Pub Date : 2024-11-29DOI: 10.1016/j.addr.2024.115477
Yulia I. Svenskaya, Roman A. Verkhovskii, Sergey M. Zaytsev, Juergen Lademann, Elina A. Genina
Drug delivery via hair follicles has attracted much research attention due to its potential to serve for both local and systemic therapeutic purposes. Recent studies on topical application of various particulate formulations have demonstrated a great role of this delivery route for targeting numerous cell populations located in skin and transporting the encapsulated drug molecules to the bloodstream. Despite a great promise of follicle-targeting carriers, their clinical implementation is very rare, mostly because of their poorer characterization compared to conventional topical dosage forms, such as ointments and creams, which have a history spanning over a century. Gathering as complete information as possible on the intrafollicular penetration depth, storage, degradation/metabolization profiles of such carriers and the release kinetics of drugs they contain, as well as their impact on skin health would significantly contribute to understanding the pros and cons of each carrier type and facilitate the selection of the most suitable candidates for clinical trials. Optical imaging and spectroscopic techniques are extensively applied to study dermal penetration of drugs. Current paper provides the state-of-the-art overview of techniques, which are used in optical monitoring of follicular drug delivery, with a special focus on non-invasive in vivo methods. It discusses key features, advantages and limitations of their use, as well as provide expert perspectives on future directions in this field.
{"title":"Current issues in optical monitoring of drug delivery via hair follicles","authors":"Yulia I. Svenskaya, Roman A. Verkhovskii, Sergey M. Zaytsev, Juergen Lademann, Elina A. Genina","doi":"10.1016/j.addr.2024.115477","DOIUrl":"https://doi.org/10.1016/j.addr.2024.115477","url":null,"abstract":"Drug delivery via hair follicles has attracted much research attention due to its potential to serve for both local and systemic therapeutic purposes. Recent studies on topical application of various particulate formulations have demonstrated a great role of this delivery route for targeting numerous cell populations located in skin and transporting the encapsulated drug molecules to the bloodstream. Despite a great promise of follicle-targeting carriers, their clinical implementation is very rare, mostly because of their poorer characterization compared to conventional topical dosage forms, such as ointments and creams, which have a history spanning over a century. Gathering as complete information as possible on the intrafollicular penetration depth, storage, degradation/metabolization profiles of such carriers and the release kinetics of drugs they contain, as well as their impact on skin health would significantly contribute to understanding the pros and cons of each carrier type and facilitate the selection of the most suitable candidates for clinical trials. Optical imaging and spectroscopic techniques are extensively applied to study dermal penetration of drugs. Current paper provides the state-of-the-art overview of techniques, which are used in optical monitoring of follicular drug delivery, with a special focus on non-invasive <em>in vivo</em> methods. It discusses key features, advantages and limitations of their use, as well as provide expert perspectives on future directions in this field.","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"25 1","pages":""},"PeriodicalIF":16.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1016/j.addr.2024.115481
Lev Dykman , Boris Khlebtsov , Nikolai Khlebtsov
Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution. Several in vitro and in vivo tests have shown how simple it is to tailor these particles to administer chemical medications straight to tumors. The GNP surface can also be coated with ligands to modify drug release or improve selectivity. Moreover, the pharmacological activity can be enhanced by using the photothermal characteristics of the particles.
{"title":"Drug delivery using gold nanoparticles","authors":"Lev Dykman , Boris Khlebtsov , Nikolai Khlebtsov","doi":"10.1016/j.addr.2024.115481","DOIUrl":"10.1016/j.addr.2024.115481","url":null,"abstract":"<div><div>Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution. Several <em>in vitro</em> and <em>in vivo</em> tests have shown how simple it is to tailor these particles to administer chemical medications straight to tumors. The GNP surface can also be coated with ligands to modify drug release or improve selectivity. Moreover, the pharmacological activity can be enhanced by using the photothermal characteristics of the particles.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"216 ","pages":"Article 115481"},"PeriodicalIF":15.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1016/j.addr.2024.115480
Renbin Zhou , Jinghan Qu , Xuejiao Liu , Fangrui Lin , Tymish Y. Ohulchanskyy , Nuernisha Alifu , Junle Qu , Da-Chuan Yin
Biopharmaceutical drugs, including proteins, peptides, and antibodies, are renowned for their high specificity and efficacy, fundamentally transforming disease treatment paradigms. However, their structural complexity presents challenges for their formulation and delivery. Protein crystals, characterized by high purity, high stability and a porous structure for biopharmaceutical drug encapsulation, providing a potential avenue for formulating and delivering biopharmaceutical drugs. There is increasing interest in engineering protein crystals to delivery biopharmaceutical drugs for biomedical applications. This review summarizes the recent advances in biopharmaceutical drug delivery and phototherapy using protein crystals. First, we evaluate the advantages of using protein crystals for biopharmaceutical drugs delivery. Next, we outline the strategies for in vitro and in vivo crystallization to prepare protein crystals. Importantly, the review highlights the advanced applications of protein crystals in biopharmaceutical drug delivery, tumor phototherapy, and other optical fields. Finally, it provides insights into future perspectives of biopharmaceutical drug delivery using protein crystals. This comprehensive review aims to provide effective insights into design of protein crystals to simplify biopharmaceutical drug delivery and improve disease treatment.
{"title":"Biopharmaceutical drug delivery and phototherapy using protein crystals","authors":"Renbin Zhou , Jinghan Qu , Xuejiao Liu , Fangrui Lin , Tymish Y. Ohulchanskyy , Nuernisha Alifu , Junle Qu , Da-Chuan Yin","doi":"10.1016/j.addr.2024.115480","DOIUrl":"10.1016/j.addr.2024.115480","url":null,"abstract":"<div><div>Biopharmaceutical drugs, including proteins, peptides, and antibodies, are renowned for their high specificity and efficacy, fundamentally transforming disease treatment paradigms. However, their structural complexity presents challenges for their formulation and delivery. Protein crystals, characterized by high purity, high stability and a porous structure for biopharmaceutical drug encapsulation, providing a potential avenue for formulating and delivering biopharmaceutical drugs. There is increasing interest in engineering protein crystals to delivery biopharmaceutical drugs for biomedical applications. This review summarizes the recent advances in biopharmaceutical drug delivery and phototherapy using protein crystals. First, we evaluate the advantages of using protein crystals for biopharmaceutical drugs delivery. Next, we outline the strategies for <em>in vitro</em> and <em>in vivo</em> crystallization to prepare protein crystals. Importantly, the review highlights the advanced applications of protein crystals in biopharmaceutical drug delivery, tumor phototherapy, and other optical fields. Finally, it provides insights into future perspectives of biopharmaceutical drug delivery using protein crystals. This comprehensive review aims to provide effective insights into design of protein crystals to simplify biopharmaceutical drug delivery and improve disease treatment.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"216 ","pages":"Article 115480"},"PeriodicalIF":15.2,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142735727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.addr.2024.115478
Benchaphorn Limcharoen, Supason Wanichwecharungruang, Wijit Banlunara, Maxim E. Darvin
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive “optical biopsy” as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
{"title":"Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles","authors":"Benchaphorn Limcharoen, Supason Wanichwecharungruang, Wijit Banlunara, Maxim E. Darvin","doi":"10.1016/j.addr.2024.115478","DOIUrl":"https://doi.org/10.1016/j.addr.2024.115478","url":null,"abstract":"Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, <em>in vivo</em> imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive “optical biopsy” as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"50 1","pages":""},"PeriodicalIF":16.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142712523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.addr.2024.115479
Hui Zhu , Huijuan Kuang , Xinxin Huang , Xiao Li , Ruosen Zhao , Guojin Shang , Ziyu Wang , Yucheng Liao , Jiankang He , Dichen Li
Drug delivery systems (DDSs) are increasingly important in ensuring drug safety and enhancing therapeutic efficacy. Micro/nano-technology has been utilized to develop DDSs for achieving high stability, bioavailability, and drug efficiency, as well as targeted delivery; meanwhile, 3D printing technology has made it possible to tailor DDSs with diverse components and intricate structures. This review presents the latest research progress integrating 3D printing technology and micro/nano-technology for developing novel DDSs. The technological fundamentals of 3D printing technology supporting the development of DDSs are presented, mainly from the perspective of different 3D printing mechanisms. Distinct types of DDSs leveraging 3D printing and micro/nano-technology are analyzed deeply, featuring micro/nanoscale materials and structures to enrich functionalities and improve effectiveness. Finally, we will discuss the future directions of 3D-printed DDSs integrated with micro/nano-technology, focusing on technological innovation and clinical application. This review will support interdisciplinary research efforts to advance drug delivery technology.
{"title":"3D printing of drug delivery systems enhanced with micro/nano-technology","authors":"Hui Zhu , Huijuan Kuang , Xinxin Huang , Xiao Li , Ruosen Zhao , Guojin Shang , Ziyu Wang , Yucheng Liao , Jiankang He , Dichen Li","doi":"10.1016/j.addr.2024.115479","DOIUrl":"10.1016/j.addr.2024.115479","url":null,"abstract":"<div><div>Drug delivery systems (DDSs) are increasingly important in ensuring drug safety and enhancing therapeutic efficacy. Micro/nano-technology has been utilized to develop DDSs for achieving high stability, bioavailability, and drug efficiency, as well as targeted delivery; meanwhile, 3D printing technology has made it possible to tailor DDSs with diverse components and intricate structures. This review presents the latest research progress integrating 3D printing technology and micro/nano-technology for developing novel DDSs. The technological fundamentals of 3D printing technology supporting the development of DDSs are presented, mainly from the perspective of different 3D printing mechanisms. Distinct types of DDSs leveraging 3D printing and micro/nano-technology are analyzed deeply, featuring micro/nanoscale materials and structures to enrich functionalities and improve effectiveness. Finally, we will discuss the future directions of 3D-printed DDSs integrated with micro/nano-technology, focusing on technological innovation and clinical application. This review will support interdisciplinary research efforts to advance drug delivery technology.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"216 ","pages":"Article 115479"},"PeriodicalIF":15.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142712594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1016/j.addr.2024.115474
James W.T. Yates
In the past two decades, quantitative mathematical modelling approaches have emerged as a paradigm to improve new drug research productivity, especially the application of pharmacokinetic-pharmacodynamic and quantitative systems pharmacology modelling. These approaches have largely made use of deterministic, differential equation-based models, however there is a growing use of agent-based models. In this review, the current applications and practices of agent-based model development are reviewed via relevant case studies from the literature. Gaps in the implementation of these models are identified and a future perspective on the priorities for further agent-based model development is given.
{"title":"Integrated pharmacokinetic-pharmacodynamic and agent-based modelling in drug development: Current status and future perspectives","authors":"James W.T. Yates","doi":"10.1016/j.addr.2024.115474","DOIUrl":"10.1016/j.addr.2024.115474","url":null,"abstract":"<div><div>In the past two decades, quantitative mathematical modelling approaches have emerged as a paradigm to improve new drug research productivity, especially the application of pharmacokinetic-pharmacodynamic and quantitative systems pharmacology modelling. These approaches have largely made use of deterministic, differential equation-based models, however there is a growing use of agent-based models. In this review, the current applications and practices of agent-based model development are reviewed via relevant case studies from the literature. Gaps in the implementation of these models are identified and a future perspective on the priorities for further agent-based model development is given.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"216 ","pages":"Article 115474"},"PeriodicalIF":15.2,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.addr.2024.115476
Han Liu , Eman I.K. Ibrahim , Maddalena Centanni , Céline Sarr , Karthik Venkatakrishnan , Lena E. Friberg
Model-based approaches, including population pharmacokinetic-pharmacodynamic modeling, have become an essential component in the clinical phases of oncology drug development. Over the past two decades, models have evolved to describe the temporal dynamics of biomarkers and tumor size, treatment-related adverse events, and their links to survival. Integrated models, defined here as models that incorporate at least two pharmacodynamic/ outcome variables, are applied to answer drug development questions through simulations, e.g., to support the exploration of alternative dosing strategies and study designs in subgroups of patients or other tumor indications. It is expected that these pharmacometric approaches will be expanded as regulatory authorities place further emphasis on early and individualized dosage optimization and inclusive patient-focused development strategies. This review provides an overview of integrated models in the literature, examples of the considerations that need to be made when applying these advanced pharmacometric approaches, and an outlook on the expected further expansion of model-informed drug development of anticancer drugs.
{"title":"Integrated modeling of biomarkers, survival and safety in clinical oncology drug development","authors":"Han Liu , Eman I.K. Ibrahim , Maddalena Centanni , Céline Sarr , Karthik Venkatakrishnan , Lena E. Friberg","doi":"10.1016/j.addr.2024.115476","DOIUrl":"10.1016/j.addr.2024.115476","url":null,"abstract":"<div><div>Model-based approaches, including population pharmacokinetic-pharmacodynamic modeling, have become an essential component in the clinical phases of oncology drug development. Over the past two decades, models have evolved to describe the temporal dynamics of biomarkers and tumor size, treatment-related adverse events, and their links to survival. Integrated models, defined here as models that incorporate at least two pharmacodynamic/ outcome variables, are applied to answer drug development questions through simulations, e.g., to support the exploration of alternative dosing strategies and study designs in subgroups of patients or other tumor indications. It is expected that these pharmacometric approaches will be expanded as regulatory authorities place further emphasis on early and individualized dosage optimization and inclusive patient-focused development strategies. This review provides an overview of integrated models in the literature, examples of the considerations that need to be made when applying these advanced pharmacometric approaches, and an outlook on the expected further expansion of model-informed drug development of anticancer drugs.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"216 ","pages":"Article 115476"},"PeriodicalIF":15.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.addr.2024.115475
Mario Moisés Alvarez , Ariel Cantoral-Sánchez , Grissel Trujillo-de Santiago
Chaotic (bio)printing, an innovative fabrication technique that uses chaotic flows to create highly ordered microstructures within materials, may be transformative for drug delivery systems. This review explores the principles underlying chaotic flows and their application in fabricating complex, multi-material constructs designed for advanced drug delivery and controlled release. Chaotic printing enables the precise layering of different active ingredients—a feature that may greatly facilitate the development of polypills with customizable release profiles. Recently, chaos-assisted fabrication has been extended to produce micro-architected hydrogel spheres in a high-throughput manner, potentially enhancing the versatility and efficiency of drug delivery methods. In addition, chaotic bioprinting enables the creation of evolved tissue models that more accurately emulate physiological systems, providing a more relevant platform for drug testing. This review also highlights the unique advantages of chaotic printing, including the ability to fabricate tissues with organized porosity and pre-vascularized structures, addressing critical challenges in tissue engineering. Despite its promising capabilities, challenges remain, particularly in expanding the range of materials compatible with chaotic printing. Continued research and development in this area are essential to fully realize the potential of chaotic (bio)printing in advancing drug delivery, paving the way for the next generation of smart drug delivery systems and functional tissue models for drug testing.
{"title":"Chaotic (bio)printing in the context of drug delivery systems","authors":"Mario Moisés Alvarez , Ariel Cantoral-Sánchez , Grissel Trujillo-de Santiago","doi":"10.1016/j.addr.2024.115475","DOIUrl":"10.1016/j.addr.2024.115475","url":null,"abstract":"<div><div>Chaotic (bio)printing, an innovative fabrication technique that uses chaotic flows to create highly ordered microstructures within materials, may be transformative for drug delivery systems. This review explores the principles underlying chaotic flows and their application in fabricating complex, multi-material constructs designed for advanced drug delivery and controlled release. Chaotic printing enables the precise layering of different active ingredients—a feature that may greatly facilitate the development of polypills with customizable release profiles. Recently, chaos-assisted fabrication has been extended to produce micro-architected hydrogel spheres in a high-throughput manner, potentially enhancing the versatility and efficiency of drug delivery methods. In addition, chaotic bioprinting enables the creation of evolved tissue models that more accurately emulate physiological systems, providing a more relevant platform for drug testing. This review also highlights the unique advantages of chaotic printing, including the ability to fabricate tissues with organized porosity and pre-vascularized structures, addressing critical challenges in tissue engineering. Despite its promising capabilities, challenges remain, particularly in expanding the range of materials compatible with chaotic printing. Continued research and development in this area are essential to fully realize the potential of chaotic (bio)printing in advancing drug delivery, paving the way for the next generation of smart drug delivery systems and functional tissue models for drug testing.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"216 ","pages":"Article 115475"},"PeriodicalIF":15.2,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.addr.2024.115472
Margarita O. Shleeva, Galina R. Demina, Alexander P. Savitsky
Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.
{"title":"A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections","authors":"Margarita O. Shleeva, Galina R. Demina, Alexander P. Savitsky","doi":"10.1016/j.addr.2024.115472","DOIUrl":"10.1016/j.addr.2024.115472","url":null,"abstract":"<div><div>Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"215 ","pages":"Article 115472"},"PeriodicalIF":15.2,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1016/j.addr.2024.115471
María J. Blanco-Prieto, Elisa Garbayo
No Abstract
无摘要
{"title":"Preface: RNA delivery technologies: From concept toward the clinic","authors":"María J. Blanco-Prieto, Elisa Garbayo","doi":"10.1016/j.addr.2024.115471","DOIUrl":"https://doi.org/10.1016/j.addr.2024.115471","url":null,"abstract":"No Abstract","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"17 1","pages":""},"PeriodicalIF":16.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}