This research explores the relation between environmental structure and neurocognitive structure. We hypothesize that selection pressure on abilities for efficient learning (especially in settings with limited or no reward information) translates into selection pressure on correspondence relations between neurocognitive and environmental structure, since such correspondence allows for simple changes in the environment to be handled with simple learning updates in neurocognitive structure. We present a model in which a simple formof reinforcement-free learning is evolved in neural networks using neuromodulation and analyze the effect this selection for learning ability has on the virtual species' neural organization. We find a higher degree of organization than in a control population evolved without learning ability and discuss the relation between the observed neural structure and the environmental structure. We discuss our findings in the context of the environmental complexity thesis, the Baldwin effect, and other interactions between adaptation processes.
{"title":"Selection for Reinforcement-Free Learning Ability as an Organizing Factor in the Evolution of Cognition","authors":"S. Arnold, Reiji Suzuki, Takaya Arita","doi":"10.1155/2013/841646","DOIUrl":"https://doi.org/10.1155/2013/841646","url":null,"abstract":"This research explores the relation between environmental structure and neurocognitive structure. We hypothesize that selection pressure on abilities for efficient learning (especially in settings with limited or no reward information) translates into selection pressure on correspondence relations between neurocognitive and environmental structure, since such correspondence allows for simple changes in the environment to be handled with simple learning updates in neurocognitive structure. We present a model in which a simple formof reinforcement-free learning is evolved in neural networks using neuromodulation and analyze the effect this selection for learning ability has on the virtual species' neural organization. We find a higher degree of organization than in a control population evolved without learning ability and discuss the relation between the observed neural structure and the environmental structure. We discuss our findings in the context of the environmental complexity thesis, the Baldwin effect, and other interactions between adaptation processes.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"28 1","pages":"841646:1-841646:13"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83722043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The long-termsolution to the asthma epidemic is believed to be prevention and not treatment of the established disease. Most cases of asthma begin during the first years of life; thus the early determination of which young children will have asthma later in their life counts as an important priority. Artificial neural networks (ANN) have been already utilized in medicine in order to improve the performance of the clinical decision-making tools. In this study, a new computational intelligence technique for the prediction of persistent asthma in children is presented. By employing partial least square regression, 9 out of 48 prognostic factors correlated to the persistent asthma have been chosen. Multilayer perceptron and probabilistic neural networks topologies have been investigated in order to obtain the best prediction accuracy. Based on the results, it is shown that the proposed system is able to predict the asthma outcome with a success of 96.77%. The ANN, with which these high rates of reliability were obtained, will help the doctors to identify which of the young patients are at a high risk of asthma disease progression. Moreover, thismay lead to better treatment opportunities and hopefully better disease outcomes in adulthood.
{"title":"Predicting Asthma Outcome Using Partial Least Square Regression and Artificial Neural Networks","authors":"E. Chatzimichail, E. Paraskakis, A. Rigas","doi":"10.1155/2013/435321","DOIUrl":"https://doi.org/10.1155/2013/435321","url":null,"abstract":"The long-termsolution to the asthma epidemic is believed to be prevention and not treatment of the established disease. Most cases of asthma begin during the first years of life; thus the early determination of which young children will have asthma later in their life counts as an important priority. Artificial neural networks (ANN) have been already utilized in medicine in order to improve the performance of the clinical decision-making tools. In this study, a new computational intelligence technique for the prediction of persistent asthma in children is presented. By employing partial least square regression, 9 out of 48 prognostic factors correlated to the persistent asthma have been chosen. Multilayer perceptron and probabilistic neural networks topologies have been investigated in order to obtain the best prediction accuracy. Based on the results, it is shown that the proposed system is able to predict the asthma outcome with a success of 96.77%. The ANN, with which these high rates of reliability were obtained, will help the doctors to identify which of the young patients are at a high risk of asthma disease progression. Moreover, thismay lead to better treatment opportunities and hopefully better disease outcomes in adulthood.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"75 1","pages":"435321:1-435321:7"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72831827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Echo state networks are a relatively new type of recurrent neural networks that have shown great potentials for solving nonlinear, temporal problems. The basic idea is to transform the low dimensional temporal input into a higher dimensional state, and then train the output connection weights to make the system output the target information. Because only the output weights are altered, training is typically quick and computationally efficient compared to training of other recurrent neural networks. This paper investigates using an echo state network to learn the inverse kinematics model of a robot simulator with feedback-errorlearning. In this scheme teacher forcing is not perfect, and joint constraints on the simulator makes the feedback error inaccurate. A novel trainingmethod which is less influenced by the noise in the training data is proposed and compared to the traditional ESN training method.
{"title":"A Novel Method for Training an Echo State Network with Feedback-Error Learning","authors":"R. A. Løvlid","doi":"10.1155/2013/891501","DOIUrl":"https://doi.org/10.1155/2013/891501","url":null,"abstract":"Echo state networks are a relatively new type of recurrent neural networks that have shown great potentials for solving nonlinear, temporal problems. The basic idea is to transform the low dimensional temporal input into a higher dimensional state, and then train the output connection weights to make the system output the target information. Because only the output weights are altered, training is typically quick and computationally efficient compared to training of other recurrent neural networks. This paper investigates using an echo state network to learn the inverse kinematics model of a robot simulator with feedback-errorlearning. In this scheme teacher forcing is not perfect, and joint constraints on the simulator makes the feedback error inaccurate. A novel trainingmethod which is less influenced by the noise in the training data is proposed and compared to the traditional ESN training method.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"59 1","pages":"891501:1-891501:9"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85832403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a comparative study between optimization-based and market-based approaches used for solving the Multirobot task allocation (MRTA) problem that arises in the context of multirobot systems (MRS). The two proposed approaches are used to find the optimal allocation of a number of heterogeneous robots to a number of heterogeneous tasks. The two approaches were extensively tested over a number of test scenarios in order to test their capability of handling complex heavily constrained MRS applications that include extended number of tasks and robots. Finally, a comparative study is implemented between the two approaches and the results show that the optimization-based approach outperforms themarket-based approach in terms of optimal allocation and computational time.
{"title":"A Comparative Study between Optimization and Market-Based Approaches to Multi-Robot Task Allocation","authors":"Mohamed Badreldin, A. Hussein, A. Khamis","doi":"10.1155/2013/256524","DOIUrl":"https://doi.org/10.1155/2013/256524","url":null,"abstract":"This paper presents a comparative study between optimization-based and market-based approaches used for solving the Multirobot task allocation (MRTA) problem that arises in the context of multirobot systems (MRS). The two proposed approaches are used to find the optimal allocation of a number of heterogeneous robots to a number of heterogeneous tasks. The two approaches were extensively tested over a number of test scenarios in order to test their capability of handling complex heavily constrained MRS applications that include extended number of tasks and robots. Finally, a comparative study is implemented between the two approaches and the results show that the optimization-based approach outperforms themarket-based approach in terms of optimal allocation and computational time.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"23 1","pages":"256524:1-256524:11"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90693648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have shown how the nine tiles in the projection-based model for cardinal directions can be partitioned into sets based on horizontal and vertical constraints (called Horizontal and Vertical Constraints Model) in our previous papers (Kor and Bennett, 2003 and 2010). In order to come up with an expressive hybrid model for direction relations between two-dimensional singlepiece regions (without holes), we integrate the well-known RCC-8 model with the above-mentioned model. From this expressive hybrid model, we derive 8 basic binary relations and 13 feasible as well as jointly exhaustive relations for the x- and y-directions, respectively. Based on these basic binary relations, we derive two separate 8 × 8 composition tables for both the expressive and weak direction relations. We introduce a formula that can be used for the computation of the composition of expressive and weak direction relations between "whole or part" regions. Lastly, we also show how the expressive hybrid model can be used to make several existential inferences that are not possible for existing models.
在我们之前的论文(Kor and Bennett, 2003年和2010年)中,我们已经展示了如何根据水平和垂直约束(称为水平和垂直约束模型)将基于投影的基本方向模型中的九个瓷砖划分为若干组。为了建立一个表达二维单片区域(无孔)方向关系的混合模型,我们将众所周知的RCC-8模型与上述模型相结合。从这个表达性的混合模型中,我们分别导出了8个基本二元关系和13个x和y方向的可行和联合穷举关系。在这些基本二元关系的基础上,我们分别导出了表达性和弱方向关系的两个单独的8 × 8组合表。我们引入了一个计算“整体或部分”区域之间的表达性方向关系和弱方向关系组成的公式。最后,我们还展示了如何使用表达混合模型来做出现有模型无法实现的几种存在推断。
{"title":"A Hybrid Reasoning Model for \"Whole and Part\" Cardinal Direction Relations","authors":"A. Kor, B. Bennett","doi":"10.1155/2013/205261","DOIUrl":"https://doi.org/10.1155/2013/205261","url":null,"abstract":"We have shown how the nine tiles in the projection-based model for cardinal directions can be partitioned into sets based on horizontal and vertical constraints (called Horizontal and Vertical Constraints Model) in our previous papers (Kor and Bennett, 2003 and 2010). In order to come up with an expressive hybrid model for direction relations between two-dimensional singlepiece regions (without holes), we integrate the well-known RCC-8 model with the above-mentioned model. From this expressive hybrid model, we derive 8 basic binary relations and 13 feasible as well as jointly exhaustive relations for the x- and y-directions, respectively. Based on these basic binary relations, we derive two separate 8 × 8 composition tables for both the expressive and weak direction relations. We introduce a formula that can be used for the computation of the composition of expressive and weak direction relations between \"whole or part\" regions. Lastly, we also show how the expressive hybrid model can be used to make several existential inferences that are not possible for existing models.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"24 1","pages":"205261:1-205261:20"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73805382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A method for solving a classification problem when there is only partial information about some features is proposed. This partial information comprises the mean values of features for every class and the bounds of the features. In order to maximally exploit the available information, a set of probability distributions is constructed such that two distributions are selected from the set which define the minimax and minimin strategies. Random values of features are generated in accordance with the selected distributions by using the Monte Carlo technique. As a result, the classification problem is reduced to the standard model which is solved by means of the support vector machine. Numerical examples illustrate the proposed method.
{"title":"Imprecise Imputation as a Tool for Solving Classification Problems with Mean Values of Unobserved Features","authors":"L. Utkin, Y. Zhuk","doi":"10.1155/2013/176890","DOIUrl":"https://doi.org/10.1155/2013/176890","url":null,"abstract":"A method for solving a classification problem when there is only partial information about some features is proposed. This partial information comprises the mean values of features for every class and the bounds of the features. In order to maximally exploit the available information, a set of probability distributions is constructed such that two distributions are selected from the set which define the minimax and minimin strategies. Random values of features are generated in accordance with the selected distributions by using the Monte Carlo technique. As a result, the classification problem is reduced to the standard model which is solved by means of the support vector machine. Numerical examples illustrate the proposed method.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"10 1","pages":"176890:1-176890:12"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80495602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multirobot systems (MRSs) are capable of solving task complexity, increasing performance in terms of maximizing spatial/ temporal/radio coverage or minimizing mission completion time. They are also more reliable than single-robot systems as robustness is increased through redundancy. Many applications such as rescue, reconnaissance, and surveillance and communication relaying require the MRS to be able to self-organize the team members in a decentralized way. Group formation is one of the benchmark problems in MRS to study self-organization in these systems. This paper presents a hybrid approach to group formation problem in multi-robot systems. This approach combines the efficiency of the cellular automata as finite state machine, the interconnectivity of the virtual grid and its bonding technique, and last but not least the decentralization of the adaptive dynamic leadership.
{"title":"Adaptive Group Formation in Multirobot Systems","authors":"Ahmed Wagdy, A. Khamis","doi":"10.1155/2013/692658","DOIUrl":"https://doi.org/10.1155/2013/692658","url":null,"abstract":"Multirobot systems (MRSs) are capable of solving task complexity, increasing performance in terms of maximizing spatial/ temporal/radio coverage or minimizing mission completion time. They are also more reliable than single-robot systems as robustness is increased through redundancy. Many applications such as rescue, reconnaissance, and surveillance and communication relaying require the MRS to be able to self-organize the team members in a decentralized way. Group formation is one of the benchmark problems in MRS to study self-organization in these systems. This paper presents a hybrid approach to group formation problem in multi-robot systems. This approach combines the efficiency of the cellular automata as finite state machine, the interconnectivity of the virtual grid and its bonding technique, and last but not least the decentralization of the adaptive dynamic leadership.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"89 1","pages":"692658:1-692658:15"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87114098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents an approach to the study of switching overvoltages during power equipment energization. Switching action is one of the most important issues in the power system restoration schemes. This action may lead to overvoltages which can damage some equipment and delay power system restoration. In this work, switching overvoltages caused by power equipment energization are evaluated using artificial-neural-network- (ANN-) based approach. Both multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) algorithm and radial basis function (RBF) structure have been analyzed. In the cases of transformer and shunt reactor energization, the worst case of switching angle and remanent flux has been considered to reduce the number of required simulations for training ANN. Also, for achieving good generalization capability for developed ANN, equivalent parameters of the network are used as ANN inputs. Developed ANN is tested for a partial of 39-bus New England test system, and results show the effectiveness of the proposed method to evaluate switching overvoltages.
{"title":"Artificial-Intelligence-Based Techniques to Evaluate Switching Overvoltages during Power System Restoration","authors":"I. Sadeghkhani, A. Ketabi, R. Feuillet","doi":"10.1155/2013/316985","DOIUrl":"https://doi.org/10.1155/2013/316985","url":null,"abstract":"This paper presents an approach to the study of switching overvoltages during power equipment energization. Switching action is one of the most important issues in the power system restoration schemes. This action may lead to overvoltages which can damage some equipment and delay power system restoration. In this work, switching overvoltages caused by power equipment energization are evaluated using artificial-neural-network- (ANN-) based approach. Both multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) algorithm and radial basis function (RBF) structure have been analyzed. In the cases of transformer and shunt reactor energization, the worst case of switching angle and remanent flux has been considered to reduce the number of required simulations for training ANN. Also, for achieving good generalization capability for developed ANN, equivalent parameters of the network are used as ANN inputs. Developed ANN is tested for a partial of 39-bus New England test system, and results show the effectiveness of the proposed method to evaluate switching overvoltages.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"50 1","pages":"316985:1-316985:8"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87182659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Data provided by sensors is always subjected to some level of uncertainty and inconsistency. Multisensor data fusion algorithms reduce the uncertainty by combining data from several sources. However, if these several sources provide inconsistent data, catastrophic fusion may occur where the performance of multisensor data fusion is significantly lower than the performance of each of the individual sensor. This paper presents an approach tomultisensor data fusion in order to decrease data uncertainty with ability to identify and handle inconsistency. The proposed approach relies on combining a modified Bayesian fusion algorithm with Kalman filtering. Three different approaches, namely, prefiltering, postfiltering and pre-postfiltering are described based on how filtering is applied to the sensor data, to the fused data or both. A case study to find the position of a mobile robot by estimating its x and y coordinates using four sensors is presented. The simulations show that combining fusion with filtering helps in handling the problem of uncertainty and inconsistency of the data.
{"title":"Handling Data Uncertainty and Inconsistency Using Multisensor Data Fusion","authors":"Waleed A. Abdulhafiz, A. Khamis","doi":"10.1155/2013/241260","DOIUrl":"https://doi.org/10.1155/2013/241260","url":null,"abstract":"Data provided by sensors is always subjected to some level of uncertainty and inconsistency. Multisensor data fusion algorithms reduce the uncertainty by combining data from several sources. However, if these several sources provide inconsistent data, catastrophic fusion may occur where the performance of multisensor data fusion is significantly lower than the performance of each of the individual sensor. This paper presents an approach tomultisensor data fusion in order to decrease data uncertainty with ability to identify and handle inconsistency. The proposed approach relies on combining a modified Bayesian fusion algorithm with Kalman filtering. Three different approaches, namely, prefiltering, postfiltering and pre-postfiltering are described based on how filtering is applied to the sensor data, to the fused data or both. A case study to find the position of a mobile robot by estimating its x and y coordinates using four sensors is presented. The simulations show that combining fusion with filtering helps in handling the problem of uncertainty and inconsistency of the data.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"29 17 1","pages":"241260:1-241260:11"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82937366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leandro Pereira dos Santos, G. E. Vieira, H. V. D. R. Leite, M. T. Steiner
The main objective of a production scheduling system is to assign tasks (orders or jobs) to resources and sequence them as efficiently and economically (optimised) as possible. Achieving this goal is a difficult task in complex environment where capacity is usually limited. In these scenarios, finding an optimal solution—if possible—demands a large amount of computer time. For this reason, in many cases, a good solution that is quickly found is preferred. In such situations, the use of metaheuristics is an appropriate strategy. In these last two decades, some out-of-the-shelf systems have been developed using such techniques. This paper presents and analyses the development of a shop-floor scheduling system that uses ant colony optimisation (ACO) in a backward scheduling problem in a manufacturing scenario with single-stage processing, parallel resources, and flexible routings. This scenario was found in a large food industry where the corresponding author worked as consultant for more than a year. This work demonstrates the applicability of this artificial intelligence technique. In fact, ACO proved to be as efficient as branch-and-bound, however, executing much faster.
{"title":"Ant Colony Optimisation for Backward Production Scheduling","authors":"Leandro Pereira dos Santos, G. E. Vieira, H. V. D. R. Leite, M. T. Steiner","doi":"10.1155/2012/312132","DOIUrl":"https://doi.org/10.1155/2012/312132","url":null,"abstract":"The main objective of a production scheduling system is to assign tasks (orders or jobs) to resources and sequence them as efficiently and economically (optimised) as possible. Achieving this goal is a difficult task in complex environment where capacity is usually limited. In these scenarios, finding an optimal solution—if possible—demands a large amount of computer time. For this reason, in many cases, a good solution that is quickly found is preferred. In such situations, the use of metaheuristics is an appropriate strategy. In these last two decades, some out-of-the-shelf systems have been developed using such techniques. This paper presents and analyses the development of a shop-floor scheduling system that uses ant colony optimisation (ACO) in a backward scheduling problem in a manufacturing scenario with single-stage processing, parallel resources, and flexible routings. This scenario was found in a large food industry where the corresponding author worked as consultant for more than a year. This work demonstrates the applicability of this artificial intelligence technique. In fact, ACO proved to be as efficient as branch-and-bound, however, executing much faster.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"65 1","pages":"312132:1-312132:12"},"PeriodicalIF":0.0,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77536550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}