Although vocal signals, including languages and songbird syllables, are composed of a finite number of acoustic elements, diverse vocal sequences are composed of a combination of these elements, which are linked together by syntactic rules. However, the neural basis of syntactic vocalization generation remains poorly understood. Here, we report that inhibition using tetrodotoxin (TTX) and manipulations of gamma-aminobutyric acid (GABA) receptors within the basal ganglia Area X or lateral magnocellular nucleus of the anterior neostriatum (LMAN) alter and prolong repetitive vocalization in Bengalese finches (Lonchura striata var. domestica). These results suggest that repetitive vocalizations are modulated by the basal ganglia and not solely by higher motor cortical neurons. These data highlight the importance of neural circuits, including the basal ganglia, in the production of stereotyped repetitive vocalizations and demonstrate that dynamic disturbances within the basal ganglia circuitry can differentially affect the repetitive temporal features of songs.
虽然包括语言和鸣禽音节在内的声音信号是由有限数量的声学元素组成的,但不同的声音序列是由这些元素的组合组成的,这些元素通过句法规则联系在一起。然而,句法发声产生的神经基础仍然知之甚少。在这里,我们报道了使用河豚毒素(TTX)和操纵基底神经节X区或前新纹状体(LMAN)外侧大细胞核内的γ -氨基丁酸(GABA)受体可以改变和延长孟加拉雀(Lonchura striata vara . domestica)的重复发声。这些结果表明,重复发声是由基底神经节调节的,而不仅仅是由高级运动皮质神经元调节的。这些数据强调了包括基底神经节在内的神经回路在产生刻板重复发声中的重要性,并证明了基底神经节回路内的动态干扰可以不同地影响歌曲的重复时间特征。
{"title":"Reversible inhibition of the basal ganglia prolongs repetitive vocalization but only weakly affects sequencing at branch points in songbirds.","authors":"Hisataka Fujimoto, Taku Hasegawa","doi":"10.1093/texcom/tgad016","DOIUrl":"https://doi.org/10.1093/texcom/tgad016","url":null,"abstract":"<p><p>Although vocal signals, including languages and songbird syllables, are composed of a finite number of acoustic elements, diverse vocal sequences are composed of a combination of these elements, which are linked together by syntactic rules. However, the neural basis of syntactic vocalization generation remains poorly understood. Here, we report that inhibition using tetrodotoxin (TTX) and manipulations of gamma-aminobutyric acid (GABA) receptors within the basal ganglia Area X or lateral magnocellular nucleus of the anterior neostriatum (LMAN) alter and prolong repetitive vocalization in Bengalese finches (<i>Lonchura striata var. domestica</i>). These results suggest that repetitive vocalizations are modulated by the basal ganglia and not solely by higher motor cortical neurons. These data highlight the importance of neural circuits, including the basal ganglia, in the production of stereotyped repetitive vocalizations and demonstrate that dynamic disturbances within the basal ganglia circuitry can differentially affect the repetitive temporal features of songs.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 3","pages":"tgad016"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10183875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We aimed to clarify whether dopamine depletion in the posterior dorsal striatum in early-stage Parkinson's disease (PD) alters synchronized activity in the cortico-basal ganglia motor circuit. In sum, 14 PD patients and 16 matched healthy controls (HC) underwent [11C]-2-β-carbomethoxy-3-β-(4-fluorophenyl) tropane positron emission tomography to identify striatal dopamine-depleted areas. The identified map was applied to functional magnetic resonance imaging (fMRI) to discover abnormalities in functional connectivity (FC) during motor-task and rest-state in PD patients in the drug-off state relative to HC. Striatal dopamine-depleted areas formed synchronized fMRI activity that largely corresponded to the cortico-basal ganglia motor circuit. Group comparisons revealed that striatal dopamine-depleted areas exhibited decreased FC with the medial premotor cortex during motor-task and with the medial, lateral premotor and primary motor cortices during rest-state. Striatal dopamine-depleted areas also elucidated decreased FC in the subthalamic nucleus (STN) in PD both during motor-task and rest-state. The STN regions that exhibited reduced FC with striatal dopamine-depleted areas demonstrated excessive FC with the lateral premotor and primary motor cortices in PD only during rest-state. Our findings suggest that striatal dopamine-depleted area reduced synchronized activity with the motor cortices and STN, which, in turn, induces an abnormal increase in coupling between the areas in PD.
{"title":"Altered functional connectivity associated with striatal dopamine depletion in Parkinson's disease.","authors":"Atsushi Shima, Rika Inano, Hayato Tabu, Tomohisa Okada, Yuji Nakamoto, Ryosuke Takahashi, Nobukatsu Sawamoto","doi":"10.1093/texcom/tgad004","DOIUrl":"https://doi.org/10.1093/texcom/tgad004","url":null,"abstract":"<p><p>We aimed to clarify whether dopamine depletion in the posterior dorsal striatum in early-stage Parkinson's disease (PD) alters synchronized activity in the cortico-basal ganglia motor circuit. In sum, 14 PD patients and 16 matched healthy controls (HC) underwent [11C]-2-β-carbomethoxy-3-β-(4-fluorophenyl) tropane positron emission tomography to identify striatal dopamine-depleted areas. The identified map was applied to functional magnetic resonance imaging (fMRI) to discover abnormalities in functional connectivity (FC) during motor-task and rest-state in PD patients in the drug-off state relative to HC. Striatal dopamine-depleted areas formed synchronized fMRI activity that largely corresponded to the cortico-basal ganglia motor circuit. Group comparisons revealed that striatal dopamine-depleted areas exhibited decreased FC with the medial premotor cortex during motor-task and with the medial, lateral premotor and primary motor cortices during rest-state. Striatal dopamine-depleted areas also elucidated decreased FC in the subthalamic nucleus (STN) in PD both during motor-task and rest-state. The STN regions that exhibited reduced FC with striatal dopamine-depleted areas demonstrated excessive FC with the lateral premotor and primary motor cortices in PD only during rest-state. Our findings suggest that striatal dopamine-depleted area reduced synchronized activity with the motor cortices and STN, which, in turn, induces an abnormal increase in coupling between the areas in PD.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 1","pages":"tgad004"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9174567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaser Merrikhi, Melanie A Kok, Stephen G Lomber, M Alex Meredith
From myriads of ongoing stimuli, the brain creates a fused percept of the environment. This process, which culminates in perceptual binding, is presumed to occur through the operations of multisensory neurons that occur throughout the brain. However, because different brain areas receive different inputs and have different cytoarchitechtonics, it would be expected that local multisensory features would also vary across regions. The present study investigated that hypothesis using multiple single-unit recordings from anesthetized cats in response to controlled, electronically-generated separate and combined auditory, visual, and somatosensory stimulation. These results were used to compare the multisensory features of neurons in cat primary auditory cortex (A1) with those identified in the nearby higher-order auditory region, the Dorsal Zone (DZ). Both regions exhibited the same forms of multisensory neurons, albeit in different proportions. Multisensory neurons exhibiting excitatory or inhibitory properties occurred in similar proportions in both areas. Also, multisensory neurons in both areas expressed similar levels of multisensory integration. Because responses to auditory cues alone were so similar to those that included non-auditory stimuli, it is proposed that this effect represents a mechanism by which multisensory neurons subserve the process of perceptual binding.
{"title":"A comparison of multisensory features of two auditory cortical areas: primary (A1) and higher-order dorsal zone (DZ).","authors":"Yaser Merrikhi, Melanie A Kok, Stephen G Lomber, M Alex Meredith","doi":"10.1093/texcom/tgac049","DOIUrl":"https://doi.org/10.1093/texcom/tgac049","url":null,"abstract":"<p><p>From myriads of ongoing stimuli, the brain creates a fused percept of the environment. This process, which culminates in perceptual binding, is presumed to occur through the operations of multisensory neurons that occur throughout the brain. However, because different brain areas receive different inputs and have different cytoarchitechtonics, it would be expected that local multisensory features would also vary across regions. The present study investigated that hypothesis using multiple single-unit recordings from anesthetized cats in response to controlled, electronically-generated separate and combined auditory, visual, and somatosensory stimulation. These results were used to compare the multisensory features of neurons in cat primary auditory cortex (A1) with those identified in the nearby higher-order auditory region, the Dorsal Zone (DZ). Both regions exhibited the same forms of multisensory neurons, albeit in different proportions. Multisensory neurons exhibiting excitatory or inhibitory properties occurred in similar proportions in both areas. Also, multisensory neurons in both areas expressed similar levels of multisensory integration. Because responses to auditory cues alone were so similar to those that included non-auditory stimuli, it is proposed that this effect represents a mechanism by which multisensory neurons subserve the process of perceptual binding.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 1","pages":"tgac049"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10525176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karen L Cobos, Xiangyu Long, Catherine Lebel, Nivez Rasic, Melanie Noel, Jillian V Miller
Adults with chronic headache have altered brain hippocampal efficiency networks. Less is known about the mechanisms underlying chronic headache in youth. In total, 29 youth with chronic headache (10-18 years), and 29 healthy, age- and sex-matched controls tracked their headache attacks daily for 1-month period. Following this, they underwent a resting state functional magnetic resonance imaging scan and self-reported on their pubertal status, post-traumatic stress, anxiety, and depression symptoms. Graph-based topological analyses of brain networks, rendering hippocampal efficiency values were performed. T-tests were used to compare hippocampal efficiency metrics between patients and controls. Linear regression was used to examine significant hippocampal efficiency metrics in relation to headache frequency in patients, controlling for age, sex, pubertal status, post-traumatic stress, anxiety, and depression symptoms. Patients had higher right hippocampal global efficiency, shorter right hippocampal path length, and higher right hippocampal clustering coefficient compared to controls (P < 0.05). Higher right hippocampal global efficiency, shorter right hippocampal path length, and higher right hippocampal clustering coefficients were positively associated with greater headache frequency (P < 0.05). The hippocampus is largely involved in memory formation and retrieval, and this data provides additional support for previous findings demonstrating the importance of the hippocampus and pain memories for the chronification of pain.
患有慢性头痛的成人改变了大脑海马效率网络。人们对青少年慢性头痛的发病机制知之甚少。总共29名患有慢性头痛的青少年(10-18岁)和29名健康、年龄和性别匹配的对照组,在1个月的时间里每天追踪他们的头痛发作情况。在此之后,他们接受了静息状态功能磁共振成像扫描,并自我报告了他们的青春期状态、创伤后应激、焦虑和抑郁症状。对大脑网络进行基于图的拓扑分析,绘制海马效率值。使用t检验比较患者和对照组之间的海马效率指标。在控制年龄、性别、青春期状态、创伤后应激、焦虑和抑郁症状的情况下,使用线性回归来检验与患者头痛频率相关的显著海马效率指标。与对照组相比,患者右侧海马整体效率更高,右侧海马路径长度更短,右侧海马聚类系数更高(P P
{"title":"Increased hippocampal efficiency is associated with greater headache frequency in adolescents with chronic headache.","authors":"Karen L Cobos, Xiangyu Long, Catherine Lebel, Nivez Rasic, Melanie Noel, Jillian V Miller","doi":"10.1093/texcom/tgad013","DOIUrl":"https://doi.org/10.1093/texcom/tgad013","url":null,"abstract":"<p><p>Adults with chronic headache have altered brain hippocampal efficiency networks. Less is known about the mechanisms underlying chronic headache in youth. In total, 29 youth with chronic headache (10-18 years), and 29 healthy, age- and sex-matched controls tracked their headache attacks daily for 1-month period. Following this, they underwent a resting state functional magnetic resonance imaging scan and self-reported on their pubertal status, post-traumatic stress, anxiety, and depression symptoms. Graph-based topological analyses of brain networks, rendering hippocampal efficiency values were performed. <i>T</i>-tests were used to compare hippocampal efficiency metrics between patients and controls. Linear regression was used to examine significant hippocampal efficiency metrics in relation to headache frequency in patients, controlling for age, sex, pubertal status, post-traumatic stress, anxiety, and depression symptoms. Patients had higher right hippocampal global efficiency, shorter right hippocampal path length, and higher right hippocampal clustering coefficient compared to controls (<i>P</i> < 0.05). Higher right hippocampal global efficiency, shorter right hippocampal path length, and higher right hippocampal clustering coefficients were positively associated with greater headache frequency (<i>P</i> < 0.05). The hippocampus is largely involved in memory formation and retrieval, and this data provides additional support for previous findings demonstrating the importance of the hippocampus and pain memories for the chronification of pain.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"4 3","pages":"tgad013"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10344704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Compensatory plastic changes in the remaining intact brain regions are supposedly involved in functional recovery following stroke. Previously, a compensatory increase in cortical activation occurred in the ventral premotor cortex (PMv), which contributed to the recovery of dexterous hand movement in a macaque model of unilateral internal capsular infarcts. Herein, we investigated the structural plastic changes underlying functional changes together with voxel-based morphometry (VBM) analysis of magnetic resonance imaging data and immunohistochemical analysis using SMI-32 antibody in a macaque model. Unilateral internal capsular infarcts were pharmacologically induced in 5 macaques, and another 5 macaques were used as intact controls for immunohistochemical analysis. Three months post infarcts, we observed significant increases in the gray matter volume (GMV) and the dendritic arborization of layer V pyramidal neurons in the contralesional rostral PMv (F5) as well as the primary motor cortex (M1). The histological analysis revealed shrinkage of neuronal soma and dendrites in the ipsilesional M1 and several premotor cortices, despite not always detecting GMV reduction by VBM analysis. In conclusion, compensatory structural changes occur in the contralesional F5 and M1 during motor recovery following internal capsular infarcts, and the dendritic growth of pyramidal neurons is partially correlated with GMV increase.
{"title":"Structural plasticity of motor cortices assessed by voxel-based morphometry and immunohistochemical analysis following internal capsular infarcts in macaque monkeys.","authors":"Kohei Matsuda, Kazuaki Nagasaka, Junpei Kato, Ichiro Takashima, Noriyuki Higo","doi":"10.1093/texcom/tgac046","DOIUrl":"https://doi.org/10.1093/texcom/tgac046","url":null,"abstract":"<p><p>Compensatory plastic changes in the remaining intact brain regions are supposedly involved in functional recovery following stroke. Previously, a compensatory increase in cortical activation occurred in the ventral premotor cortex (PMv), which contributed to the recovery of dexterous hand movement in a macaque model of unilateral internal capsular infarcts. Herein, we investigated the structural plastic changes underlying functional changes together with voxel-based morphometry (VBM) analysis of magnetic resonance imaging data and immunohistochemical analysis using SMI-32 antibody in a macaque model. Unilateral internal capsular infarcts were pharmacologically induced in 5 macaques, and another 5 macaques were used as intact controls for immunohistochemical analysis. Three months post infarcts, we observed significant increases in the gray matter volume (GMV) and the dendritic arborization of layer V pyramidal neurons in the contralesional rostral PMv (F5) as well as the primary motor cortex (M1). The histological analysis revealed shrinkage of neuronal soma and dendrites in the ipsilesional M1 and several premotor cortices, despite not always detecting GMV reduction by VBM analysis. In conclusion, compensatory structural changes occur in the contralesional F5 and M1 during motor recovery following internal capsular infarcts, and the dendritic growth of pyramidal neurons is partially correlated with GMV increase.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgac046"},"PeriodicalIF":0.0,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40456530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-29eCollection Date: 2022-01-01DOI: 10.1093/texcom/tgac042
Célia Lacaux, Thomas Andrillon, Isabelle Arnulf, Delphine Oudiette
Every night, we pass through a transitory zone at the borderland between wakefulness and sleep, named the first stage of nonrapid eye movement sleep (N1). N1 sleep is associated with increased hippocampal activity and dream-like experiences that incorporate recent wake materials, suggesting that it may be associated with memory processing. Here, we investigated the specific contribution of N1 sleep in the processing of memory traces. Participants were asked to learn the precise locations of 48 objects on a grid and were then tested on their memory for these items before and after a 30-min rest during which participants either stayed fully awake or transitioned toward N1 or deeper (N2) sleep. We showed that memory recall was lower (10% forgetting) after a resting period, including only N1 sleep compared to N2 sleep. Furthermore, the ratio of alpha/theta power (an electroencephalography marker of the transition toward sleep) correlated negatively with the forgetting rate when taking into account all sleepers (N1 and N2 groups combined), suggesting a physiological index for memory loss that transcends sleep stages. Our findings suggest that interrupting sleep onset at N1 may alter sleep-dependent memory consolidation and promote forgetting.
{"title":"Memory loss at sleep onset.","authors":"Célia Lacaux, Thomas Andrillon, Isabelle Arnulf, Delphine Oudiette","doi":"10.1093/texcom/tgac042","DOIUrl":"https://doi.org/10.1093/texcom/tgac042","url":null,"abstract":"<p><p>Every night, we pass through a transitory zone at the borderland between wakefulness and sleep, named the first stage of nonrapid eye movement sleep (N1). N1 sleep is associated with increased hippocampal activity and dream-like experiences that incorporate recent wake materials, suggesting that it may be associated with memory processing. Here, we investigated the specific contribution of N1 sleep in the processing of memory traces. Participants were asked to learn the precise locations of 48 objects on a grid and were then tested on their memory for these items before and after a 30-min rest during which participants either stayed fully awake or transitioned toward N1 or deeper (N2) sleep. We showed that memory recall was lower (10% forgetting) after a resting period, including only N1 sleep compared to N2 sleep. Furthermore, the ratio of alpha/theta power (an electroencephalography marker of the transition toward sleep) correlated negatively with the forgetting rate when taking into account all sleepers (N1 and N2 groups combined), suggesting a physiological index for memory loss that transcends sleep stages. Our findings suggest that interrupting sleep onset at N1 may alter sleep-dependent memory consolidation and promote forgetting.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgac042"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40479406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-19eCollection Date: 2022-01-01DOI: 10.1093/texcom/tgac039
Francesco Cocina, Andreas Vitalis, Amedeo Caflisch
Persistent activity has commonly been considered to be a hallmark of working memory (WM). Recent evidence indicates that neuronal discharges in the medial temporal lobe (MTL) are compatible with WM neural patterns observed in cortical areas. However, the characterization of this activity rarely consists of measurements other than firing rates of single neurons. Moreover, a varied repertoire of firing dynamics has been reported in the MTL regions, which motivate the more detailed examination of the relationships between WM processes and discharge patterns undertaken here. Specifically, we investigate' at different resolution levels, firing irregularities in electrode recordings from the hippocampus, amygdala, and the entorhinal cortex of epileptic patients during a WM task. We show that some types of (ir)regularities predict response times of the patients depending on the trial periods under consideration. Prominent burst activity at the population level is observed in the amygdala and entorhinal cortex during memory retrieval. In general, regular and bursty neurons contribute to the decoding of the memory load, yet they display important differences across the three anatomical areas. Our results suggest that nonrandom (non-Poisson) patterns are relevant for WM, which calls for the development and use of statistics complementary to mere spike counts.
{"title":"Spiking burstiness and working memory in the human medial temporal lobe.","authors":"Francesco Cocina, Andreas Vitalis, Amedeo Caflisch","doi":"10.1093/texcom/tgac039","DOIUrl":"https://doi.org/10.1093/texcom/tgac039","url":null,"abstract":"<p><p>Persistent activity has commonly been considered to be a hallmark of working memory (WM). Recent evidence indicates that neuronal discharges in the medial temporal lobe (MTL) are compatible with WM neural patterns observed in cortical areas. However, the characterization of this activity rarely consists of measurements other than firing rates of single neurons. Moreover, a varied repertoire of firing dynamics has been reported in the MTL regions, which motivate the more detailed examination of the relationships between WM processes and discharge patterns undertaken here. Specifically, we investigate' at different resolution levels, firing irregularities in electrode recordings from the hippocampus, amygdala, and the entorhinal cortex of epileptic patients during a WM task. We show that some types of (ir)regularities predict response times of the patients depending on the trial periods under consideration. Prominent burst activity at the population level is observed in the amygdala and entorhinal cortex during memory retrieval. In general, regular and bursty neurons contribute to the decoding of the memory load, yet they display important differences across the three anatomical areas. Our results suggest that nonrandom (non-Poisson) patterns are relevant for WM, which calls for the development and use of statistics complementary to mere spike counts.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgac039"},"PeriodicalIF":0.0,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40479407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We previously showed that cognitive performance declines when the retrieval process spans an expiratory-to-inspiratory (EI) phase transition (an onset of inspiration). To identify the neural underpinning of this phenomenon, we conducted functional magnetic resonance imaging (fMRI) while participants performed a delayed matching-to-sample (DMTS) recognition memory task with a short delay. Respiration during the task was monitored using a nasal cannula. Behavioral data replicated the decline in memory performance specific to the EI transition during the retrieval process, while an extensive array of frontoparietal regions were activated during the encoding, delay, and retrieval processes of the task. Within these regions, when the retrieval process spanned the EI transition, activation was reduced in the anterior cluster of the right temporoparietal junction (TPJa, compared to cases when the retrieval process spanned the inspiratory-to-expiratory phase transition) and the left and right middle frontal gyrus, dorsomedial prefrontal cortex, and somatosensory areas (compared to cases when the retrieval process did not span any phase transition). These results in task-related activity may represent respiratory interference specifically in information manipulation rather than memory storage. Our findings demonstrate a cortical-level effect of respiratory phases on cognitive processes and highlight the importance of the timing of breathing for successful performance.
{"title":"Respiration-timing-dependent changes in activation of neural substrates during cognitive processes.","authors":"Nozomu H Nakamura, Masaki Fukunaga, Tetsuya Yamamoto, Norihiro Sadato, Yoshitaka Oku","doi":"10.1093/texcom/tgac038","DOIUrl":"https://doi.org/10.1093/texcom/tgac038","url":null,"abstract":"<p><p>We previously showed that cognitive performance declines when the retrieval process spans an expiratory-to-inspiratory (EI) phase transition (an onset of inspiration). To identify the neural underpinning of this phenomenon, we conducted functional magnetic resonance imaging (fMRI) while participants performed a delayed matching-to-sample (DMTS) recognition memory task with a short delay. Respiration during the task was monitored using a nasal cannula. Behavioral data replicated the decline in memory performance specific to the EI transition during the retrieval process, while an extensive array of frontoparietal regions were activated during the encoding, delay, and retrieval processes of the task. Within these regions, when the retrieval process spanned the EI transition, activation was reduced in the anterior cluster of the right temporoparietal junction (TPJa, compared to cases when the retrieval process spanned the inspiratory-to-expiratory phase transition) and the left and right middle frontal gyrus, dorsomedial prefrontal cortex, and somatosensory areas (compared to cases when the retrieval process did not span any phase transition). These results in task-related activity may represent respiratory interference specifically in information manipulation rather than memory storage. Our findings demonstrate a cortical-level effect of respiratory phases on cognitive processes and highlight the importance of the timing of breathing for successful performance.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgac038"},"PeriodicalIF":0.0,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33511805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Previous studies suggested the possibility that the red nucleus (RN) is involved in other cognitive functions than motion per se, even though such functions have yet to be clarified. We investigated the activation of RN during several tasks and its intrinsic functional network associated with social cognition and musical practice. The tasks included finger tapping, n-back, and memory recall tasks. Region of interest for RN was identified through those tasks, anatomical information of RN, and a brain atlas. The intrinsic functional network was identified for RN by an analysis of connectivity between RN and other regions typically involved in seven known resting state functional networks with RN used as the seed region. Association of the RN network with a psychological trait of the interpersonal reactivity index and musical training years revealed subnetworks that included empathy related regions or music practice related regions. These social or highly coordinated motor activity represent the most complex functions ever known to involve the RN, adding further evidence for the multifunctional roles of RN. These discoveries may lead to a new direction of investigations to clarify probable novel roles for RN in high-level human behavior.
{"title":"Involvement of the intrinsic functional network of the red nucleus in complex behavioral processing.","authors":"Yul-Wan Sung, Sachiko Kiyama, Uk-Su Choi, Seiji Ogawa","doi":"10.1093/texcom/tgac037","DOIUrl":"https://doi.org/10.1093/texcom/tgac037","url":null,"abstract":"<p><p>Previous studies suggested the possibility that the red nucleus (RN) is involved in other cognitive functions than motion per se, even though such functions have yet to be clarified. We investigated the activation of RN during several tasks and its intrinsic functional network associated with social cognition and musical practice. The tasks included finger tapping, n-back, and memory recall tasks. Region of interest for RN was identified through those tasks, anatomical information of RN, and a brain atlas. The intrinsic functional network was identified for RN by an analysis of connectivity between RN and other regions typically involved in seven known resting state functional networks with RN used as the seed region. Association of the RN network with a psychological trait of the interpersonal reactivity index and musical training years revealed subnetworks that included empathy related regions or music practice related regions. These social or highly coordinated motor activity represent the most complex functions ever known to involve the RN, adding further evidence for the multifunctional roles of RN. These discoveries may lead to a new direction of investigations to clarify probable novel roles for RN in high-level human behavior.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgac037"},"PeriodicalIF":0.0,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33498004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-18eCollection Date: 2022-01-01DOI: 10.1093/texcom/tgac036
Lara Nikel, Magdalena W Sliwinska, Emel Kucuk, Leslie G Ungerleider, David Pitcher
Neuroimaging studies identify multiple face-selective areas in the human brain. In the current study, we compared the functional response of the face area in the lateral prefrontal cortex to that of other face-selective areas. In Experiment 1, participants (n = 32) were scanned viewing videos containing faces, bodies, scenes, objects, and scrambled objects. We identified a face-selective area in the right inferior frontal gyrus (rIFG). In Experiment 2, participants (n = 24) viewed the same videos or static images. Results showed that the rIFG, right posterior superior temporal sulcus (rpSTS), and right occipital face area (rOFA) exhibited a greater response to moving than static faces. In Experiment 3, participants (n = 18) viewed face videos in the contralateral and ipsilateral visual fields. Results showed that the rIFG and rpSTS showed no visual field bias, while the rOFA and right fusiform face area (rFFA) showed a contralateral bias. These experiments suggest two conclusions; firstly, in all three experiments, the face area in the IFG was not as reliably identified as face areas in the occipitotemporal cortex. Secondly, the similarity of the response profiles in the IFG and pSTS suggests the areas may perform similar cognitive functions, a conclusion consistent with prior neuroanatomical and functional connectivity evidence.
{"title":"Measuring the response to visually presented faces in the human lateral prefrontal cortex.","authors":"Lara Nikel, Magdalena W Sliwinska, Emel Kucuk, Leslie G Ungerleider, David Pitcher","doi":"10.1093/texcom/tgac036","DOIUrl":"https://doi.org/10.1093/texcom/tgac036","url":null,"abstract":"<p><p>Neuroimaging studies identify multiple face-selective areas in the human brain. In the current study, we compared the functional response of the face area in the lateral prefrontal cortex to that of other face-selective areas. In Experiment 1, participants (<i>n</i> = 32) were scanned viewing videos containing faces, bodies, scenes, objects, and scrambled objects. We identified a face-selective area in the right inferior frontal gyrus (rIFG). In Experiment 2, participants (<i>n</i> = 24) viewed the same videos or static images. Results showed that the rIFG, right posterior superior temporal sulcus (rpSTS), and right occipital face area (rOFA) exhibited a greater response to moving than static faces. In Experiment 3, participants (<i>n</i> = 18) viewed face videos in the contralateral and ipsilateral visual fields. Results showed that the rIFG and rpSTS showed no visual field bias, while the rOFA and right fusiform face area (rFFA) showed a contralateral bias. These experiments suggest two conclusions; firstly, in all three experiments, the face area in the IFG was not as reliably identified as face areas in the occipitotemporal cortex. Secondly, the similarity of the response profiles in the IFG and pSTS suggests the areas may perform similar cognitive functions, a conclusion consistent with prior neuroanatomical and functional connectivity evidence.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgac036"},"PeriodicalIF":0.0,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33498005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}