Despite their anatomical and functional distinctions, there is growing evidence that the dorsal and ventral visual pathways interact to support object recognition. However, the exact nature of these interactions remains poorly understood. Is the presence of identity-relevant object information in the dorsal pathway simply a byproduct of ventral input? Or, might the dorsal pathway be a source of input to the ventral pathway for object recognition? In the current study, we used high-density EEG-a technique with high temporal precision and spatial resolution sufficient to distinguish parietal and temporal lobes-to characterise the dynamics of dorsal and ventral pathways during object viewing. Using multivariate analyses, we found that category decoding in the dorsal pathway preceded that in the ventral pathway. Importantly, the dorsal pathway predicted the multivariate responses of the ventral pathway in a time-dependent manner, rather than the other way around. Together, these findings suggest that the dorsal pathway is a critical source of input to the ventral pathway for object recognition.
{"title":"Temporal asymmetries and interactions between dorsal and ventral visual pathways during object recognition.","authors":"Vladislav Ayzenberg, Claire Simmons, Marlene Behrmann","doi":"10.1093/texcom/tgad003","DOIUrl":"10.1093/texcom/tgad003","url":null,"abstract":"<p><p>Despite their anatomical and functional distinctions, there is growing evidence that the dorsal and ventral visual pathways interact to support object recognition. However, the exact nature of these interactions remains poorly understood. Is the presence of identity-relevant object information in the dorsal pathway simply a byproduct of ventral input? Or, might the dorsal pathway be a source of input to the ventral pathway for object recognition? In the current study, we used high-density EEG-a technique with high temporal precision and spatial resolution sufficient to distinguish parietal and temporal lobes-to characterise the dynamics of dorsal and ventral pathways during object viewing. Using multivariate analyses, we found that category decoding in the dorsal pathway preceded that in the ventral pathway. Importantly, the dorsal pathway predicted the multivariate responses of the ventral pathway in a time-dependent manner, rather than the other way around. Together, these findings suggest that the dorsal pathway is a critical source of input to the ventral pathway for object recognition.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 1","pages":"tgad003"},"PeriodicalIF":0.0,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883614/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10640012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yudai Yamazaki, Kazuya Suwabe, Atsuko Nagano-Saito, Kousaku Saotome, Ryuta Kuwamizu, Taichi Hiraga, Ferenc Torma, Kenji Suzuki, Yoshiyuki Sankai, Michael A Yassa, Hideaki Soya
Acute mild exercise has been observed to facilitate executive function and memory. A possible underlying mechanism of this is the upregulation of the ascending arousal system, including the catecholaminergic system originating from the locus coeruleus (LC). Prior work indicates that pupil diameter, as an indirect marker of the ascending arousal system, including the LC, increases even with very light-intensity exercise. However, it remains unclear whether the LC directly contributes to exercise-induced pupil-linked arousal. Here, we examined the involvement of the LC in the change in pupil dilation induced by very light-intensity exercise using pupillometry and neuromelanin imaging to assess the LC integrity. A sample of 21 young males performed 10 min of very light-intensity exercise, and we measured changes in the pupil diameters and psychological arousal levels induced by the exercise. Neuromelanin-weighted magnetic resonance imaging scans were also obtained. We observed that pupil diameter and psychological arousal levels increased during very light-intensity exercise, which is consistent with previous findings. Notably, the LC contrast, a marker of LC integrity, predicted the magnitude of pupil dilation and psychological arousal enhancement with exercise. These relationships suggest that the LC-catecholaminergic system is a potential a mechanism for pupil-linked arousal induced by very light-intensity exercise.
{"title":"A possible contribution of the locus coeruleus to arousal enhancement with mild exercise: evidence from pupillometry and neuromelanin imaging.","authors":"Yudai Yamazaki, Kazuya Suwabe, Atsuko Nagano-Saito, Kousaku Saotome, Ryuta Kuwamizu, Taichi Hiraga, Ferenc Torma, Kenji Suzuki, Yoshiyuki Sankai, Michael A Yassa, Hideaki Soya","doi":"10.1093/texcom/tgad010","DOIUrl":"https://doi.org/10.1093/texcom/tgad010","url":null,"abstract":"<p><p>Acute mild exercise has been observed to facilitate executive function and memory. A possible underlying mechanism of this is the upregulation of the ascending arousal system, including the catecholaminergic system originating from the locus coeruleus (LC). Prior work indicates that pupil diameter, as an indirect marker of the ascending arousal system, including the LC, increases even with very light-intensity exercise. However, it remains unclear whether the LC directly contributes to exercise-induced pupil-linked arousal. Here, we examined the involvement of the LC in the change in pupil dilation induced by very light-intensity exercise using pupillometry and neuromelanin imaging to assess the LC integrity. A sample of 21 young males performed 10 min of very light-intensity exercise, and we measured changes in the pupil diameters and psychological arousal levels induced by the exercise. Neuromelanin-weighted magnetic resonance imaging scans were also obtained. We observed that pupil diameter and psychological arousal levels increased during very light-intensity exercise, which is consistent with previous findings. Notably, the LC contrast, a marker of LC integrity, predicted the magnitude of pupil dilation and psychological arousal enhancement with exercise. These relationships suggest that the LC-catecholaminergic system is a potential a mechanism for pupil-linked arousal induced by very light-intensity exercise.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 2","pages":"tgad010"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9653317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Eggert, Filippo Ghin, Ann-Kathrin Stock, Moritz Mückschel, Christian Beste
Response inhibition and the ability to navigate distracting information are both integral parts of cognitive control and are imperative to adaptive behavior in everyday life. Thus far, research has only inconclusively been able to draw inferences regarding the association between response stopping and the effects of interfering information. Using a novel combination of the Simon task and a stop signal task, the current study set out to investigate the behavioral as well as the neurophysiological underpinnings of the relationship between response stopping and interference processing. We tested n = 27 healthy individuals and combined temporal EEG signal decomposition with source localization methods to delineate the precise neurophysiological dynamics and functional neuroanatomical structures associated with conflict effects on response stopping. The results showed that stopping performance was compromised by conflicts. Importantly, these behavioral effects were reflected by specific aspects of information coded in the neurophysiological signal, indicating that conflict effects during response stopping are not mediated via purely perceptual processes. Rather, it is the processing of specific, stop-relevant stimulus features in the sensory regions during response selection, which underlies the emergence of conflict effects in response stopping. The findings connect research regarding response stopping with overarching theoretical frameworks of perception-action integration.
{"title":"The role of visual association cortices during response selection processes in interference-modulated response stopping.","authors":"Elena Eggert, Filippo Ghin, Ann-Kathrin Stock, Moritz Mückschel, Christian Beste","doi":"10.1093/texcom/tgac050","DOIUrl":"https://doi.org/10.1093/texcom/tgac050","url":null,"abstract":"<p><p>Response inhibition and the ability to navigate distracting information are both integral parts of cognitive control and are imperative to adaptive behavior in everyday life. Thus far, research has only inconclusively been able to draw inferences regarding the association between response stopping and the effects of interfering information. Using a novel combination of the Simon task and a stop signal task, the current study set out to investigate the behavioral as well as the neurophysiological underpinnings of the relationship between response stopping and interference processing. We tested <i>n</i> = 27 healthy individuals and combined temporal EEG signal decomposition with source localization methods to delineate the precise neurophysiological dynamics and functional neuroanatomical structures associated with conflict effects on response stopping. The results showed that stopping performance was compromised by conflicts. Importantly, these behavioral effects were reflected by specific aspects of information coded in the neurophysiological signal, indicating that conflict effects during response stopping are not mediated via purely perceptual processes. Rather, it is the processing of specific, stop-relevant stimulus features in the sensory regions during response selection, which underlies the emergence of conflict effects in response stopping. The findings connect research regarding response stopping with overarching theoretical frameworks of perception-action integration.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 1","pages":"tgac050"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10541945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vocal emotion recognition, a key determinant to analyzing a speaker's emotional state, is known to be impaired following cerebellar dysfunctions. Nevertheless, its possible functional integration in the large-scale brain network subtending emotional prosody recognition has yet to be explored. We administered an emotional prosody recognition task to patients with right versus left-hemispheric cerebellar lesions and a group of matched controls. We explored the lesional correlates of vocal emotion recognition in patients through a network-based analysis by combining a neuropsychological approach for lesion mapping with normative brain connectome data. Results revealed impaired recognition among patients for neutral or negative prosody, with poorer sadness recognition performances by patients with right cerebellar lesion. Network-based lesion-symptom mapping revealed that sadness recognition performances were linked to a network connecting the cerebellum with left frontal, temporal, and parietal cortices. Moreover, when focusing solely on a subgroup of patients with right cerebellar damage, sadness recognition performances were associated with a more restricted network connecting the cerebellum to the left parietal lobe. As the left hemisphere is known to be crucial for the processing of short segmental information, these results suggest that a corticocerebellar network operates on a fine temporal scale during vocal emotion decoding.
{"title":"Dysfunctional cerebello-cerebral network associated with vocal emotion recognition impairments.","authors":"Marine Thomasson, Leonardo Ceravolo, Corrado Corradi-Dell'Acqua, Amélie Mantelli, Arnaud Saj, Frédéric Assal, Didier Grandjean, Julie Péron","doi":"10.1093/texcom/tgad002","DOIUrl":"https://doi.org/10.1093/texcom/tgad002","url":null,"abstract":"<p><p>Vocal emotion recognition, a key determinant to analyzing a speaker's emotional state, is known to be impaired following cerebellar dysfunctions. Nevertheless, its possible functional integration in the large-scale brain network subtending emotional prosody recognition has yet to be explored. We administered an emotional prosody recognition task to patients with right versus left-hemispheric cerebellar lesions and a group of matched controls. We explored the lesional correlates of vocal emotion recognition in patients through a network-based analysis by combining a neuropsychological approach for lesion mapping with normative brain connectome data. Results revealed impaired recognition among patients for neutral or negative prosody, with poorer sadness recognition performances by patients with right cerebellar lesion. Network-based lesion-symptom mapping revealed that sadness recognition performances were linked to a network connecting the cerebellum with left frontal, temporal, and parietal cortices. Moreover, when focusing solely on a subgroup of patients with right cerebellar damage, sadness recognition performances were associated with a more restricted network connecting the cerebellum to the left parietal lobe. As the left hemisphere is known to be crucial for the processing of short segmental information, these results suggest that a corticocerebellar network operates on a fine temporal scale during vocal emotion decoding.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 1","pages":"tgad002"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10633260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyanka Chakraborty, Suman Saha, Gustavo Deco, Arpan Banerjee, Dipanjan Roy
The focal lesion alters the excitation-inhibition (E-I) balance and healthy functional connectivity patterns, which may recover over time. One possible mechanism for the brain to counter the insult is global reshaping functional connectivity alterations. However, the operational principles by which this can be achieved remain unknown. We propose a novel equivalence principle based on structural and dynamic similarity analysis to predict whether specific compensatory areas initiate lost E-I regulation after lesion. We hypothesize that similar structural areas (SSAs) and dynamically similar areas (DSAs) corresponding to a lesioned site are the crucial dynamical units to restore lost homeostatic balance within the surviving cortical brain regions. SSAs and DSAs are independent measures, one based on structural similarity properties measured by Jaccard Index and the other based on post-lesion recovery time. We unravel the relationship between SSA and DSA by simulating a whole brain mean field model deployed on top of a virtually lesioned structural connectome from human neuroimaging data to characterize global brain dynamics and functional connectivity at the level of individual subjects. Our results suggest that wiring proximity and similarity are the 2 major guiding principles of compensation-related utilization of hemisphere in the post-lesion functional connectivity re-organization process.
{"title":"Structural-and-dynamical similarity predicts compensatory brain areas driving the post-lesion functional recovery mechanism.","authors":"Priyanka Chakraborty, Suman Saha, Gustavo Deco, Arpan Banerjee, Dipanjan Roy","doi":"10.1093/texcom/tgad012","DOIUrl":"https://doi.org/10.1093/texcom/tgad012","url":null,"abstract":"<p><p>The focal lesion alters the excitation-inhibition (E-I) balance and healthy functional connectivity patterns, which may recover over time. One possible mechanism for the brain to counter the insult is global reshaping functional connectivity alterations. However, the operational principles by which this can be achieved remain unknown. We propose a novel equivalence principle based on structural and dynamic similarity analysis to predict whether specific compensatory areas initiate lost E-I regulation after lesion. We hypothesize that similar structural areas (SSAs) and dynamically similar areas (DSAs) corresponding to a lesioned site are the crucial dynamical units to restore lost homeostatic balance within the surviving cortical brain regions. SSAs and DSAs are independent measures, one based on structural similarity properties measured by Jaccard Index and the other based on post-lesion recovery time. We unravel the relationship between SSA and DSA by simulating a whole brain mean field model deployed on top of a virtually lesioned structural connectome from human neuroimaging data to characterize global brain dynamics and functional connectivity at the level of individual subjects. Our results suggest that wiring proximity and similarity are the 2 major guiding principles of compensation-related utilization of hemisphere in the post-lesion functional connectivity re-organization process.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 3","pages":"tgad012"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9973575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma M Karlsson, Kenneth Hugdahl, Marco Hirnstein, David P Carey
About 95% of right-handers and 70% of left-handers have a left-hemispheric specialization for language. Dichotic listening is often used as an indirect measure of this language asymmetry. However, while it reliably produces a right-ear advantage (REA), corresponding to the left-hemispheric specialization of language, it paradoxically often fails to obtain statistical evidence of mean differences between left- and right-handers. We hypothesized that non-normality of the underlying distributions might be in part responsible for the similarities in means. Here, we compare the mean ear advantage scores, and also contrast the distributions at multiple quantiles, in two large independent samples (Ns = 1,358 and 1,042) of right-handers and left-handers. Right-handers had an increased mean REA, and a larger proportion had an REA than in the left-handers. We also found that more left-handers are represented in the left-eared end of the distribution. These data suggest that subtle shifts in the distributions of DL scores for right- and left-handers may be at least partially responsible for the unreliability of significantly reduced mean REA in left-handers.
{"title":"Analysis of distributions reveals real differences on dichotic listening scores between left- and right-handers.","authors":"Emma M Karlsson, Kenneth Hugdahl, Marco Hirnstein, David P Carey","doi":"10.1093/texcom/tgad009","DOIUrl":"https://doi.org/10.1093/texcom/tgad009","url":null,"abstract":"<p><p>About 95% of right-handers and 70% of left-handers have a left-hemispheric specialization for language. Dichotic listening is often used as an indirect measure of this language asymmetry. However, while it reliably produces a right-ear advantage (REA), corresponding to the left-hemispheric specialization of language, it paradoxically often fails to obtain statistical evidence of mean differences between left- and right-handers. We hypothesized that non-normality of the underlying distributions might be in part responsible for the similarities in means. Here, we compare the mean ear advantage scores, and also contrast the distributions at multiple quantiles, in two large independent samples (Ns = 1,358 and 1,042) of right-handers and left-handers. Right-handers had an increased mean REA, and a larger proportion had an REA than in the left-handers. We also found that more left-handers are represented in the left-eared end of the distribution. These data suggest that subtle shifts in the distributions of DL scores for right- and left-handers may be at least partially responsible for the unreliability of significantly reduced mean REA in left-handers.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 2","pages":"tgad009"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9764593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathon Mark Henneberry, Joseph Elgallad, Seth Smith, Kevin R Duffy
Obstruction of vision to one eye during early postnatal development elicits neural modifications in the visual system that can last a lifetime. Research in rodents has revealed that an early and transient monocular deprivation (MD) can produce an enduring alteration to the framework of neural connections within visual cortex. This lasting trace of early MD enables an enhanced effect of a second MD imposed on the same eye in adulthood. In the current study, we examined whether the modification of plasticity potential was bidirectional by assessing whether the effect of early and brief MD attenuated the impact of a subsequent MD when applied to the fellow eye. Results were clear in showing that animals with an early MD exhibited a smaller response to later visual deprivation of the fellow eye. Compared to controls, animals with a history of MD exhibited less atrophy of neurons, and a smaller loss of neurofilament labeling within the dorsal lateral geniculate nucleus. The shift in cortical ocular dominance elicited by MD was also smaller in animals with a prior MD. These results indicate that early MD elicits abiding and eye-specific neural modifications that can selectively alter plasticity potential in the visual system.
{"title":"Early monocular deprivation reduces the capacity for neural plasticity in the cat visual system.","authors":"Jonathon Mark Henneberry, Joseph Elgallad, Seth Smith, Kevin R Duffy","doi":"10.1093/texcom/tgad017","DOIUrl":"https://doi.org/10.1093/texcom/tgad017","url":null,"abstract":"<p><p>Obstruction of vision to one eye during early postnatal development elicits neural modifications in the visual system that can last a lifetime. Research in rodents has revealed that an early and transient monocular deprivation (MD) can produce an enduring alteration to the framework of neural connections within visual cortex. This lasting trace of early MD enables an enhanced effect of a second MD imposed on the same eye in adulthood. In the current study, we examined whether the modification of plasticity potential was bidirectional by assessing whether the effect of early and brief MD attenuated the impact of a subsequent MD when applied to the fellow eye. Results were clear in showing that animals with an early MD exhibited a smaller response to later visual deprivation of the fellow eye. Compared to controls, animals with a history of MD exhibited less atrophy of neurons, and a smaller loss of neurofilament labeling within the dorsal lateral geniculate nucleus. The shift in cortical ocular dominance elicited by MD was also smaller in animals with a prior MD. These results indicate that early MD elicits abiding and eye-specific neural modifications that can selectively alter plasticity potential in the visual system.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 3","pages":"tgad017"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10171647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Crystallized abilities are skills used to solve problems based on experience, while fluid abilities are linked to reasoning without evoke prior knowledge. To what extent crystallized and fluid abilities involve dissociated or overlapping neural systems is debatable. Due to often deployed small sample sizes or different study settings in prior work, the neural basis of crystallized and fluid abilities in childhood remains largely unknown. Here we analyzed within and between network connectivity patterns from resting-state functional MRI of 2707 children between 9 and 10 years from the ABCD study. We hypothesized that differences in functional connectivity at the default mode network (DMN), ventral, and dorsal attentional networks (VAN, DAN) explain differences in fluid and crystallized abilities. We found that stronger between-network connectivity of the DMN and VAN, DMN and DAN, and VAN and DAN predicted crystallized abilities. Within-network connectivity of the DAN predicted both crystallized and fluid abilities. Our findings reveal that crystallized abilities rely on the functional coupling between attentional networks and the DMN, whereas fluid abilities are associated with a focal connectivity configuration at the DAN. Our study provides new evidence into the neural basis of child intelligence and calls for future comparative research in adulthood during neuropsychiatric diseases.
{"title":"Different patterns of intrinsic functional connectivity at the default mode and attentional networks predict crystalized and fluid abilities in childhood.","authors":"Diego Lombardo, Tobias Kaufmann","doi":"10.1093/texcom/tgad015","DOIUrl":"https://doi.org/10.1093/texcom/tgad015","url":null,"abstract":"<p><p>Crystallized abilities are skills used to solve problems based on experience, while fluid abilities are linked to reasoning without evoke prior knowledge. To what extent crystallized and fluid abilities involve dissociated or overlapping neural systems is debatable. Due to often deployed small sample sizes or different study settings in prior work, the neural basis of crystallized and fluid abilities in childhood remains largely unknown. Here we analyzed within and between network connectivity patterns from resting-state functional MRI of 2707 children between 9 and 10 years from the ABCD study. We hypothesized that differences in functional connectivity at the default mode network (DMN), ventral, and dorsal attentional networks (VAN, DAN) explain differences in fluid and crystallized abilities. We found that stronger between-network connectivity of the DMN and VAN, DMN and DAN, and VAN and DAN predicted crystallized abilities. Within-network connectivity of the DAN predicted both crystallized and fluid abilities. Our findings reveal that crystallized abilities rely on the functional coupling between attentional networks and the DMN, whereas fluid abilities are associated with a focal connectivity configuration at the DAN. Our study provides new evidence into the neural basis of child intelligence and calls for future comparative research in adulthood during neuropsychiatric diseases.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 3","pages":"tgad015"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10183873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hicret Atilgan, J X Janice Koi, Ern Wong, Ilkka Laakso, Noora Matilainen, Achille Pasqualotto, Satoshi Tanaka, S H Annabel Chen, Ryo Kitada
The extrastriate body area (EBA) is a region in the lateral occipito-temporal cortex (LOTC), which is sensitive to perceived body parts. Neuroimaging studies suggested that EBA is related to body and tool processing, regardless of the sensory modalities. However, how essential this region is for visual tool processing and nonvisual object processing remains a matter of controversy. In this preregistered fMRI-guided repetitive transcranial magnetic stimulation (rTMS) study, we examined the causal involvement of EBA in multisensory body and tool recognition. Participants used either vision or haptics to identify 3 object categories: hands, teapots (tools), and cars (control objects). Continuous theta-burst stimulation (cTBS) was applied over left EBA, right EBA, or vertex (control site). Performance for visually perceived hands and teapots (relative to cars) was more strongly disrupted by cTBS over left EBA than over the vertex, whereas no such object-specific effect was observed in haptics. The simulation of the induced electric fields confirmed that the cTBS affected regions including EBA. These results indicate that the LOTC is functionally relevant for visual hand and tool processing, whereas the rTMS over EBA may differently affect object recognition between the 2 sensory modalities.
{"title":"Functional relevance of the extrastriate body area for visual and haptic object recognition: a preregistered fMRI-guided TMS study.","authors":"Hicret Atilgan, J X Janice Koi, Ern Wong, Ilkka Laakso, Noora Matilainen, Achille Pasqualotto, Satoshi Tanaka, S H Annabel Chen, Ryo Kitada","doi":"10.1093/texcom/tgad005","DOIUrl":"https://doi.org/10.1093/texcom/tgad005","url":null,"abstract":"<p><p>The extrastriate body area (EBA) is a region in the lateral occipito-temporal cortex (LOTC), which is sensitive to perceived body parts. Neuroimaging studies suggested that EBA is related to body and tool processing, regardless of the sensory modalities. However, how essential this region is for visual tool processing and nonvisual object processing remains a matter of controversy. In this preregistered fMRI-guided repetitive transcranial magnetic stimulation (rTMS) study, we examined the causal involvement of EBA in multisensory body and tool recognition. Participants used either vision or haptics to identify 3 object categories: hands, teapots (tools), and cars (control objects). Continuous theta-burst stimulation (cTBS) was applied over left EBA, right EBA, or vertex (control site). Performance for visually perceived hands and teapots (relative to cars) was more strongly disrupted by cTBS over left EBA than over the vertex, whereas no such object-specific effect was observed in haptics. The simulation of the induced electric fields confirmed that the cTBS affected regions including EBA. These results indicate that the LOTC is functionally relevant for visual hand and tool processing, whereas the rTMS over EBA may differently affect object recognition between the 2 sensory modalities.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 2","pages":"tgad005"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10176024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9480761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Speech elicits brain activity time-locked to its amplitude envelope. The resulting speech-brain synchrony (SBS) is thought to be crucial to speech parsing and comprehension. It has been shown that higher speech-brain coherence is associated with increased speech intelligibility. However, studies depending on the experimental manipulation of speech stimuli do not allow conclusion about the causality of the observed tracking. Here, we investigate whether individual differences in the intrinsic propensity to track the speech envelope when listening to speech-in-quiet is predictive of individual differences in speech-recognition-in-noise, in an independent task. We evaluated the cerebral tracking of speech in source-localized magnetoencephalography, at timescales corresponding to the phrases, words, syllables and phonemes. We found that individual differences in syllabic tracking in right superior temporal gyrus and in left middle temporal gyrus (MTG) were positively associated with recognition accuracy in an independent words-in-noise task. Furthermore, directed connectivity analysis showed that this relationship is partially mediated by top-down connectivity from premotor cortex-associated with speech processing and active sensing in the auditory domain-to left MTG. Thus, the extent of SBS-even during clear speech-reflects an active mechanism of the speech processing system that may confer resilience to noise.
{"title":"Individual theta-band cortical entrainment to speech in quiet predicts word-in-noise comprehension.","authors":"Robert Becker, Alexis Hervais-Adelman","doi":"10.1093/texcom/tgad001","DOIUrl":"https://doi.org/10.1093/texcom/tgad001","url":null,"abstract":"<p><p>Speech elicits brain activity time-locked to its amplitude envelope. The resulting speech-brain synchrony (SBS) is thought to be crucial to speech parsing and comprehension. It has been shown that higher speech-brain coherence is associated with increased speech intelligibility. However, studies depending on the experimental manipulation of speech stimuli do not allow conclusion about the causality of the observed tracking. Here, we investigate whether individual differences in the intrinsic propensity to track the speech envelope when listening to speech-in-quiet is predictive of individual differences in speech-recognition-in-noise, in an independent task. We evaluated the cerebral tracking of speech in source-localized magnetoencephalography, at timescales corresponding to the phrases, words, syllables and phonemes. We found that individual differences in syllabic tracking in right superior temporal gyrus and in left middle temporal gyrus (MTG) were positively associated with recognition accuracy in an independent words-in-noise task. Furthermore, directed connectivity analysis showed that this relationship is partially mediated by top-down connectivity from premotor cortex-associated with speech processing and active sensing in the auditory domain-to left MTG. Thus, the extent of SBS-even during clear speech-reflects an active mechanism of the speech processing system that may confer resilience to noise.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 1","pages":"tgad001"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10642949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}