Humor processing is still a less studied issue, both in NLP and AI. In this paper we contribute to this field. In our previous research we showed that adding a simple pun generator to a chatterbot can significantly improve its performance. The pun generator we used generated only puns based on words (not phrases). In this paper we introduce the next stage of the system's development-- an algorithm allowing generation of phrasal pun candidates. We show that by using only the Internet (without any handmade humor-oriented lexicons), it is possible to generate puns based on complex phrases. As the output list is often excessively long, we also propose a method for reducing the number of candidates by comparing two web-query-based rankings. The evaluation experiment showed that the system achieved an accuracy of 72.5% for finding proper candidates in general, and the reduction method allowed us to significantly shorten the candidates list. The parameters of the reduction algorithm are variable, so that the balance between the number of candidates and the quality of output can be manipulated according to needs.
{"title":"Reducing Excessive Amounts of Data: Multiple Web Queries for Generation of Pun Candidates","authors":"Pawel Dybala, M. Ptaszynski, Kohichi Sayama","doi":"10.1155/2011/107310","DOIUrl":"https://doi.org/10.1155/2011/107310","url":null,"abstract":"Humor processing is still a less studied issue, both in NLP and AI. In this paper we contribute to this field. In our previous research we showed that adding a simple pun generator to a chatterbot can significantly improve its performance. The pun generator we used generated only puns based on words (not phrases). In this paper we introduce the next stage of the system's development-- an algorithm allowing generation of phrasal pun candidates. We show that by using only the Internet (without any handmade humor-oriented lexicons), it is possible to generate puns based on complex phrases. As the output list is often excessively long, we also propose a method for reducing the number of candidates by comparing two web-query-based rankings. The evaluation experiment showed that the system achieved an accuracy of 72.5% for finding proper candidates in general, and the reduction method allowed us to significantly shorten the candidates list. The parameters of the reduction algorithm are variable, so that the balance between the number of candidates and the quality of output can be manipulated according to needs.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"42 1","pages":"107310:1-107310:12"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85137318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The proposed by Meier and Staffelbach Self-Shrinking Generator (SSG) which has efficient hardware implementation only with a single Linear Feedback Shift Register is suitable for low-cost and fast stream cipher applications. In this paper we generalize the idea of the SSG for arbitrary Galois Field GF(pn). The proposed variant of the SSG is called the p-ary Generalized Self-Shrinking Generator (pGSSG). We suggest a method for transformation of a non-binary self-shrunken pGSSG sequence into balanced binary sequence. We prove that the keystreams of the pGSSG have large period and good statistical properties. The analysis of the experimental results shows that the pGSSG sequences have good randomness properties. We examine the complexity of exhaustive search and entropy attacks of the pGSSG. We show that the pGSSG is more secure than SSG and Modified SSG against these attacks. We prove that the complexity of the used pGSSG attacks increases with increasing the prime p. Previously mentioned properties give the reason to say that the pGSSG satisfy the basic security requirements for a stream chipper and can be useful as a part of modern stream ciphers.
{"title":"Generalization of the Self-Shrinking Generator in the Galois Field GF(pn)","authors":"Antoniya Tasheva, Zhaneta Tasheva, A. Milev","doi":"10.1155/2011/464971","DOIUrl":"https://doi.org/10.1155/2011/464971","url":null,"abstract":"The proposed by Meier and Staffelbach Self-Shrinking Generator (SSG) which has efficient hardware implementation only with a single Linear Feedback Shift Register is suitable for low-cost and fast stream cipher applications. In this paper we generalize the idea of the SSG for arbitrary Galois Field GF(pn). The proposed variant of the SSG is called the p-ary Generalized Self-Shrinking Generator (pGSSG). We suggest a method for transformation of a non-binary self-shrunken pGSSG sequence into balanced binary sequence. We prove that the keystreams of the pGSSG have large period and good statistical properties. The analysis of the experimental results shows that the pGSSG sequences have good randomness properties. We examine the complexity of exhaustive search and entropy attacks of the pGSSG. We show that the pGSSG is more secure than SSG and Modified SSG against these attacks. We prove that the complexity of the used pGSSG attacks increases with increasing the prime p. Previously mentioned properties give the reason to say that the pGSSG satisfy the basic security requirements for a stream chipper and can be useful as a part of modern stream ciphers.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"51 1","pages":"464971:1-464971:10"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83179864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rule-based reasoning (RBR) and case-based reasoning (CBR) are two complementary alternatives for building knowledge-based "intelligent" decision-support systems. RBR and CBR can be combined in three main ways: RBR first, CBR first, or some interleaving of the two. The Nest system, described in this paper, allows us to invoke both components separately and in arbitrary order. In addition to the traditional network of propositions and compositional rules, Nest also supports binary, nominal, and numeric attributes used for derivation of proposition weights, logical (no uncertainty) and default (no antecedent) rules, context expressions, integrity constraints, and cases. The inference mechanism allows use of both rule-based and case-based reasoning. Uncertainty processing (based on Hajek's algebraic theory) allows interval weights to be interpreted as a union of hypothetical cases, and a novel set of combination functions inspired by neural networks has been added. The system is implemented in two versions: stand-alone and web-based client server. A user-friendly editor covering all mentioned features is included.
{"title":"NEST: A Compositional Approach to Rule-Based and Case-Based Reasoning","authors":"P. Berka","doi":"10.1155/2011/374250","DOIUrl":"https://doi.org/10.1155/2011/374250","url":null,"abstract":"Rule-based reasoning (RBR) and case-based reasoning (CBR) are two complementary alternatives for building knowledge-based \"intelligent\" decision-support systems. RBR and CBR can be combined in three main ways: RBR first, CBR first, or some interleaving of the two. The Nest system, described in this paper, allows us to invoke both components separately and in arbitrary order. In addition to the traditional network of propositions and compositional rules, Nest also supports binary, nominal, and numeric attributes used for derivation of proposition weights, logical (no uncertainty) and default (no antecedent) rules, context expressions, integrity constraints, and cases. The inference mechanism allows use of both rule-based and case-based reasoning. Uncertainty processing (based on Hajek's algebraic theory) allows interval weights to be interpreted as a union of hypothetical cases, and a novel set of combination functions inspired by neural networks has been added. The system is implemented in two versions: stand-alone and web-based client server. A user-friendly editor covering all mentioned features is included.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"214 1","pages":"374250:1-374250:15"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79523640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We analyze the convergence time of particle swarm optimization (PSO) on the facet of particle interaction. We firstly introduce a statistical interpretation of social-only PSO in order to capture the essence of particle interaction, which is one of the key mechanisms of PSO. We then use the statistical model to obtain theoretical results on the convergence time. Since the theoretical analysis is conducted on the social-only model of PSO, instead of on common models in practice, to verify the validity of our results, numerical experiments are executed on benchmark functions with a regular PSO program.
{"title":"Convergence Time Analysis of Particle Swarm Optimization Based on Particle Interaction","authors":"Chao-Hong Chen, Ying-ping Chen","doi":"10.1155/2011/204750","DOIUrl":"https://doi.org/10.1155/2011/204750","url":null,"abstract":"We analyze the convergence time of particle swarm optimization (PSO) on the facet of particle interaction. We firstly introduce a statistical interpretation of social-only PSO in order to capture the essence of particle interaction, which is one of the key mechanisms of PSO. We then use the statistical model to obtain theoretical results on the convergence time. Since the theoretical analysis is conducted on the social-only model of PSO, instead of on common models in practice, to verify the validity of our results, numerical experiments are executed on benchmark functions with a regular PSO program.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"52 1","pages":"204750:1-204750:7"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75523497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. M. Raju, R. Srivastava, D. Bisht, H. Sharma, Anil Kumar
The present study demonstrates the application of artificial neural networks (ANNs) in predicting the weekly spring discharge. The study was based on the weekly spring discharge from a spring located near Ranichauri in Tehri Garhwal district of Uttarakhand, India. Five models were developed for predicting the spring discharge based on a weekly interval using rainfall, evaporation, temperature with a specified lag time. All models were developed both with one and two hidden layers. Each model was developed with many trials by selecting different network architectures and different number of hidden neurons; finally a best predicting model presented against each developed model. The models were trained with three different algorithms, that is, quick-propagation algorithm, batch backpropagation algorithm, and Levenberg-Marquardt algorithm using weekly data from 1999 to 2005. A best model for the simulation was selected from the three presented algorithms using the statistical criteria such as correlation coefficient (R), determination coefficient, orNash Sutcliff's efficiency (DC). Finally, optimized number of neurons were considered for the best model. Training and testing results revealed that the models were predicting the weekly spring discharge satisfactorily. Based on these criteria, ANN-based model results in better agreement for the computation of spring discharge. LMR models were also developed in the study, and they also gave good results, but, when compared with the ANN methodology, ANN resulted in better optimized values.
{"title":"Development of Artificial Neural-Network-Based Models for the Simulation of Spring Discharge","authors":"M. M. Raju, R. Srivastava, D. Bisht, H. Sharma, Anil Kumar","doi":"10.1155/2011/686258","DOIUrl":"https://doi.org/10.1155/2011/686258","url":null,"abstract":"The present study demonstrates the application of artificial neural networks (ANNs) in predicting the weekly spring discharge. The study was based on the weekly spring discharge from a spring located near Ranichauri in Tehri Garhwal district of Uttarakhand, India. Five models were developed for predicting the spring discharge based on a weekly interval using rainfall, evaporation, temperature with a specified lag time. All models were developed both with one and two hidden layers. Each model was developed with many trials by selecting different network architectures and different number of hidden neurons; finally a best predicting model presented against each developed model. The models were trained with three different algorithms, that is, quick-propagation algorithm, batch backpropagation algorithm, and Levenberg-Marquardt algorithm using weekly data from 1999 to 2005. A best model for the simulation was selected from the three presented algorithms using the statistical criteria such as correlation coefficient (R), determination coefficient, orNash Sutcliff's efficiency (DC). Finally, optimized number of neurons were considered for the best model. Training and testing results revealed that the models were predicting the weekly spring discharge satisfactorily. Based on these criteria, ANN-based model results in better agreement for the computation of spring discharge. LMR models were also developed in the study, and they also gave good results, but, when compared with the ANN methodology, ANN resulted in better optimized values.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"8 1","pages":"686258:1-686258:11"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75106112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There is currently a growing body of research examining the effects of the fusion of domain knowledge and data mining. This paper examines the impact of such fusion in a novel way by applying validation techniques and training data to enhance the performance of knowledge-based expert systems. We present an algorithm for tuning an expert system to minimize the expected misclassification cost. The algorithm employs data reserved for training data mining models to determine the decision cutoff of the expert system, in terms of the certainty factor of a prediction, for optimal performance. We evaluate the proposed algorithm and find that tuning the expert systemresults in significantly lower costs. Our approach could be extended to enhance the performance of any intelligent or knowledge system that makes cost-sensitive business decisions.
{"title":"Tuning Expert Systems for Cost-Sensitive Decisions","authors":"Atish P. Sinha, Huimin Zhao","doi":"10.1155/2011/587285","DOIUrl":"https://doi.org/10.1155/2011/587285","url":null,"abstract":"There is currently a growing body of research examining the effects of the fusion of domain knowledge and data mining. This paper examines the impact of such fusion in a novel way by applying validation techniques and training data to enhance the performance of knowledge-based expert systems. We present an algorithm for tuning an expert system to minimize the expected misclassification cost. The algorithm employs data reserved for training data mining models to determine the decision cutoff of the expert system, in terms of the certainty factor of a prediction, for optimal performance. We evaluate the proposed algorithm and find that tuning the expert systemresults in significantly lower costs. Our approach could be extended to enhance the performance of any intelligent or knowledge system that makes cost-sensitive business decisions.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"102 1","pages":"587285:1-587285:12"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75305993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervous systems of biological organisms and systems biology with its longing to comprehend, holistically, the multitude of complex interactions in biological systems are two such fields. They target ideals artificial intelligence has dreamt about for a long time including the computer simulation of an entire biological brain or the creation of new life forms from manipulations of cellular and genetic information in the laboratory. The scope for artificial intelligence in neuroscience and systems biology is extremely wide. This article investigates the standing of artificial intelligence in relation to neuroscience and systems biology and provides an outlook at new and exciting challenges for artificial intelligence in these fields. These challenges include, but are not necessarily limited to, the ability to learn from other projects and to be inventive, to understand the potential and exploit novel computing paradigms and environments, to specify and adhere to stringent standards and robust statistical frameworks, to be integrative, and to embrace openness principles.
{"title":"Quo Vadis, Artificial Intelligence?","authors":"D. Berrar, N. Sato, A. Schuster","doi":"10.1155/2010/629869","DOIUrl":"https://doi.org/10.1155/2010/629869","url":null,"abstract":"Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervous systems of biological organisms and systems biology with its longing to comprehend, holistically, the multitude of complex interactions in biological systems are two such fields. They target ideals artificial intelligence has dreamt about for a long time including the computer simulation of an entire biological brain or the creation of new life forms from manipulations of cellular and genetic information in the laboratory. The scope for artificial intelligence in neuroscience and systems biology is extremely wide. This article investigates the standing of artificial intelligence in relation to neuroscience and systems biology and provides an outlook at new and exciting challenges for artificial intelligence in these fields. These challenges include, but are not necessarily limited to, the ability to learn from other projects and to be inventive, to understand the potential and exploit novel computing paradigms and environments, to specify and adhere to stringent standards and robust statistical frameworks, to be integrative, and to embrace openness principles.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"66 1","pages":"629869:1-629869:12"},"PeriodicalIF":0.0,"publicationDate":"2010-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80101445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Xiang, Liangming Liu, Qiao Wang, Na Yang, T. Han
FY-3A is the second Chinese Polar Orbital Meteorological Satellite with global, three-dimensional, quantitative, and multispectral capabilities. Its missions include monitoring global disasters and environment changes. This study describes some basic parameters and major technical indicators of the FY-3A and evaluates data quality and drought monitoring capability of the Medium-Resolution Imager (MERSI) onboard the FY-3A. Data obtained with the MERSI was compared with that of the MODerate-resolution Imaging Spectroradiometer (MODIS), imaged at the same time period and geographic zone. In addition, the Temperature/Vegetation Drought Index (TVDI), a highly accurate and stable monitoring model, was used to monitor drought condition with MERSI and MODIS sensors. It is found in the study that the relative accuracy of data, obtained with these two devices, was consistent with the acceptable overall accuracy of 93.8. Furthermore, spatial resolution of MERSI is superior as compared to that of MODIS. Therefore, FY-3A MERSI can serve a reliable and new data source for drought monitoring.
{"title":"Evaluation of Data Quality and Drought Monitoring Capability of FY-3A MERSI Data","authors":"D. Xiang, Liangming Liu, Qiao Wang, Na Yang, T. Han","doi":"10.1155/2010/124816","DOIUrl":"https://doi.org/10.1155/2010/124816","url":null,"abstract":"FY-3A is the second Chinese Polar Orbital Meteorological Satellite with global, three-dimensional, quantitative, and multispectral capabilities. Its missions include monitoring global disasters and environment changes. This study describes some basic parameters and major technical indicators of the FY-3A and evaluates data quality and drought monitoring capability of the Medium-Resolution Imager (MERSI) onboard the FY-3A. Data obtained with the MERSI was compared with that of the MODerate-resolution Imaging Spectroradiometer (MODIS), imaged at the same time period and geographic zone. In addition, the Temperature/Vegetation Drought Index (TVDI), a highly accurate and stable monitoring model, was used to monitor drought condition with MERSI and MODIS sensors. It is found in the study that the relative accuracy of data, obtained with these two devices, was consistent with the acceptable overall accuracy of 93.8. Furthermore, spatial resolution of MERSI is superior as compared to that of MODIS. Therefore, FY-3A MERSI can serve a reliable and new data source for drought monitoring.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"15 1","pages":"124816:1-124816:10"},"PeriodicalIF":0.0,"publicationDate":"2010-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75201937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The brain is the center of intelligence that biological systems have acquired during their evolutionary history. In unpredictably changing environments, animals use it to recognize the external world and to make appropriate behavioral decisions. Understanding the mechanisms underlying biological intelligence is important for the development of artificial intelligence. Olfaction is one of the sensory modalities that animals use to locate distant objects. Because of its relative simplicity compared with other sensory modalities and the wealth of knowledge at cellular, network, system, and psychophysical levels, it is possible that the biological olfactory system would be understood comprehensively. This paper reviews our biological and computational works with a focus on the temporal aspects of olfactory information processing. In addition, the paper highlights that the “time” dimension is essential for the functioning of the olfactory information processing system in the real world.
{"title":"Investigating the Underlying Intelligence Mechanisms of the Biological Olfactory System","authors":"Y. Makino, M. Yano","doi":"10.1155/2010/478107","DOIUrl":"https://doi.org/10.1155/2010/478107","url":null,"abstract":"The brain is the center of intelligence that biological systems have acquired during their evolutionary history. In unpredictably changing environments, animals use it to recognize the external world and to make appropriate behavioral decisions. Understanding the mechanisms underlying biological intelligence is important for the development of artificial intelligence. Olfaction is one of the sensory modalities that animals use to locate distant objects. Because of its relative simplicity compared with other sensory modalities and the wealth of knowledge at cellular, network, system, and psychophysical levels, it is possible that the biological olfactory system would be understood comprehensively. This paper reviews our biological and computational works with a focus on the temporal aspects of olfactory information processing. In addition, the paper highlights that the “time” dimension is essential for the functioning of the olfactory information processing system in the real world.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"79 1","pages":"478107:1-478107:9"},"PeriodicalIF":0.0,"publicationDate":"2010-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78656813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A central goal of robotics and AI is to enable a team of robots to operate autonomously in the real world and collaborate with humans over an extended period of time. Though developments in sensor technology have resulted in the deployment of robots in specific applications the ability to accurately sense and interact with the environment is still missing. Key challenges to the widespread deployment of robots include the ability to learn models of environmental features based on sensory inputs, bootstrap off of the learned models to detect and adapt to environmental changes, and autonomously tailor the sensory processing to the task at hand. This paper summarizes a comprehensive effort towards such bootstrap learning, adaptation, and processing management using visual input. We describe probabilistic algorithms that enable a mobile robot to autonomously plan its actions to learn models of color distributions and illuminations. The learned models are used to detect and adapt to illumination changes. Furthermore, we describe a probabilistic sequential decision-making approach that autonomously tailors the visual processing to the task at hand. All algorithms are fully implemented and tested on robot platforms in dynamic environments.
{"title":"Bootstrap Learning and Visual Processing Management on Mobile Robots","authors":"M. Sridharan","doi":"10.1155/2010/765876","DOIUrl":"https://doi.org/10.1155/2010/765876","url":null,"abstract":"A central goal of robotics and AI is to enable a team of robots to operate autonomously in the real world and collaborate with humans over an extended period of time. Though developments in sensor technology have resulted in the deployment of robots in specific applications the ability to accurately sense and interact with the environment is still missing. Key challenges to the widespread deployment of robots include the ability to learn models of environmental features based on sensory inputs, bootstrap off of the learned models to detect and adapt to environmental changes, and autonomously tailor the sensory processing to the task at hand. This paper summarizes a comprehensive effort towards such bootstrap learning, adaptation, and processing management using visual input. We describe probabilistic algorithms that enable a mobile robot to autonomously plan its actions to learn models of color distributions and illuminations. The learned models are used to detect and adapt to illumination changes. Furthermore, we describe a probabilistic sequential decision-making approach that autonomously tailors the visual processing to the task at hand. All algorithms are fully implemented and tested on robot platforms in dynamic environments.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"12 1","pages":"765876:1-765876:20"},"PeriodicalIF":0.0,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88427145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}