The purpose of the present study was to evaluate the predictability of PAMPA for the effect of metal ions on the bioavailability of fluoroquinolones (FQ). Eleven FQs and seven metal ions were employed in this study. The PAMPA membrane consisted of a 10 % soybean lecithin (SL) - decane solution. A drug solution in MES buffer with or without a metal ion (added as a chloride salt) was added to the donor compartment. In the absence of metal ions, FQ showed relatively high permeability (> 5 × 10-6 cm/sec) in SL-PAMPA despite their hydrophilic and zwitterionic properties. As the PAMPA permeability ratio with/without metal ions became smaller, the urinary excretion and AUC ratios tended to be smaller, suggesting that SL-PAMPA is a suitable in vitro model to evaluate the potential effect of metal ions on the bioavailability of FQ. However, the reduction in AUC and urinary excretion was overestimated for low solubility metal ion formulations (dried aluminum hydroxide gel and La2(CO3)3・8H2O). In such cases, the dissolution of the metal ion formulations and the permeation of FQs should be simultaneously evaluated.
The intake of food and meal type can strongly impact the bioavailability of orally administered drugs and can consequently impact drug efficacy and safety. During the early stages of drug development, only a small amount of drug substance is available, and the solubility difference between fasted state simulated intestinal fluid and fed state simulated intestinal fluid may provide an early indication about the probable food effect. But higher drug solubility in fed state simulated intestinal fluid may not always results in an increased oral absorption. In the present research, we demonstrated using 11 model compounds that in addition to the drug dissolution in biorelevant media, the evaluation of the diffusion flux of a drug in solution, across artificial lipid coated membrane, where only the unbound drug crosses the membrane, is a reliable way to predict the food effect. Although, the combination of dissolution and diffusion flux may not reliably predict the food effect in case of drugs undergoing intestinal metabolism or when transporters are involved in the drug absorption, the technique generally provides good information about the food effect at very early stages of drug development that may help in designing a clinical plan by adjusting the drug dose in the fed state.
The apparent solubility of drug nanocrystals in equilibrium was experimentally determined for a drug-stabilizer system with different particle size distributions. True supersaturation was identified for ultrafine drug nanocrystals with an almost 2-fold increase compared to the thermodynamic solubility of related coarse drug crystals, highlighting their enabling potential to enhance bioavailability. The experimental results were applied to investigate in silico the associated dissolution behavior in a closed system by numerical modeling according to the Ostwald-Freundlich and Noyes-Whitney / Nernst-Brunner equations. Calculated results were found to be in agreement with the experimental results only when the entire particle size distribution of drug nanocrystals was considered. In silico dissolution, studies were conducted to simulate the complex interplay between drug nanocrystals, dissolution conditions and resulting temporal progression during dissolution up to the equilibrium state. Calculations were performed for selected in vivo and in vitro scenarios considering different drug nanocrystal particle size distributions, drug amount, dissolution media and volume. The achieved results demonstrated the importance of ultrafine drug nanocrystals for potential bioavailability improvement and the functional applicability of the modeling approach to investigate their dissolution behavior for configurable formulation variables in product development in terms of in vivo and in vitro relevant conditions.
The ten years of PhysChem Forum-Japan and Konstantin Tsinman's great contributions to the forum are briefly described.