Pub Date : 2022-01-13eCollection Date: 2022-01-01DOI: 10.1093/texcom/tgac001
Shijing Yu, Moritz Mückschel, Sarah Rempel, Tjalf Ziemssen, Christian Beste
Performance impairment as an effect of prolonged engagement in a specific task is commonly observed. Although this is a well-known effect in everyday life, little is known about how this affects central cognitive functions such as working memory (WM) processes. In the current study, we ask how time-on-task affects WM gating processes and thus processes regulating WM maintenance and updating. To this end, we combined electroencephalography methods and recordings of the pupil diameter as an indirect of the norepinephrine (NE) system activity. Our results showed that only WM gate opening but not closing processes showed time-on-task effects. On the neurophysiological level, this was associated with modulation of dorsolateral prefrontal theta band synchronization processes, which vanished with time-on-task during WM gate opening. Interestingly, also the modulatory pattern of the NE system, as inferred using pupil diameter data, changed. At the beginning, a strong correlation of pupil diameter data and theta band synchronization processes during WM gate opening is observed. This modulatory effect vanished at the end of the experiment. The results show that time-on-task has very specific effects on WM gate opening and closing processes and suggests an important role of NE system in the time-on-task effect on WM gate opening process.
{"title":"Time-On-Task Effects on Working Memory Gating Processes-A Role of Theta Synchronization and the Norepinephrine System.","authors":"Shijing Yu, Moritz Mückschel, Sarah Rempel, Tjalf Ziemssen, Christian Beste","doi":"10.1093/texcom/tgac001","DOIUrl":"https://doi.org/10.1093/texcom/tgac001","url":null,"abstract":"<p><p>Performance impairment as an effect of prolonged engagement in a specific task is commonly observed. Although this is a well-known effect in everyday life, little is known about how this affects central cognitive functions such as working memory (WM) processes. In the current study, we ask how time-on-task affects WM gating processes and thus processes regulating WM maintenance and updating. To this end, we combined electroencephalography methods and recordings of the pupil diameter as an indirect of the norepinephrine (NE) system activity. Our results showed that only WM gate opening but not closing processes showed time-on-task effects. On the neurophysiological level, this was associated with modulation of dorsolateral prefrontal theta band synchronization processes, which vanished with time-on-task during WM gate opening. Interestingly, also the modulatory pattern of the NE system, as inferred using pupil diameter data, changed. At the beginning, a strong correlation of pupil diameter data and theta band synchronization processes during WM gate opening is observed. This modulatory effect vanished at the end of the experiment. The results show that time-on-task has very specific effects on WM gate opening and closing processes and suggests an important role of NE system in the time-on-task effect on WM gate opening process.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgac001"},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39571159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To adapt one's behavior, in a timely manner, to an environment that changes in many different aspects, one must be sensitive to uncertainty about each aspect of the environment. Although the medial prefrontal cortex has been implicated in the representation and reduction of a variety of uncertainties, it is unknown whether different types of uncertainty are distinguished by distinct neuronal populations. To investigate how the prefrontal cortex distinguishes between different types of uncertainty, we recorded neuronal activities from the medial and lateral prefrontal cortices of monkeys performing a visual feedback-based action-learning task in which uncertainty of coming feedback and that of context change varied asynchronously. We found that the activities of two groups of prefrontal cells represented the two different types of uncertainty. These results suggest that different types of uncertainty are represented by distinct neural populations in the prefrontal cortex.
{"title":"Different types of uncertainty distinguished by monkey prefrontal neurons.","authors":"Madoka Matsumoto, Hiroshi Abe, Keiji Tanaka, Kenji Matsumoto","doi":"10.1093/texcom/tgac002","DOIUrl":"10.1093/texcom/tgac002","url":null,"abstract":"<p><p>To adapt one's behavior, in a timely manner, to an environment that changes in many different aspects, one must be sensitive to uncertainty about each aspect of the environment. Although the medial prefrontal cortex has been implicated in the representation and reduction of a variety of uncertainties, it is unknown whether different types of uncertainty are distinguished by distinct neuronal populations. To investigate how the prefrontal cortex distinguishes between different types of uncertainty, we recorded neuronal activities from the medial and lateral prefrontal cortices of monkeys performing a visual feedback-based action-learning task in which uncertainty of coming feedback and that of context change varied asynchronously. We found that the activities of two groups of prefrontal cells represented the two different types of uncertainty. These results suggest that different types of uncertainty are represented by distinct neural populations in the prefrontal cortex.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgac002"},"PeriodicalIF":0.0,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39927450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-07eCollection Date: 2022-01-01DOI: 10.1093/texcom/tgab067
Elinor Tzvi, Jalal Alizadeh, Christine Schubert, Joseph Classen
Transcranial alternating current stimulation (tACS) modulates oscillations in a frequency- and location-specific manner and affects cognitive and motor functions. This effect appears during stimulation as well as "offline," following stimulation, presumably reflecting neuroplasticity. Whether tACS produces long-lasting aftereffects that are physiologically meaningful, is still of current debate. Thus, for tACS to serve as a reliable method for modulating activity within neural networks, it is important to first establish whether "offline" aftereffects are robust and reliable. In this study, we employed a novel machine-learning approach to detect signatures of neuroplasticity following 10-Hz tACS to two critical nodes of the motor network: left motor cortex (lMC) and right cerebellum (rCB). To this end, we trained a classifier to distinguish between signals following lMC-tACS, rCB-tACS, and sham. Our results demonstrate better classification of electroencephalography (EEG) signals in both theta (θ, 4-8 Hz) and alpha (α, 8-13 Hz) frequency bands to lMC-tACS compared with rCB-tACS/sham, at lMC-tACS stimulation location. Source reconstruction allocated these effects to premotor cortex. Stronger correlation between classification accuracies in θ and α in lMC-tACS suggested an association between θ and α efffects. Together these results suggest that EEG signals over premotor cortex contains unique signatures of neuroplasticity following 10-Hz motor cortex tACS.
{"title":"Classification of EEG Signals Reveals a Focal Aftereffect of 10 Hz Motor Cortex Transcranial Alternating Current Stimulation.","authors":"Elinor Tzvi, Jalal Alizadeh, Christine Schubert, Joseph Classen","doi":"10.1093/texcom/tgab067","DOIUrl":"https://doi.org/10.1093/texcom/tgab067","url":null,"abstract":"<p><p>Transcranial alternating current stimulation (tACS) modulates oscillations in a frequency- and location-specific manner and affects cognitive and motor functions. This effect appears during stimulation as well as \"offline,\" following stimulation, presumably reflecting neuroplasticity. Whether tACS produces long-lasting aftereffects that are physiologically meaningful, is still of current debate. Thus, for tACS to serve as a reliable method for modulating activity within neural networks, it is important to first establish whether \"offline\" aftereffects are robust and reliable. In this study, we employed a novel machine-learning approach to detect signatures of neuroplasticity following 10-Hz tACS to two critical nodes of the motor network: left motor cortex (lMC) and right cerebellum (rCB). To this end, we trained a classifier to distinguish between signals following lMC-tACS, rCB-tACS, and sham. Our results demonstrate better classification of electroencephalography (EEG) signals in both theta (θ, 4-8 Hz) and alpha (α, 8-13 Hz) frequency bands to lMC-tACS compared with rCB-tACS/sham, at lMC-tACS stimulation location. Source reconstruction allocated these effects to premotor cortex. Stronger correlation between classification accuracies in θ and α in lMC-tACS suggested an association between θ and α efffects. Together these results suggest that EEG signals over premotor cortex contains unique signatures of neuroplasticity following 10-Hz motor cortex tACS.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgab067"},"PeriodicalIF":0.0,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39866094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-07eCollection Date: 2022-01-01DOI: 10.1093/texcom/tgab066
Wupadrasta Santosh Kumar, Keerthana Manikandan, Dinavahi V P S Murty, Ranjini Garani Ramesh, Simran Purokayastha, Mahendra Javali, Naren Prahalada Rao, Supratim Ray
Visual stimulus-induced gamma oscillations in electroencephalogram (EEG) recordings have been recently shown to be compromised in subjects with preclinical Alzheimer's Disease (AD), suggesting that gamma could be an inexpensive biomarker for AD diagnosis provided its characteristics remain consistent across multiple recordings. Previous magnetoencephalography studies in young subjects have reported consistent gamma power over recordings separated by a few weeks to months. Here, we assessed the consistency of stimulus-induced slow (20-35 Hz) and fast gamma (36-66 Hz) oscillations in subjects (n = 40) (age: 50-88 years) in EEG recordings separated by a year, and tested the consistency in the magnitude of gamma power, its temporal evolution and spectral profile. Gamma had distinct spectral/temporal characteristics across subjects, which remained consistent across recordings (average intraclass correlation of ~0.7). Alpha (8-12 Hz) and steady-state-visually evoked-potentials were also reliable. We further tested how EEG features can be used to identify 2 recordings as belonging to the same versus different subjects and found high classifier performance (AUC of ~0.89), with temporal evolution of slow gamma and spectral profile being most informative. These results suggest that EEG gamma oscillations are reliable across sessions separated over long durations and can also be a potential tool for subject identification.
{"title":"Stimulus-Induced Narrowband Gamma Oscillations are Test-Retest Reliable in Human EEG.","authors":"Wupadrasta Santosh Kumar, Keerthana Manikandan, Dinavahi V P S Murty, Ranjini Garani Ramesh, Simran Purokayastha, Mahendra Javali, Naren Prahalada Rao, Supratim Ray","doi":"10.1093/texcom/tgab066","DOIUrl":"https://doi.org/10.1093/texcom/tgab066","url":null,"abstract":"<p><p>Visual stimulus-induced gamma oscillations in electroencephalogram (EEG) recordings have been recently shown to be compromised in subjects with preclinical Alzheimer's Disease (AD), suggesting that gamma could be an inexpensive biomarker for AD diagnosis provided its characteristics remain consistent across multiple recordings. Previous magnetoencephalography studies in young subjects have reported consistent gamma power over recordings separated by a few weeks to months. Here, we assessed the consistency of stimulus-induced slow (20-35 Hz) and fast gamma (36-66 Hz) oscillations in subjects (<i>n</i> = 40) (age: 50-88 years) in EEG recordings separated by a year, and tested the consistency in the magnitude of gamma power, its temporal evolution and spectral profile. Gamma had distinct spectral/temporal characteristics across subjects, which remained consistent across recordings (average intraclass correlation of ~0.7). Alpha (8-12 Hz) and steady-state-visually evoked-potentials were also reliable. We further tested how EEG features can be used to identify 2 recordings as belonging to the same versus different subjects and found high classifier performance (AUC of ~0.89), with temporal evolution of slow gamma and spectral profile being most informative. These results suggest that EEG gamma oscillations are reliable across sessions separated over long durations and can also be a potential tool for subject identification.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgab066"},"PeriodicalIF":0.0,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39865635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex Willumsen, Jens Midtgaard, Bo Jespersen, Christoffer K K Hansen, Salina N Lam, Sabine Hansen, Ron Kupers, Martin E Fabricius, Minna Litman, Lars Pinborg, José D Tascón-Vidarte, Anne Sabers, Per E Roland
A major goal of neuroscience is to reveal mechanisms supporting collaborative actions of neurons in local and larger-scale networks. However, no clear overall principle of operation has emerged despite decades-long experimental efforts. Here, we used an unbiased method to extract and identify the dynamics of local postsynaptic network states contained in the cortical field potential. Field potentials were recorded by depth electrodes targeting a wide selection of cortical regions during spontaneous activities, and sensory, motor, and cognitive experimental tasks. Despite different architectures and different activities, all local cortical networks generated the same type of dynamic confined to one region only of state space. Surprisingly, within this region, state trajectories expanded and contracted continuously during all brain activities and generated a single expansion followed by a contraction in a single trial. This behavior deviates from known attractors and attractor networks. The state-space contractions of particular subsets of brain regions cross-correlated during perceptive, motor, and cognitive tasks. Our results imply that the cortex does not need to change its dynamic to shift between different activities, making task-switching inherent in the dynamic of collective cortical operations. Our results provide a mathematically described general explanation of local and larger scale cortical dynamic.
{"title":"Local networks from different parts of the human cerebral cortex generate and share the same population dynamic.","authors":"Alex Willumsen, Jens Midtgaard, Bo Jespersen, Christoffer K K Hansen, Salina N Lam, Sabine Hansen, Ron Kupers, Martin E Fabricius, Minna Litman, Lars Pinborg, José D Tascón-Vidarte, Anne Sabers, Per E Roland","doi":"10.1093/texcom/tgac040","DOIUrl":"https://doi.org/10.1093/texcom/tgac040","url":null,"abstract":"<p><p>A major goal of neuroscience is to reveal mechanisms supporting collaborative actions of neurons in local and larger-scale networks. However, no clear overall principle of operation has emerged despite decades-long experimental efforts. Here, we used an unbiased method to extract and identify the dynamics of local postsynaptic network states contained in the cortical field potential. Field potentials were recorded by depth electrodes targeting a wide selection of cortical regions during spontaneous activities, and sensory, motor, and cognitive experimental tasks. Despite different architectures and different activities, all local cortical networks generated the same type of dynamic confined to one region only of state space. Surprisingly, within this region, state trajectories expanded and contracted continuously during all brain activities and generated a single expansion followed by a contraction in a single trial<i>.</i> This behavior deviates from known attractors and attractor networks. The state-space contractions of particular subsets of brain regions cross-correlated during perceptive, motor, and cognitive tasks. Our results imply that the cortex does not need to change its dynamic to shift between different activities, making task-switching inherent in the dynamic of collective cortical operations. Our results provide a mathematically described general explanation of local and larger scale cortical dynamic.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"3 4","pages":"tgac040"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10540019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Functional imaging and electrophysiological studies in primates revealed the existence of patches selective for visual categories in the inferior temporal cortex. Understanding the contribution of these patches to perception requires causal techniques that assess the effect of neural activity manipulations on perception. We used electrical microstimulation (EM) to determine the role of body patch activity in visual categorization in macaques. We tested the hypothesis that EM in a body patch would affect the categorization of bodies versus objects but not of other visual categories. We employed low-current EM of an anterior body patch (ASB) in the superior temporal sulcus, which was defined by functional magnetic resonance imaging and verified with electrophysiological recordings in each session. EM of ASB affected body categorization, but the EM effects were more complex than the expected increase of body-related choices: EM affected the categorization of both body and inanimate images and showed interaction with the choice target location, but its effect was location-specific (tested in 1 subject) on a millimeter scale. Our findings suggest that the behavioral effects of EM in a category-selective patch are not merely a manifestation of the category selectivity of the underlying neuronal population but reflect a complex interplay of multiple factors.
{"title":"It is not just the category: behavioral effects of fMRI-guided electrical microstimulation result from a complex interplay of factors.","authors":"Satwant Kumar, Eline Mergan, Rufin Vogels","doi":"10.1093/texcom/tgac010","DOIUrl":"https://doi.org/10.1093/texcom/tgac010","url":null,"abstract":"<p><p>Functional imaging and electrophysiological studies in primates revealed the existence of patches selective for visual categories in the inferior temporal cortex. Understanding the contribution of these patches to perception requires causal techniques that assess the effect of neural activity manipulations on perception. We used electrical microstimulation (EM) to determine the role of body patch activity in visual categorization in macaques. We tested the hypothesis that EM in a body patch would affect the categorization of bodies versus objects but not of other visual categories. We employed low-current EM of an anterior body patch (ASB) in the superior temporal sulcus, which was defined by functional magnetic resonance imaging and verified with electrophysiological recordings in each session. EM of ASB affected body categorization, but the EM effects were more complex than the expected increase of body-related choices: EM affected the categorization of both body and inanimate images and showed interaction with the choice target location, but its effect was location-specific (tested in 1 subject) on a millimeter scale. Our findings suggest that the behavioral effects of EM in a category-selective patch are not merely a manifestation of the category selectivity of the underlying neuronal population but reflect a complex interplay of multiple factors.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"3 1","pages":"tgac010"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10520037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gianni Sesa-Ashton, Rebecca Wong, Brendan McCarthy, Sudipta Datta, Luke A Henderson, Tye Dawood, Vaughan G Macefield
Introduction: Muscle sympathetic nerve activity (MSNA) controls the diameter of arterioles in skeletalmuscle, contributing importantly to the beat-to-beat regulation of blood pressure (BP). Although brain imaging studies have shown that bursts of MSNA originate in the rostral ventrolateral medulla, other subcortical and cortical structures-including the dorsolateral prefrontal cortex (dlPFC)-contribute.
Hypothesis: We tested the hypothesis that MSNA and BP could be modulated by stimulating the dlPFC.
Method: dlPFC. In 22 individuals MSNA was recorded via microelectrodes inserted into the common peroneal nerve, together with continuous BP, electrocardiographic, and respiration.Stimulation of the right (n=22) or left dlPFC (n=10) was achieved using transcranial alternating current (tcACS; +2 to -2mA, 0.08 Hz,100 cycles), applied between the nasion and electrodes over the F3 or F4 EEG sites on the scalp.
Results: Sinusoidal stimulation of either dlPFC caused cyclicmodulation of MSNA, BP and heart rate, and a significant increase in BP.
Conclusion: We have shown, for the first time, that tcACS of the dlPFC in awake humans causes partial entrainment of MSNA, heart rate and BP, arguing for an important role of this higher-level cortical area in the control of cardiovascular function.
{"title":"Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans.","authors":"Gianni Sesa-Ashton, Rebecca Wong, Brendan McCarthy, Sudipta Datta, Luke A Henderson, Tye Dawood, Vaughan G Macefield","doi":"10.1093/texcom/tgac017","DOIUrl":"https://doi.org/10.1093/texcom/tgac017","url":null,"abstract":"<p><strong>Introduction: </strong>Muscle sympathetic nerve activity (MSNA) controls the diameter of arterioles in skeletalmuscle, contributing importantly to the beat-to-beat regulation of blood pressure (BP). Although brain imaging studies have shown that bursts of MSNA originate in the rostral ventrolateral medulla, other subcortical and cortical structures-including the dorsolateral prefrontal cortex (dlPFC)-contribute.</p><p><strong>Hypothesis: </strong>We tested the hypothesis that MSNA and BP could be modulated by stimulating the dlPFC.</p><p><strong>Method: </strong>dlPFC. In 22 individuals MSNA was recorded via microelectrodes inserted into the common peroneal nerve, together with continuous BP, electrocardiographic, and respiration.Stimulation of the right (<i>n</i>=22) or left dlPFC (<i>n</i>=10) was achieved using transcranial alternating current (tcACS; +2 to -2mA, 0.08 Hz,100 cycles), applied between the nasion and electrodes over the F3 or F4 EEG sites on the scalp.</p><p><strong>Results: </strong>Sinusoidal stimulation of either dlPFC caused cyclicmodulation of MSNA, BP and heart rate, and a significant increase in BP.</p><p><strong>Conclusion: </strong>We have shown, for the first time, that tcACS of the dlPFC in awake humans causes partial entrainment of MSNA, heart rate and BP, arguing for an important role of this higher-level cortical area in the control of cardiovascular function.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"3 2","pages":"tgac017"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10598191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kurt G Schilling, Muwei Li, Francois Rheault, Zhaohua Ding, Adam W Anderson, Hakmook Kang, Bennett A Landman, John C Gore
Detailed knowledge of the BOLD hemodynamic response function (HRF) is crucial for accurate analyses and interpretation of functional MRI data. Considerable efforts have been made to characterize the HRF in gray matter (GM), but much less attention has been paid to BOLD effects in white matter (WM). However, several recent reports have demonstrated reliable detection and analyses of WM BOLD signals both after stimulation and in a resting state. WM and GM differ in composition, energy requirements, and blood flow, so their neurovascular couplings also may well be different. We aimed to derive a comprehensive characterization of the HRF in WM across a population, including accurate measurements of its shape and its variation along and between WM pathways, using resting-state fMRI acquisitions. Our results show that the HRF is significantly different between WM and GM. Features of the HRF, such as a prominent initial dip, show strong relationships with features of the tissue microstructure derived from diffusion imaging, and these relationships differ between WM and GM, consistent with BOLD signal fluctuations reflecting different energy demands and neurovascular couplings in tissues of different composition and function. We also show that the HRF varies in shape significantly along WM pathways and is different between different WM pathways, suggesting the temporal evolution of BOLD signals after an event vary in different parts of the WM. These features of the HRF in WM are especially relevant for interpretation of the biophysical basis of BOLD effects in WM.
{"title":"Anomalous and heterogeneous characteristics of the BOLD hemodynamic response function in white matter.","authors":"Kurt G Schilling, Muwei Li, Francois Rheault, Zhaohua Ding, Adam W Anderson, Hakmook Kang, Bennett A Landman, John C Gore","doi":"10.1093/texcom/tgac035","DOIUrl":"https://doi.org/10.1093/texcom/tgac035","url":null,"abstract":"<p><p>Detailed knowledge of the BOLD hemodynamic response function (HRF) is crucial for accurate analyses and interpretation of functional MRI data. Considerable efforts have been made to characterize the HRF in gray matter (GM), but much less attention has been paid to BOLD effects in white matter (WM). However, several recent reports have demonstrated reliable detection and analyses of WM BOLD signals both after stimulation and in a resting state. WM and GM differ in composition, energy requirements, and blood flow, so their neurovascular couplings also may well be different. We aimed to derive a comprehensive characterization of the HRF in WM across a population, including accurate measurements of its shape and its variation along and between WM pathways, using resting-state fMRI acquisitions. Our results show that the HRF is significantly different between WM and GM. Features of the HRF, such as a prominent initial dip, show strong relationships with features of the tissue microstructure derived from diffusion imaging, and these relationships differ between WM and GM, consistent with BOLD signal fluctuations reflecting different energy demands and neurovascular couplings in tissues of different composition and function. We also show that the HRF varies in shape significantly along WM pathways and is different between different WM pathways, suggesting the temporal evolution of BOLD signals after an event vary in different parts of the WM. These features of the HRF in WM are especially relevant for interpretation of the biophysical basis of BOLD effects in WM.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"3 3","pages":"tgac035"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10748073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhengshi Yang, Filippo Cieri, Jefferson W Kinney, Jeffrey L Cummings, Dietmar Cordes, Jessica Z K Caldwell
Introduction: Late onset Alzheimer's disease (AD) is the most common form of dementia, in which almost 70% of patients are women.
Hypothesis: We hypothesized that women show worse global FC metrics compared to men, and further hypothesized a sex-specific positive correlation between FC metrics and cognitive scores in women.
Methods: We studied cognitively healthy individuals from the Alzheimer's Disease Neuroimaging Initiative cohort, with resting-state functional Magnetic Resonance Imaging. Metrics derived from graph theoretical analysis and functional connectomics were used to assess the global/regional sex differences in terms of functional integration and segregation, considering the amyloid status and the contributions of APOE E4. Linear mixed effect models with covariates (education, handedness, presence of apolipoprotein [APOE] E4 and intra-subject effect) were utilized to evaluate sex differences. The associations of verbal learning and memory abilities with topological network properties were assessed.
Result: Women had a significantly lower magnitude of the global and regional functional network metrics compared to men. Exploratory association analysis showed that higher global clustering coefficient was associated with lower percent forgetting in women and worse cognitive scores in men.
Conclusion: Women overall show lower magnitude on measures of resting state functional network topology and connectivity. This factor can play a role in their different vulnerability to AD.
Significance statement: Two thirds of AD patients are women but the reasons for these sex difference are not well understood. When this late onset form dementia arises is too late to understand the potential causes of this sex disparities. Studies on cognitively healthy elderly population are a fundamental approach to explore in depth this different vulnerability to the most common form of dementia, currently affecting 6.2 million Americans aged 65 and older are, which means that >1 in 9 people (11.3%) 65 and older are affected by AD. Approaches such as resting-state functional network topology and connectivity may play a key role in understanding and elucidate sex-dependent differences relevant to late-onset dementia syndromes.
{"title":"Brain functional topology differs by sex in cognitively normal older adults.","authors":"Zhengshi Yang, Filippo Cieri, Jefferson W Kinney, Jeffrey L Cummings, Dietmar Cordes, Jessica Z K Caldwell","doi":"10.1093/texcom/tgac023","DOIUrl":"https://doi.org/10.1093/texcom/tgac023","url":null,"abstract":"<p><strong>Introduction: </strong>Late onset Alzheimer's disease (AD) is the most common form of dementia, in which almost 70% of patients are women.</p><p><strong>Hypothesis: </strong>We hypothesized that women show worse global FC metrics compared to men, and further hypothesized a sex-specific positive correlation between FC metrics and cognitive scores in women.</p><p><strong>Methods: </strong>We studied cognitively healthy individuals from the Alzheimer's Disease Neuroimaging Initiative cohort, with resting-state functional Magnetic Resonance Imaging. Metrics derived from graph theoretical analysis and functional connectomics were used to assess the global/regional sex differences in terms of functional integration and segregation, considering the amyloid status and the contributions of APOE E4. Linear mixed effect models with covariates (education, handedness, presence of apolipoprotein [APOE] E4 and intra-subject effect) were utilized to evaluate sex differences. The associations of verbal learning and memory abilities with topological network properties were assessed.</p><p><strong>Result: </strong>Women had a significantly lower magnitude of the global and regional functional network metrics compared to men. Exploratory association analysis showed that higher global clustering coefficient was associated with lower percent forgetting in women and worse cognitive scores in men.</p><p><strong>Conclusion: </strong>Women overall show lower magnitude on measures of resting state functional network topology and connectivity. This factor can play a role in their different vulnerability to AD.</p><p><strong>Significance statement: </strong>Two thirds of AD patients are women but the reasons for these sex difference are not well understood. When this late onset form dementia arises is too late to understand the potential causes of this sex disparities. Studies on cognitively healthy elderly population are a fundamental approach to explore in depth this different vulnerability to the most common form of dementia, currently affecting 6.2 million Americans aged 65 and older are, which means that >1 in 9 people (11.3%) 65 and older are affected by AD. Approaches such as resting-state functional network topology and connectivity may play a key role in understanding and elucidate sex-dependent differences relevant to late-onset dementia syndromes.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"3 3","pages":"tgac023"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10711636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
[This corrects the article DOI: 10.1093/texcom/tgac019.].
[这更正了文章DOI: 10.1093/texcom/tgac019.]。
{"title":"Correction to: Measuring \"pain load\" during general anesthesia.","authors":"","doi":"10.1093/texcom/tgac043","DOIUrl":"https://doi.org/10.1093/texcom/tgac043","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/texcom/tgac019.].</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"3 4","pages":"tgac043"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10156110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}