianský, Pushpender Singh, Pooja Rani, Rita Maurya, Anusha Sekar, Anup Kumar Keshri, Amirhossein Pakseresht
La2Ce2O7 (LC) has been identified as a promising thermal barrier coating (TBC) for use up to 1250 °C. In this study, a TBC system was deposited on grit-blasted Inconel 738 using atmospheric plasma spraying (APS) with NiCrAlY as the bond coat, followed by YSZ, and then LC as the top layer. The coatings were exposed to a mixture of molten Na2SO4 (45 wt.%) and V2O5 (55 wt.%) at 950 °C for hot corrosion. On the top LC layer, LaVO4, CeVO4 and CeO(1.66–2.00) formed as hot corrosion products after 4 h exposure. A reaction between YSZ and the corrosion products could not be observed due to the absence of YVO4. The hot corrosion mechanism of the LC-based TBC is also discussed in this study.
{"title":"Hot Corrosion Behavior of La2Ce2O7-Based Plasma-Sprayed Coating","authors":"S. Ariharan, Milan Parchovianský, Pushpender Singh, Pooja Rani, Rita Maurya, Anusha Sekar, Anup Kumar Keshri, Amirhossein Pakseresht","doi":"10.1007/s11085-024-10244-z","DOIUrl":"10.1007/s11085-024-10244-z","url":null,"abstract":"<div><p>La<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub> (LC) has been identified as a promising thermal barrier coating (TBC) for use up to 1250 °C. In this study, a TBC system was deposited on grit-blasted Inconel 738 using atmospheric plasma spraying (APS) with NiCrAlY as the bond coat, followed by YSZ, and then LC as the top layer. The coatings were exposed to a mixture of molten Na<sub>2</sub>SO<sub>4</sub> (45 wt.%) and V<sub>2</sub>O<sub>5</sub> (55 wt.%) at 950 °C for hot corrosion. On the top LC layer, LaVO<sub>4</sub>, CeVO<sub>4</sub> and CeO<sub>(1.66–2.00)</sub> formed as hot corrosion products after 4 h exposure. A reaction between YSZ and the corrosion products could not be observed due to the absence of YVO<sub>4</sub>. The hot corrosion mechanism of the LC-based TBC is also discussed in this study.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"779 - 788"},"PeriodicalIF":2.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10244-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-18DOI: 10.1007/s11085-024-10241-2
Marharyta Lakusta, Nicholas M. Timme, Abid H. Rafi, Jeremy L. Watts, Ming C. Leu, Gregory E. Hilmas, William G. Fahrenholtz, David W. Lipke
Oxidation behavior of additively manufactured ZrB2–SiC in air and in CO2 is reported in the temperature range of 700–1000 °C. Observed scale morphologies in air and in CO2 were similar, featuring an outer borosilicate layer and an inner porous zirconia layer containing partially oxidized silicon carbide particles and remnant borosilicate products. Oxide scale thicknesses and parabolic scaling constants in air were approximately twice those observed in CO2 across all studied temperatures. Activation energies for oxidation of 140 ± 20 kJ/mol in air and 110 ± 20 kJ/mol in CO2 were determined, indicating similar diffusion processes that appear to be rate-limiting. The formation of protective scales across wide temperature ranges both in air and in CO2 makes additively manufactured ZrB2–SiC an attractive candidate for high-temperature industrial process applications featuring varied oxidants such as heat exchangers.
{"title":"Oxidation of Additively Manufactured ZrB2–SiC in Air and in CO2 at 700–1000 °C","authors":"Marharyta Lakusta, Nicholas M. Timme, Abid H. Rafi, Jeremy L. Watts, Ming C. Leu, Gregory E. Hilmas, William G. Fahrenholtz, David W. Lipke","doi":"10.1007/s11085-024-10241-2","DOIUrl":"10.1007/s11085-024-10241-2","url":null,"abstract":"<div><p>Oxidation behavior of additively manufactured ZrB<sub>2</sub>–SiC in air and in CO<sub>2</sub> is reported in the temperature range of 700–1000 °C. Observed scale morphologies in air and in CO<sub>2</sub> were similar, featuring an outer borosilicate layer and an inner porous zirconia layer containing partially oxidized silicon carbide particles and remnant borosilicate products. Oxide scale thicknesses and parabolic scaling constants in air were approximately twice those observed in CO<sub>2</sub> across all studied temperatures. Activation energies for oxidation of 140 ± 20 kJ/mol in air and 110 ± 20 kJ/mol in CO<sub>2</sub> were determined, indicating similar diffusion processes that appear to be rate-limiting. The formation of protective scales across wide temperature ranges both in air and in CO<sub>2</sub> makes additively manufactured ZrB<sub>2</sub>–SiC an attractive candidate for high-temperature industrial process applications featuring varied oxidants such as heat exchangers.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"827 - 841"},"PeriodicalIF":2.1,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140616906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1007/s11085-024-10243-0
Fadhli Muhammad, Dmitry Sukhomlinov, Lassi Klemettinen, David Sibarani, Eddy Agus Basuki, Daniel Lindberg, Pekka Taskinen, Akhmad Ardian Korda, Zulfiadi Zulhan, Djoko Hadi Prajitno
Refractory high-entropy alloys (RHEA) are considered as potential candidates for new-generation energy-related high-temperature applications. However, the poor high-temperature oxidation resistance of RHEAs, resulting in phenomena such as significant weight gain, scale spallation, pesting, and even complete oxidation, limits their applications. In this study, the oxidation behavior of AlxHfNbTiVY0.05 (x = 0.75; 1; 1.25) high-entropy alloys was investigated at 700–900 °C. The isothermal oxidation tests showed that the oxidation resistance of AlxHfNbTiVY0.05 RHEA is strongly influenced by temperature and time. In addition, accelerated oxidation, known as pesting, was observed to occur at 700 °C for all alloys; while, partial spallation was observed at 800 °C for the Al1 and Al1.25 alloys. Detailed analyses of oxidation kinetics have been carried out for the oxidation test series at 900 °C. The mechanism behind disintegration was investigated and attributed to accelerated internal oxidation followed by the formation of voluminous Nb2O5, TiNb2O7, and fast-growing AlNbO4, and is also thought to be related to the partial evaporation of V2O5.
{"title":"Oxidation Behavior of AlxHfNbTiVY0.05 Refractory High-Entropy Alloys at 700–900 °C","authors":"Fadhli Muhammad, Dmitry Sukhomlinov, Lassi Klemettinen, David Sibarani, Eddy Agus Basuki, Daniel Lindberg, Pekka Taskinen, Akhmad Ardian Korda, Zulfiadi Zulhan, Djoko Hadi Prajitno","doi":"10.1007/s11085-024-10243-0","DOIUrl":"10.1007/s11085-024-10243-0","url":null,"abstract":"<div><p>Refractory high-entropy alloys (RHEA) are considered as potential candidates for new-generation energy-related high-temperature applications. However, the poor high-temperature oxidation resistance of RHEAs, resulting in phenomena such as significant weight gain, scale spallation, pesting, and even complete oxidation, limits their applications. In this study, the oxidation behavior of Al<sub><i>x</i></sub>HfNbTiVY<sub>0.05</sub> (<i>x</i> = 0.75; 1; 1.25) high-entropy alloys was investigated at 700–900 °C. The isothermal oxidation tests showed that the oxidation resistance of Al<sub><i>x</i></sub>HfNbTiVY<sub>0.05</sub> RHEA is strongly influenced by temperature and time. In addition, accelerated oxidation, known as pesting, was observed to occur at 700 °C for all alloys; while, partial spallation was observed at 800 °C for the Al<sub>1</sub> and Al<sub>1.25</sub> alloys. Detailed analyses of oxidation kinetics have been carried out for the oxidation test series at 900 °C. The mechanism behind disintegration was investigated and attributed to accelerated internal oxidation followed by the formation of voluminous Nb<sub>2</sub>O<sub>5</sub>, TiNb<sub>2</sub>O<sub>7</sub>, and fast-growing AlNbO<sub>4</sub>, and is also thought to be related to the partial evaporation of V<sub>2</sub>O<sub>5</sub>.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"755 - 778"},"PeriodicalIF":2.1,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-06DOI: 10.1007/s11085-024-10242-1
Xinyu Cao, Yangpeng Zhang, Lijian Rong, Desheng Yan
The phase composition of the pre-oxidized film on an alloy surface usually has a great influence on its corrosion resistance. In this work, the surface oxide film growth behavior in low-oxygen atmosphere at 720 °C of two 12Cr heat-resistant steels with different Mn content was studied, and their corrosion resistance in liquid lead–bismuth eutectic (LBE) with saturated oxygen at 600 °C was tested. The results indicated that the pre-oxidized film of 1.6Mn steel is mainly composed of large-size Mn–Cr spinel and Fe–Cr spinel, while that of improved 0Mn steel is mainly composed of continuous and dense Cr2O3 and Fe–Cr spinel. This is because Mn has a high diffusion rate in Cr2O3, so it can pass through the Cr2O3 layer and combine with O to form Mn-rich oxides, and then the Mn-rich oxides react with Cr2O3 to form Mn–Cr spinel. However, due to the high solubility of Mn in LBE, the Mn-rich pre-oxidized film of 1.6Mn steel will dissolve and fail quickly, so its long-term corrosion resistance in LBE is lower than that of 0Mn steel.
{"title":"Effect of Mn on the Growth Behavior of Pre-oxidized Film on the Heat-resistant Steel Surface","authors":"Xinyu Cao, Yangpeng Zhang, Lijian Rong, Desheng Yan","doi":"10.1007/s11085-024-10242-1","DOIUrl":"10.1007/s11085-024-10242-1","url":null,"abstract":"<div><p>The phase composition of the pre-oxidized film on an alloy surface usually has a great influence on its corrosion resistance. In this work, the surface oxide film growth behavior in low-oxygen atmosphere at 720 °C of two 12Cr heat-resistant steels with different Mn content was studied, and their corrosion resistance in liquid lead–bismuth eutectic (LBE) with saturated oxygen at 600 °C was tested. The results indicated that the pre-oxidized film of 1.6Mn steel is mainly composed of large-size Mn–Cr spinel and Fe–Cr spinel, while that of improved 0Mn steel is mainly composed of continuous and dense Cr<sub>2</sub>O<sub>3</sub> and Fe–Cr spinel. This is because Mn has a high diffusion rate in Cr<sub>2</sub>O<sub>3</sub>, so it can pass through the Cr<sub>2</sub>O<sub>3</sub> layer and combine with O to form Mn-rich oxides, and then the Mn-rich oxides react with Cr<sub>2</sub>O<sub>3</sub> to form Mn–Cr spinel. However, due to the high solubility of Mn in LBE, the Mn-rich pre-oxidized film of 1.6Mn steel will dissolve and fail quickly, so its long-term corrosion resistance in LBE is lower than that of 0Mn steel.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"729 - 754"},"PeriodicalIF":2.1,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.1007/s11085-024-10240-3
Rachna Chaudhary, Amandeep Kaur, Niraj Bala, Sushil Kumar Kansal
Hot corrosion is a severe form of industrial corrosion which occurs at high temperatures under the influence of oxidizing gases and can be prominently linked to the formation of a molten salt/ash layer over any metallic substrate. Throughout the years, several types of inhibitors and coatings have successfully been employed to reduce its devastating effects to a certain extent. In this study, two synthesized metal oxides namely Al2O3 and MnO2 were used as corrosion inhibitors and XRD, FTIR analysis were carried out to assess their structural properties. Further, TGA analysis for Al2O3 and MnO2 was carried out to determine thermal stability characteristics. The as-synthesized materials were further deposited as inhibitor coatings (Al2O3 with MnO2 bond coating, MnO2 coating and Al2O3 + 50% MnO2 coating) on T22 boiler steel specimens. All the specimens (bare T22 and coated T22 steel) were investigated for hot corrosion studies in Na2SO4-60%V2O5 environment at the temperature of 900 °C for 50 consecutive cycles. Every cycle involved a 1-h heating step in furnace followed by 20-min cooling at room temperature. Weight gain data were collected using a digital balance. XRD and (SEM–EDS) analysis were carried out to characterize the samples after exposure to hot corrosion environment. A better resistance to hot corrosion was observed for all the different types of coatings, with Al2O3 + 50% MnO2 coating representing maximum resistance. A high concentration of protective oxides such as Al2O3 and Cr2O3 present on the surface and their interaction to form dense layers on the coated samples explains the enhanced hot corrosion inhibition.
{"title":"Effect of Superficially Applied MnO2 and Al2O3 Oxide Inhibitors in Enhancing High-Temperature Corrosion of T22 Boiler Steel","authors":"Rachna Chaudhary, Amandeep Kaur, Niraj Bala, Sushil Kumar Kansal","doi":"10.1007/s11085-024-10240-3","DOIUrl":"10.1007/s11085-024-10240-3","url":null,"abstract":"<div><p>Hot corrosion is a severe form of industrial corrosion which occurs at high temperatures under the influence of oxidizing gases and can be prominently linked to the formation of a molten salt/ash layer over any metallic substrate. Throughout the years, several types of inhibitors and coatings have successfully been employed to reduce its devastating effects to a certain extent. In this study, two synthesized metal oxides namely Al<sub>2</sub>O<sub>3</sub> and MnO<sub>2</sub> were used as corrosion inhibitors and XRD, FTIR analysis were carried out to assess their structural properties. Further, TGA analysis for Al<sub>2</sub>O<sub>3</sub> and MnO<sub>2</sub> was carried out to determine thermal stability characteristics. The as-synthesized materials were further deposited as inhibitor coatings (Al<sub>2</sub>O<sub>3</sub> with MnO<sub>2</sub> bond coating, MnO<sub>2</sub> coating and Al<sub>2</sub>O<sub>3</sub> + 50% MnO<sub>2</sub> coating) on T22 boiler steel specimens. All the specimens (bare T22 and coated T22 steel) were investigated for hot corrosion studies in Na<sub>2</sub>SO<sub>4</sub>-60%V<sub>2</sub>O<sub>5</sub> environment at the temperature of 900 °C for 50 consecutive cycles. Every cycle involved a 1-h heating step in furnace followed by 20-min cooling at room temperature. Weight gain data were collected using a digital balance. XRD and (SEM–EDS) analysis were carried out to characterize the samples after exposure to hot corrosion environment. A better resistance to hot corrosion was observed for all the different types of coatings, with Al<sub>2</sub>O<sub>3</sub> + 50% MnO<sub>2</sub> coating representing maximum resistance. A high concentration of protective oxides such as Al<sub>2</sub>O<sub>3</sub> and Cr<sub>2</sub>O<sub>3</sub> present on the surface and their interaction to form dense layers on the coated samples explains the enhanced hot corrosion inhibition.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"703 - 727"},"PeriodicalIF":2.1,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}