The paper is a theoretical investigation into the potential application of game theoretic concepts to neural networks (natural and artificial). The paper relies on basic models but the findings are more general in nature and therefore should apply to more complex environments. A major outcome of the paper is a learning algorithm based on game theory for a paired neuron system.
{"title":"Application of Game Theory to Neuronal Networks","authors":"A. Schuster, Y. Yamaguchi","doi":"10.1155/2010/521606","DOIUrl":"https://doi.org/10.1155/2010/521606","url":null,"abstract":"The paper is a theoretical investigation into the potential application of game theoretic concepts to neural networks (natural and artificial). The paper relies on basic models but the findings are more general in nature and therefore should apply to more complex environments. A major outcome of the paper is a learning algorithm based on game theory for a paired neuron system.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"30 1","pages":"521606:1-521606:12"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81280480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, the size and complexity of datasets have shown an exponential growth. In many application areas, huge amounts of data are generated, explicitly or implicitly containing spatial or spatiotemporal information. However, the ability to analyze these data remains inadequate, and the need for adapted data mining tools becomes a major challenge. In this paper, we propose a new unsupervised algorithm, suitable for the analysis of noisy spatiotemporal Radio Frequency IDentification (RFID) data. Two real applications show that this algorithm is an efficient data-mining tool for behavioral studies based on RFID technology. It allows discovering and comparing stable patterns in an RFID signal and is suitable for continuous learning.
{"title":"Unsupervised Topographic Learning for Spatiotemporal Data Mining","authors":"Guénaël Cabanes, Younès Bennani","doi":"10.1155/2010/832542","DOIUrl":"https://doi.org/10.1155/2010/832542","url":null,"abstract":"In recent years, the size and complexity of datasets have shown an exponential growth. In many application areas, huge amounts of data are generated, explicitly or implicitly containing spatial or spatiotemporal information. However, the ability to analyze these data remains inadequate, and the need for adapted data mining tools becomes a major challenge. In this paper, we propose a new unsupervised algorithm, suitable for the analysis of noisy spatiotemporal Radio Frequency IDentification (RFID) data. Two real applications show that this algorithm is an efficient data-mining tool for behavioral studies based on RFID technology. It allows discovering and comparing stable patterns in an RFID signal and is suitable for continuous learning.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"14 1","pages":"832542:1-832542:12"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89233660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The focus of warfare has shifted from the Industrial Age to the Information Age, as encapsulated by the term Network Enabled Capability. This emphasises information sharing, command decision-making, and the resultant plans made by commanders on the basis of that information. Planning by a higher level military commander is, in most cases, regarded as such a difficult process to emulate, that it is performed by a real commander during wargaming or during an experimental session based on a Synthetic Environment. Such an approach gives a rich representation of a small number of data points. However, a more complete analysis should allow search across a wider set of alternatives. This requires a closed-form version of such a simulation. In this paper, we discuss an approach to this problem, based on emulating the higher command process using a combination of game theory and genetic algorithms. This process was initially implemented in an exploratory research initiative, described here, and now forms the basis of the development of a "Mission Planner," potentially applicable to all of our higher level closed-form simulation models.
{"title":"Using Genetic Algorithms to Represent Higher-Level Planning in Simulation Models of Conflict","authors":"James Moffat, S. Fellows","doi":"10.1155/2010/701904","DOIUrl":"https://doi.org/10.1155/2010/701904","url":null,"abstract":"The focus of warfare has shifted from the Industrial Age to the Information Age, as encapsulated by the term Network Enabled Capability. This emphasises information sharing, command decision-making, and the resultant plans made by commanders on the basis of that information. Planning by a higher level military commander is, in most cases, regarded as such a difficult process to emulate, that it is performed by a real commander during wargaming or during an experimental session based on a Synthetic Environment. Such an approach gives a rich representation of a small number of data points. However, a more complete analysis should allow search across a wider set of alternatives. This requires a closed-form version of such a simulation. In this paper, we discuss an approach to this problem, based on emulating the higher command process using a combination of game theory and genetic algorithms. This process was initially implemented in an exploratory research initiative, described here, and now forms the basis of the development of a \"Mission Planner,\" potentially applicable to all of our higher level closed-form simulation models.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"109 1","pages":"701904:1-701904:11"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73532019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Object tracking using Mean Shift (MS) has been attracting considerable attention recently. In this paper, we try to deal with one of its shortcoming. Mean shift is designed to find local maxima for tracking objects. Therefore, in large target movement between two consecutive frames, the local and global modes are not the same as previous frames so that Mean Shift tracker may fail in tracking the desired object via localizing the global mode. To overcome this problem, a multibandwidth procedure is proposed to help conventional MS tracker reach the global mode of the density function using any staring points. This gradually smoothening procedure is called Multi Bandwidth Mean Shift (MBMS) which in fact smoothens the Kernel Function through a multiple kernel-based sampling procedure automatically. Since it is important for us to have less computational complexity for real-time applications, we try to decrease the number of iterations to reach the global mode. Based on our results, this proposed version of MS enables us to track an object with the same initial point much faster than conventional MS tracker.
{"title":"Multibandwidth Kernel-Based Object Tracking","authors":"Aras Dargazany, A. Soleimani, A. Ahmadyfard","doi":"10.1155/2010/175603","DOIUrl":"https://doi.org/10.1155/2010/175603","url":null,"abstract":"Object tracking using Mean Shift (MS) has been attracting considerable attention recently. In this paper, we try to deal with one of its shortcoming. Mean shift is designed to find local maxima for tracking objects. Therefore, in large target movement between two consecutive frames, the local and global modes are not the same as previous frames so that Mean Shift tracker may fail in tracking the desired object via localizing the global mode. To overcome this problem, a multibandwidth procedure is proposed to help conventional MS tracker reach the global mode of the density function using any staring points. This gradually smoothening procedure is called Multi Bandwidth Mean Shift (MBMS) which in fact smoothens the Kernel Function through a multiple kernel-based sampling procedure automatically. Since it is important for us to have less computational complexity for real-time applications, we try to decrease the number of iterations to reach the global mode. Based on our results, this proposed version of MS enables us to track an object with the same initial point much faster than conventional MS tracker.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"124 1","pages":"175603:1-175603:15"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77350762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The episodic memory, the memory of personal events and history, is essential for understanding the mechanism of human intelligence. Neuroscience evidence has shown that the hippocampus, a part of the limbic system, plays an important role in the encoding and the retrieval of the episodic memory. This paper reviews computational models of the hippocampus and introduces our own computational model of human episodic memory based on neural synchronization. Results from computer simulations demonstrate that our model provides advantage for instantaneous memory formation and selective retrieval enabling memory search. Moreover, this model was found to have the ability to predict human memory recall by integrating human eye movement data during encoding. The combined approach between computational models and experiment is efficient for theorizing the human episodic memory.
{"title":"Simulation of Human Episodic Memory by Using a Computational Model of the Hippocampus","authors":"N. Sato, Y. Yamaguchi","doi":"10.1155/2010/392868","DOIUrl":"https://doi.org/10.1155/2010/392868","url":null,"abstract":"The episodic memory, the memory of personal events and history, is essential for understanding the mechanism of human intelligence. Neuroscience evidence has shown that the hippocampus, a part of the limbic system, plays an important role in the encoding and the retrieval of the episodic memory. This paper reviews computational models of the hippocampus and introduces our own computational model of human episodic memory based on neural synchronization. Results from computer simulations demonstrate that our model provides advantage for instantaneous memory formation and selective retrieval enabling memory search. Moreover, this model was found to have the ability to predict human memory recall by integrating human eye movement data during encoding. The combined approach between computational models and experiment is efficient for theorizing the human episodic memory.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"11 1","pages":"392868:1-392868:10"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86553521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The combination of a nonlinear time series analysis technique, Recurrence Quantification Analysis (RQA) based on Recurrence Plots (RPs), and traditional statistical analysis for neuronal electrophysiology is proposed in this paper as an innovative paradigm for studying the variation of spontaneous electrophysiological activity of in vitro Neuronal Networks (NNs) coupled to Multielectrode Array (MEA) chips. Recurrence, determinism, entropy, distance of activity patterns, and correlation in correspondence to spike and burst parameters (e.g., mean spiking rate, mean bursting rate, burst duration, spike in burst, etc.) have been computed to characterize and assess the daily changes of the neuronal electrophysiology during neuronal network development and maturation. The results show the similarities/differences between several channels and time periods as well as the evolution of the spontaneous activity in the MEA chip. RPs could be used for graphically exploring possible neuronal dynamic breaking/changing points, whereas RQA parameters are suited for locating them. The combination of RQA with traditional approaches improves the identification, description, and prediction of electrophysiological changes and it will be used to allow intercomparison between results obtained from different MEA chips. Results suggest the proposed processing paradigm as a valuable tool to analyze neuronal activity for screening purposes (e.g., toxicology, neurodevelopmental toxicology).
{"title":"Recurrence Quantification Analysis of Spontaneous Electrophysiological Activity during Development: Characterization of In Vitro Neuronal Networks Cultured on Multi Electrode Array Chips","authors":"A. Novellino, J. Zaldívar","doi":"10.1155/2010/209254","DOIUrl":"https://doi.org/10.1155/2010/209254","url":null,"abstract":"The combination of a nonlinear time series analysis technique, Recurrence Quantification Analysis (RQA) based on Recurrence Plots (RPs), and traditional statistical analysis for neuronal electrophysiology is proposed in this paper as an innovative paradigm for studying the variation of spontaneous electrophysiological activity of in vitro Neuronal Networks (NNs) coupled to Multielectrode Array (MEA) chips. Recurrence, determinism, entropy, distance of activity patterns, and correlation in correspondence to spike and burst parameters (e.g., mean spiking rate, mean bursting rate, burst duration, spike in burst, etc.) have been computed to characterize and assess the daily changes of the neuronal electrophysiology during neuronal network development and maturation. The results show the similarities/differences between several channels and time periods as well as the evolution of the spontaneous activity in the MEA chip. RPs could be used for graphically exploring possible neuronal dynamic breaking/changing points, whereas RQA parameters are suited for locating them. The combination of RQA with traditional approaches improves the identification, description, and prediction of electrophysiological changes and it will be used to allow intercomparison between results obtained from different MEA chips. Results suggest the proposed processing paradigm as a valuable tool to analyze neuronal activity for screening purposes (e.g., toxicology, neurodevelopmental toxicology).","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"40 1","pages":"209254:1-209254:10"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91169902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological organisms do not evolve to perfection, but to out compete others in their ecological niche, and therefore survive and reproduce. This paper reviews the constraints imposed on imperfect organisms, particularly on their neural systems and ability to capture and process information accurately. By understanding biological constraints of the physical properties of neurons, simpler and more efficient artificial neural networks can be made (e.g., spiking networks will transmit less information than graded potential networks, spikes only occur in nature due to limitations of carrying electrical charges over large distances). Furthermore, understanding the behavioural and ecological constraints on animals allows an understanding of the limitations of bio-inspired solutions, but also an understanding of why bio-inspired solutions may fail and how to correct these failures.
{"title":"Constraints of Biological Neural Networks and Their Consideration in AI Applications","authors":"Richard Stafford","doi":"10.1155/2010/845723","DOIUrl":"https://doi.org/10.1155/2010/845723","url":null,"abstract":"Biological organisms do not evolve to perfection, but to out compete others in their ecological niche, and therefore survive and reproduce. This paper reviews the constraints imposed on imperfect organisms, particularly on their neural systems and ability to capture and process information accurately. By understanding biological constraints of the physical properties of neurons, simpler and more efficient artificial neural networks can be made (e.g., spiking networks will transmit less information than graded potential networks, spikes only occur in nature due to limitations of carrying electrical charges over large distances). Furthermore, understanding the behavioural and ecological constraints on animals allows an understanding of the limitations of bio-inspired solutions, but also an understanding of why bio-inspired solutions may fail and how to correct these failures.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"10 11-12 1","pages":"845723:1-845723:6"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90384865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The collaboration between artificial intelligence and neuroscience can produce an understanding of the mechanisms in the brain that generate human cognition. This article reviews multidisciplinary research lines that could achieve this understanding. Artificial intelligence has an important role to play in research, because artificial intelligence focuses on the mechanisms that generate intelligence and cognition. Artificial intelligence can also benefit from studying the neural mechanisms of cognition, because this research can reveal important information about the nature of intelligence and cognition itself. I will illustrate this aspect by discussing the grounded nature of human cognition. Human cognition is perhaps unique because it combines grounded representations with computational productivity. I will illustrate that this combination requires specific neural architectures. Investigating and simulating these architectures can reveal how they are instantiated in the brain. The way these architectures implement cognitive processes could also provide answers to fundamental problems facing the study of cognition.
{"title":"Where Artificial Intelligence and Neuroscience Meet: The Search for Grounded Architectures of Cognition","authors":"F. Velde","doi":"10.1155/2010/918062","DOIUrl":"https://doi.org/10.1155/2010/918062","url":null,"abstract":"The collaboration between artificial intelligence and neuroscience can produce an understanding of the mechanisms in the brain that generate human cognition. This article reviews multidisciplinary research lines that could achieve this understanding. Artificial intelligence has an important role to play in research, because artificial intelligence focuses on the mechanisms that generate intelligence and cognition. Artificial intelligence can also benefit from studying the neural mechanisms of cognition, because this research can reveal important information about the nature of intelligence and cognition itself. I will illustrate this aspect by discussing the grounded nature of human cognition. Human cognition is perhaps unique because it combines grounded representations with computational productivity. I will illustrate that this combination requires specific neural architectures. Investigating and simulating these architectures can reveal how they are instantiated in the brain. The way these architectures implement cognitive processes could also provide answers to fundamental problems facing the study of cognition.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"42 1","pages":"918062:1-918062:18"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75250894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Belatreche, L. Maguire, T. Mcginnity, L. McDaid, A. Ghani
This paper investigates the computing capabilities and potential applications of neural oscillators, a biologically inspired neural model, to grey scale and colour image segmentation, an important task in image understanding and object recognition. A proposed neural system that exploits the synergy between neural oscillators and Kohonen self-organising maps (SOMs) is presented. It consists of a two-dimensional grid of neural oscillators which are locally connected through excitatory connections and globally connected to a common inhibitor. Each neuron is mapped to a pixel of the input image and existing objects, represented by homogenous areas, are temporally segmented through synchronisation of the activity of neural oscillators that are mapped to pixels of the same object. Self-organising maps form the basis of a colour reduction system whose output is fed to a 2D grid of neural oscillators for temporal correlation-based object segmentation. Both chromatic and local spatial features are used. The system is simulated in Matlab and its demonstration on real world colour images shows promising results and the emergence of a new bioinspired approach for colour image segmentation. The paper concludes with a discussion of the performance of the proposed system and its comparison with traditional image segmentation approaches.
{"title":"Computing with Biologically Inspired Neural Oscillators: Application to Colour Image Segmentation","authors":"A. Belatreche, L. Maguire, T. Mcginnity, L. McDaid, A. Ghani","doi":"10.1155/2010/405073","DOIUrl":"https://doi.org/10.1155/2010/405073","url":null,"abstract":"This paper investigates the computing capabilities and potential applications of neural oscillators, a biologically inspired neural model, to grey scale and colour image segmentation, an important task in image understanding and object recognition. A proposed neural system that exploits the synergy between neural oscillators and Kohonen self-organising maps (SOMs) is presented. It consists of a two-dimensional grid of neural oscillators which are locally connected through excitatory connections and globally connected to a common inhibitor. Each neuron is mapped to a pixel of the input image and existing objects, represented by homogenous areas, are temporally segmented through synchronisation of the activity of neural oscillators that are mapped to pixels of the same object. Self-organising maps form the basis of a colour reduction system whose output is fed to a 2D grid of neural oscillators for temporal correlation-based object segmentation. Both chromatic and local spatial features are used. The system is simulated in Matlab and its demonstration on real world colour images shows promising results and the emergence of a new bioinspired approach for colour image segmentation. The paper concludes with a discussion of the performance of the proposed system and its comparison with traditional image segmentation approaches.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"84 1","pages":"405073:1-405073:21"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88071565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fiona Browne, Huiru Zheng, Haiying Wang, F. Azuaje
A crucial step towards understanding the properties of cellular systems in organisms is to map their network of protein-protein interactions (PPIs) on a proteomic-wide scale completely and as accurately as possible. Uncovering the diverse function of proteins and their interactions within the cell may improve our understanding of disease and provide a basis for the development of novel therapeutic approaches. The development of large-scale high-throughput experiments has resulted in the production of a large volume of data which has aided in the uncovering of PPIs. However, these data are often erroneous and limited in interactome coverage. Therefore, additional experimental and computational methods are required to accelerate the discovery of PPIs. This paper provides a review on the prediction of PPIs addressing key prediction principles and highlighting the common experimental and computational techniques currently employed to infer PPI networks along with relevant studies in the area.
{"title":"From Experimental Approaches to Computational Techniques: A Review on the Prediction of Protein-Protein Interactions","authors":"Fiona Browne, Huiru Zheng, Haiying Wang, F. Azuaje","doi":"10.1155/2010/924529","DOIUrl":"https://doi.org/10.1155/2010/924529","url":null,"abstract":"A crucial step towards understanding the properties of cellular systems in organisms is to map their network of protein-protein interactions (PPIs) on a proteomic-wide scale completely and as accurately as possible. Uncovering the diverse function of proteins and their interactions within the cell may improve our understanding of disease and provide a basis for the development of novel therapeutic approaches. The development of large-scale high-throughput experiments has resulted in the production of a large volume of data which has aided in the uncovering of PPIs. However, these data are often erroneous and limited in interactome coverage. Therefore, additional experimental and computational methods are required to accelerate the discovery of PPIs. This paper provides a review on the prediction of PPIs addressing key prediction principles and highlighting the common experimental and computational techniques currently employed to infer PPI networks along with relevant studies in the area.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"93 1","pages":"924529:1-924529:15"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85645636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}