Pub Date : 2023-09-15eCollection Date: 2023-01-01DOI: 10.5599/admet.2023
Takeru Sumiji, Kiyohiko Sugano
Background and purpose: Physiologically-based biopharmaceutics modeling (PBBM) has been widely used to predict the oral absorption of drugs. However, the prediction of food effects on oral drug absorption is still challenging, especially for negative food effects. Marked negative food effects have been reported in most cases of quaternary ammonium compounds (QAC). However, the mechanism has remained unclear. The purpose of the present study was to investigate the bile micelle and food binding of QACs as a mechanism of the negative food effect.
Experimental approach: Trospium (TRS), propantheline (PPT), and ambenonium (AMB) were selected as model QAC drugs. The oral absorption of these QACs has been reported to be reduced by 77% (TRS), > 66% (PPT), and 79% (AMB), when taken with food. The fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, containing 3 and 15 mM taurocholic acid, respectively) with or without FDA breakfast homogenate (BFH) were used as the simulated intestinal fluid. The unbound fraction (fu) of the QACs in these media was measured by dynamic dialysis.
Key results: The fu ratios (FeSSIF/ FaSSIF) were 0.67 (TRS), 0.47 (PPT), and 0.76 (AMB). When BFH was added to FeSSIF, it was reduced to 0.39 (TRS), 0.28 (PPT), and 0.59 (AMB).
Conclusion: These results suggested that bile micelle and food binding play an important role in the negative food effect on the oral absorption of QACs.
{"title":"Food and bile micelle binding of quaternary ammonium compounds.","authors":"Takeru Sumiji, Kiyohiko Sugano","doi":"10.5599/admet.2023","DOIUrl":"10.5599/admet.2023","url":null,"abstract":"<p><strong>Background and purpose: </strong>Physiologically-based biopharmaceutics modeling (PBBM) has been widely used to predict the oral absorption of drugs. However, the prediction of food effects on oral drug absorption is still challenging, especially for negative food effects. Marked negative food effects have been reported in most cases of quaternary ammonium compounds (QAC). However, the mechanism has remained unclear. The purpose of the present study was to investigate the bile micelle and food binding of QACs as a mechanism of the negative food effect.</p><p><strong>Experimental approach: </strong>Trospium (TRS), propantheline (PPT), and ambenonium (AMB) were selected as model QAC drugs. The oral absorption of these QACs has been reported to be reduced by 77% (TRS), > 66% (PPT), and 79% (AMB), when taken with food. The fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, containing 3 and 15 mM taurocholic acid, respectively) with or without FDA breakfast homogenate (BFH) were used as the simulated intestinal fluid. The unbound fraction (f<sub>u</sub>) of the QACs in these media was measured by dynamic dialysis.</p><p><strong>Key results: </strong>The f<sub>u</sub> ratios (FeSSIF/ FaSSIF) were 0.67 (TRS), 0.47 (PPT), and 0.76 (AMB). When BFH was added to FeSSIF, it was reduced to 0.39 (TRS), 0.28 (PPT), and 0.59 (AMB).</p><p><strong>Conclusion: </strong>These results suggested that bile micelle and food binding play an important role in the negative food effect on the oral absorption of QACs.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 3","pages":"409-417"},"PeriodicalIF":2.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21eCollection Date: 2023-01-01DOI: 10.5599/admet.1879
Alex Avdeef
Yalkowsky's General Solubility Equation (GSE), with its three fixed constants, is popular and easy to apply, but is not very accurate for polar, zwitterionic, or flexible molecules. This review examines the findings of a series of studies, where we have sought to come up with a better prediction model, by comparing the performances of the GSE to Abraham's Solvation Equation (ABSOLV), and Random Forest regression (RFR) machine-learning (ML) method. Large, well-curated aqueous intrinsic solubility databases are available. However, drugs may be sparsely distributed in chemical space, concentrated in clusters. Even a large database might overlook some regions. Test compounds from under-represented portions of space may be poorly predicted, as might be the case with the 'loose' set of 32 drugs in the Second Solubility Challenge (2020). There appears to be still a need for better coverage of drug space. Increasingly, current trends in predictions of solubility use calculated input descriptors, which may be an advantage for exploring properties of molecules yet to be synthesized. The risk may be that overall prediction approaches might be based on accumulated uncertainty. The increasing use of ML/AI methods can lead to accurate predictions, but such predictions may not readily suggest the strategies to pursue in selecting yet-to-be-synthesized compounds. Based on our latest findings, we recommend predictions based on both 'grouped' ABSOLV(GRP) and 'Flexible Acceptor' GSE(Φ,B) models with the provided best-fit parameters, where Φ is the Kier molecular flexibility index and B is the Abraham H-bond acceptor strength. For molecules with Φ < 11, the prudent choice is to pick the Consensus Model, the average of ABSOLV(GRP) and GSE(Φ,B). For more flexible molecules, GSE(Φ,B) is recommended.
{"title":"Mechanistically transparent models for predicting aqueous solubility of rigid, slightly flexible, and very flexible drugs (MW<2000) Accuracy near that of random forest regression.","authors":"Alex Avdeef","doi":"10.5599/admet.1879","DOIUrl":"10.5599/admet.1879","url":null,"abstract":"<p><p>Yalkowsky's General Solubility Equation (GSE), with its three fixed constants, is popular and easy to apply, but is not very accurate for polar, zwitterionic, or flexible molecules. This review examines the findings of a series of studies, where we have sought to come up with a better prediction model, by comparing the performances of the GSE to Abraham's Solvation Equation (ABSOLV), and Random Forest regression (RFR) machine-learning (ML) method. Large, well-curated aqueous intrinsic solubility databases are available. However, drugs may be sparsely distributed in chemical space, concentrated in clusters. Even a large database might overlook some regions. Test compounds from under-represented portions of space may be poorly predicted, as might be the case with the 'loose' set of 32 drugs in the Second Solubility Challenge (2020). There appears to be still a need for better coverage of drug space. Increasingly, current trends in predictions of solubility use calculated input descriptors, which may be an advantage for exploring properties of molecules yet to be synthesized. The risk may be that overall prediction approaches might be based on accumulated uncertainty. The increasing use of ML/AI methods can lead to accurate predictions, but such predictions may not readily suggest the strategies to pursue in selecting yet-to-be-synthesized compounds. Based on our latest findings, we recommend predictions based on both 'grouped' ABSOLV(GRP) and 'Flexible Acceptor' GSE(<i>Φ</i>,<i>B</i>) models with the provided best-fit parameters, where <i>Φ</i> is the Kier molecular flexibility index and <i>B</i> is the Abraham H-bond acceptor strength. For molecules with <i>Φ</i> < 11, the prudent choice is to pick the Consensus Model, the average of ABSOLV(GRP) and GSE(Φ,B). For more flexible molecules, GSE(Φ,B) is recommended.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 3","pages":"317-330"},"PeriodicalIF":2.5,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-26eCollection Date: 2023-01-01DOI: 10.5599/admet.1918
Ysrafil Ysrafil, Zulfiayu Sapiun, Nangsih Sulastri Slamet, Fihrina Mohamad, Hartati Hartati, Sukmawati A Damiti, Francisca Diana Alexandra, Sudarman Rahman, Sri Masyeni, Harapan Harapan, Sukamto S Mamada, Talha Bin Emran, Firzan Nainu
Background and purpose: Flavonoids are a group of phytochemicals found abundantly in various plants. Scientific evidence has revealed that flavonoids display potential biological activities, including their ability to alleviate inflammation. This activity is closely related to their action in blocking the inflammatory cascade and inhibiting the production of pro-inflammatory factors. However, as flavonoids typically have poor bioavailability and pharmacokinetic profile, it is quite challenging to establish these compounds as a drug. Nevertheless, progressive advancements in drug delivery systems, particularly in nanotechnology, have shown promising approaches to overcome such challenges.
Review approach: This narrative review provides an overview of scientific knowledge about the mechanism of action of flavonoids in the mitigation of inflammatory reaction prior to delivering a comprehensive discussion about the opportunity of the nanotechnology-based delivery system in the preparation of the flavonoid-based drug.
Key results: Various studies conducted in silico, in vitro, in vivo, and clinical trials have deciphered that the anti-inflammatory activities of flavonoids are closely linked to their ability to modulate various biochemical mediators, enzymes, and signalling pathways involved in the inflammatory processes. This compound could be encapsulated in nanotechnology platforms to increase the solubility, bioavailability, and pharmacological activity of flavonoids as well as reduce the toxic effects of these compounds.
Conclusion: In Summary, we conclude that flavonoids and their derivates have given promising results in their development as new anti-inflammatory drug candidates, especially if they formulate in nanoparticles.
{"title":"Anti-inflammatory activities of flavonoid derivates.","authors":"Ysrafil Ysrafil, Zulfiayu Sapiun, Nangsih Sulastri Slamet, Fihrina Mohamad, Hartati Hartati, Sukmawati A Damiti, Francisca Diana Alexandra, Sudarman Rahman, Sri Masyeni, Harapan Harapan, Sukamto S Mamada, Talha Bin Emran, Firzan Nainu","doi":"10.5599/admet.1918","DOIUrl":"10.5599/admet.1918","url":null,"abstract":"<p><strong>Background and purpose: </strong>Flavonoids are a group of phytochemicals found abundantly in various plants. Scientific evidence has revealed that flavonoids display potential biological activities, including their ability to alleviate inflammation. This activity is closely related to their action in blocking the inflammatory cascade and inhibiting the production of pro-inflammatory factors. However, as flavonoids typically have poor bioavailability and pharmacokinetic profile, it is quite challenging to establish these compounds as a drug. Nevertheless, progressive advancements in drug delivery systems, particularly in nanotechnology, have shown promising approaches to overcome such challenges.</p><p><strong>Review approach: </strong>This narrative review provides an overview of scientific knowledge about the mechanism of action of flavonoids in the mitigation of inflammatory reaction prior to delivering a comprehensive discussion about the opportunity of the nanotechnology-based delivery system in the preparation of the flavonoid-based drug.</p><p><strong>Key results: </strong>Various studies conducted in silico, in vitro, in vivo, and clinical trials have deciphered that the anti-inflammatory activities of flavonoids are closely linked to their ability to modulate various biochemical mediators, enzymes, and signalling pathways involved in the inflammatory processes. This compound could be encapsulated in nanotechnology platforms to increase the solubility, bioavailability, and pharmacological activity of flavonoids as well as reduce the toxic effects of these compounds.</p><p><strong>Conclusion: </strong>In Summary, we conclude that flavonoids and their derivates have given promising results in their development as new anti-inflammatory drug candidates, especially if they formulate in nanoparticles.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 3","pages":"331-359"},"PeriodicalIF":2.5,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-22eCollection Date: 2023-01-01DOI: 10.5599/admet.1823
Hadi Soltani Nejad, Fariba Garkani Nejad, Hadi Beitollahi
Background and purpose: Sensitive analytical determination of folic acid is important in clinical laboratories due to its versatile biological functions.
Experimental approach: A simple folic acid sensor was successfully fabricated based on two-dimensional transition metal dichalcogenide MoS2 modified carbon ionic liquid paste electrode (MoS2-CILPE). The electrochemical properties of the fabricated electrode were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry.
Key results: The fabricated sensor displayed excellent electroactivity towards folic acid using CV. Under optimal conditions (0.1 M PBS (pH 7.0)), the DPV oxidation peak current was proportional to folic acid concentration in the range from 5.0 μM to 100.0 μM with an estimated limit of detection of 1.0 μM and limit of quantification of 5.0 μM.
Conclusion: The ability of the sensor for routine analyses was demonstrated by the detection of folic acid present in folic acid tablets and urine samples with appreciable recovery values.
背景和目的:叶酸具有多种生物学功能,因此在临床实验室中对其进行灵敏的分析测定是很重要的。实验方法:基于二维过渡金属二硫族化合物MoS2修饰的碳离子液体糊电极(MoS2 CILPE),成功制备了一种简单的叶酸传感器。通过循环伏安法(CV)、微分脉冲伏安法(DPV)和计时电流法研究了所制备的电极的电化学性能。关键结果:使用CV,所制备的传感器对叶酸显示出优异的电活性。在最佳条件下(0.1 M PBS(pH 7.0)),DPV氧化峰值电流与叶酸浓度在5.0μM至100.0μM范围内成比例,估计检测限为1.0μM,定量限为5.0μM。结论:通过检测叶酸片和尿样中的叶酸,证明了传感器的常规分析能力,具有明显的回收价值。
{"title":"Development of a highly sensitive voltammetric sensor for the detection of folic acid by using MoS<sub>2</sub> and ionic liquid-modified carbon paste electrode.","authors":"Hadi Soltani Nejad, Fariba Garkani Nejad, Hadi Beitollahi","doi":"10.5599/admet.1823","DOIUrl":"10.5599/admet.1823","url":null,"abstract":"<p><strong>Background and purpose: </strong>Sensitive analytical determination of folic acid is important in clinical laboratories due to its versatile biological functions.</p><p><strong>Experimental approach: </strong>A simple folic acid sensor was successfully fabricated based on two-dimensional transition metal dichalcogenide MoS<sub>2</sub> modified carbon ionic liquid paste electrode (MoS<sub>2</sub>-CILPE). The electrochemical properties of the fabricated electrode were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry.</p><p><strong>Key results: </strong>The fabricated sensor displayed excellent electroactivity towards folic acid using CV. Under optimal conditions (0.1 M PBS (pH 7.0)), the DPV oxidation peak current was proportional to folic acid concentration in the range from 5.0 μM to 100.0 μM with an estimated limit of detection of 1.0 μM and limit of quantification of 5.0 μM.</p><p><strong>Conclusion: </strong>The ability of the sensor for routine analyses was demonstrated by the detection of folic acid present in folic acid tablets and urine samples with appreciable recovery values.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 3","pages":"361-371"},"PeriodicalIF":2.5,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-22eCollection Date: 2023-01-01DOI: 10.5599/admet.1586
Hironori Tanaka, Tetsuya Miyano, Hiroshi Ueda
Background and purpose: Physicochemical properties of an amorphous solid dispersion (ASD) comprising an experimental grade of hydroxypropyl methylcellulose acetate succinate (HPMCAS-MX) with lower glass transition temperature have been previously investigated. This study aimed to evaluate applicability of HPMCAS-MX to hot-melt extrusion (HME) and dissolution-permeation performance of prepared ASDs using MicroFLUX.
Review approach: A physical mixture of indomethacin (IMC) and HPMCAS-MX or -MG (a commercial grade with higher transition temperature) at 20:80 weight ratio was hot-melt extruded to prepare an ASD (IMC-MX and IMC-MG, respectively). The dissolution-permeation performance and the stability of the ASDs were measured.
Key results: A torque reduction at 120 °C implied that IMC-MX transformed into an amorphous state at this temperature, but IMC-MG required around 170 °C. This result was supported by Raman mapping of the the HME samples. IMC-MG and IMC-MX remained in an amorphous state at 40 °C for three months. The initial dissolution rate and solubility of the ASDs were higher than that of crystalline IMC. The apparent permeability of IMC from IMC-MX and IMC-MG was comparable but was approximately two-fold higher than that from crystalline IMC.
Conclusion: HPMCAS-MX enabled HME process at a lower temperature and improved the dissolution-permeation performance of indomethacin.
{"title":"Dissolution-permeation of hot-melt extruded amorphous solid dispersion comprising an experimental grade of HPMCAS.","authors":"Hironori Tanaka, Tetsuya Miyano, Hiroshi Ueda","doi":"10.5599/admet.1586","DOIUrl":"10.5599/admet.1586","url":null,"abstract":"<p><strong>Background and purpose: </strong>Physicochemical properties of an amorphous solid dispersion (ASD) comprising an experimental grade of hydroxypropyl methylcellulose acetate succinate (HPMCAS-MX) with lower glass transition temperature have been previously investigated. This study aimed to evaluate applicability of HPMCAS-MX to hot-melt extrusion (HME) and dissolution-permeation performance of prepared ASDs using MicroFLUX.</p><p><strong>Review approach: </strong>A physical mixture of indomethacin (IMC) and HPMCAS-MX or -MG (a commercial grade with higher transition temperature) at 20:80 weight ratio was hot-melt extruded to prepare an ASD (IMC-MX and IMC-MG, respectively). The dissolution-permeation performance and the stability of the ASDs were measured.</p><p><strong>Key results: </strong>A torque reduction at 120 °C implied that IMC-MX transformed into an amorphous state at this temperature, but IMC-MG required around 170 °C. This result was supported by Raman mapping of the the HME samples. IMC-MG and IMC-MX remained in an amorphous state at 40 °C for three months. The initial dissolution rate and solubility of the ASDs were higher than that of crystalline IMC. The apparent permeability of IMC from IMC-MX and IMC-MG was comparable but was approximately two-fold higher than that from crystalline IMC.</p><p><strong>Conclusion: </strong>HPMCAS-MX enabled HME process at a lower temperature and improved the dissolution-permeation performance of indomethacin.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 3","pages":"373-385"},"PeriodicalIF":2.5,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-04eCollection Date: 2023-01-01DOI: 10.5599/admet.1845
Minh-Dat Quoc Tang, Nhu-Thuy Trinh, Dung Vu, Thu-Ha Thi Nguyen, Hung Thanh Dong, Toi Van Vo, Long Binh Vong
Background and purpose: The utilization of doxorubicin (DOX) in clinal trials is also challenging owing to its adverse effects, including low oral bioavailability, generation of reactive oxygen species (ROS), cardiotoxicity, and epithelial barrier damage. Recently, scavenging of ROS reduced the cytotoxicity of DOX, suggesting a new approach for using DOX as an anticancer treatment. Thus, in this study, non-silica and silica redox nanoparticles (denoted as RNPN and siRNP, respectively) with ROS scavenging features have been designed to encapsulate DOX and reduce its cytotoxicity.
Experimental approach: DOX-loaded RNPN (DOX@RNPN) and DOX-loaded siRNP (DOX@siRNP) were prepared by co-dissolving DOX with RNPN and siRNP, respectively. The size and stability of nanoparticles were characterized by the dynamic light scattering system. Additionally, encapsulation efficiency, loading capacity, and release profile of DOX@RNPN and DOX@siRNP were identified by measuring the absorbance of DOX. Finally, the cytotoxicity of DOX@RNPN and DOX@siRNP against normal murine fibroblast cells (L929), human hepatocellular carcinoma cells (HepG2), and human breast cancer cells (MCF-7) were also investigated.
Key results: The obtained result showed that RNPN exhibited a pH-sensitive character while silanol moieties improved the stability of siRNP in physiological conditions. DOX@RNPN and DOX@siRNP were formed at several tens of nanometers in diameter with narrow distribution. Moreover, DOX@siRNP stabilized under different pH buffers, especially gastric pH, and improved encapsulation of DOX owing to the addition of silanol groups. DOX@RNPN and DOX@siRNP maintained anticancer activity of DOX against HepG2, and MCF-7 cells, while their cytotoxicity on L929 cells was significantly reduced compared to free DOX treatment.
Conclusion: DOX@RNPN and DOX@siRNP could effectively suppress the adverse effect of DOX, suggesting the potential to become promising nanomedicines for cancer treatments.
{"title":"Preparation of self-assembly silica redox nanoparticles to improve drug encapsulation and suppress the adverse effect of doxorubicin.","authors":"Minh-Dat Quoc Tang, Nhu-Thuy Trinh, Dung Vu, Thu-Ha Thi Nguyen, Hung Thanh Dong, Toi Van Vo, Long Binh Vong","doi":"10.5599/admet.1845","DOIUrl":"10.5599/admet.1845","url":null,"abstract":"<p><strong>Background and purpose: </strong>The utilization of doxorubicin (DOX) in clinal trials is also challenging owing to its adverse effects, including low oral bioavailability, generation of reactive oxygen species (ROS), cardiotoxicity, and epithelial barrier damage. Recently, scavenging of ROS reduced the cytotoxicity of DOX, suggesting a new approach for using DOX as an anticancer treatment. Thus, in this study, non-silica and silica redox nanoparticles (denoted as RNP<sup>N</sup> and siRNP, respectively) with ROS scavenging features have been designed to encapsulate DOX and reduce its cytotoxicity.</p><p><strong>Experimental approach: </strong>DOX-loaded RNP<sup>N</sup> (DOX@RNP<sup>N</sup>) and DOX-loaded siRNP (DOX@siRNP) were prepared by co-dissolving DOX with RNP<sup>N</sup> and siRNP, respectively. The size and stability of nanoparticles were characterized by the dynamic light scattering system. Additionally, encapsulation efficiency, loading capacity, and release profile of DOX@RNP<sup>N</sup> and DOX@siRNP were identified by measuring the absorbance of DOX. Finally, the cytotoxicity of DOX@RNP<sup>N</sup> and DOX@siRNP against normal murine fibroblast cells (L929), human hepatocellular carcinoma cells (HepG2), and human breast cancer cells (MCF-7) were also investigated.</p><p><strong>Key results: </strong>The obtained result showed that RNP<sup>N</sup> exhibited a pH-sensitive character while silanol moieties improved the stability of siRNP in physiological conditions. DOX@RNP<sup>N</sup> and DOX@siRNP were formed at several tens of nanometers in diameter with narrow distribution. Moreover, DOX@siRNP stabilized under different pH buffers, especially gastric pH, and improved encapsulation of DOX owing to the addition of silanol groups. DOX@RNP<sup>N</sup> and DOX@siRNP maintained anticancer activity of DOX against HepG2, and MCF-7 cells, while their cytotoxicity on L929 cells was significantly reduced compared to free DOX treatment.</p><p><strong>Conclusion: </strong>DOX@RNP<sup>N</sup> and DOX@siRNP could effectively suppress the adverse effect of DOX, suggesting the potential to become promising nanomedicines for cancer treatments.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"1 1","pages":"551-560"},"PeriodicalIF":2.5,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41797602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maheswari Juluri, Reshma Anjum Mohammed, S. Mohan, Narasimha Golla, S. Krishna, Kishori Battini
Background and purpose: Metal nanoparticles are essential due to their unique catalytic, electrical, magnetic, and optical characteristics, as well as their prospective use in sensing, catalysis, and biological research. In recent years, researchers have focused on developing cost-effective and eco-friendly biogenic practices using the green synthesis of metal nanoparticles (AgNP). Experimental approach: In the present study, the aqueous extracts prepared from the leaf, stem, bark, and flower of Neolamarkia cadamba were used for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Visible spectroscopy, zeta potential, dynamic light scattering, scanning electron microscope (SEM), and EDAX. Key results: The current study showed absorption of synthesized AgNPs at 425, 423, 410, and 400 nm. Dynamic light scattering of AgNPs Showed size distribution of AgNPs synthesized from leaf, stem, and flower aqueous extracts ranges from 80-200 nm and AgNPs prepared from bark extract ranges from 100-700 nm. Zeta-potential of the biosynthesized AgNPs was found as a sharp peak at -23.1 mV for the leaf, -27.0 mV for the stem, -34.1 mV for the bark, and -20.2 mV for the flower. Silver nanoparticles and crude extracts of Neolamarkia cadamba showed effective antibacterial, antifungal, and antioxidant activities. Conclusion: Silver nanoparticles have substantial antibacterial activity against Gram-positive bacteria and also exhibit the utmost antifungal activity against Aspergillus niger. The study concludes that the green synthesis of silver nanoparticles from N. cadamba leaf, stem, bark, and flower extract is a reliable and eco-friendly technique.
{"title":"Green synthesis, characterization and biological activities of silver nanoparticles synthesized from Neolamarkia cadamba","authors":"Maheswari Juluri, Reshma Anjum Mohammed, S. Mohan, Narasimha Golla, S. Krishna, Kishori Battini","doi":"10.5599/admet.1793","DOIUrl":"https://doi.org/10.5599/admet.1793","url":null,"abstract":"Background and purpose: Metal nanoparticles are essential due to their unique catalytic, electrical, magnetic, and optical characteristics, as well as their prospective use in sensing, catalysis, and biological research. In recent years, researchers have focused on developing cost-effective and eco-friendly biogenic practices using the green synthesis of metal nanoparticles (AgNP). Experimental approach: In the present study, the aqueous extracts prepared from the leaf, stem, bark, and flower of Neolamarkia cadamba were used for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Visible spectroscopy, zeta potential, dynamic light scattering, scanning electron microscope (SEM), and EDAX. Key results: The current study showed absorption of synthesized AgNPs at 425, 423, 410, and 400 nm. Dynamic light scattering of AgNPs Showed size distribution of AgNPs synthesized from leaf, stem, and flower aqueous extracts ranges from 80-200 nm and AgNPs prepared from bark extract ranges from 100-700 nm. Zeta-potential of the biosynthesized AgNPs was found as a sharp peak at -23.1 mV for the leaf, -27.0 mV for the stem, -34.1 mV for the bark, and -20.2 mV for the flower. Silver nanoparticles and crude extracts of Neolamarkia cadamba showed effective antibacterial, antifungal, and antioxidant activities. Conclusion: Silver nanoparticles have substantial antibacterial activity against Gram-positive bacteria and also exhibit the utmost antifungal activity against Aspergillus niger. The study concludes that the green synthesis of silver nanoparticles from N. cadamba leaf, stem, bark, and flower extract is a reliable and eco-friendly technique.","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45439831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23eCollection Date: 2023-01-01DOI: 10.5599/admet.1822
Alex Avdeef
Background and purpose: The widely-used and practically insoluble diprotic acidic dye, bromothymol blue (BTB), is a neutral molecule in strongly acidic aqueous solutions. The Schill (1964) extensive solubility-pH measurement of bromothymol blue in 0.1 and 1.0 M NaCl solutions, with pH adjusted with HCl from 0.0 to 5.4, featured several unusual findings. The data suggest that the difference in solubility of the neutral-form molecule in 1M NaCl is more than 0.7 log unit lower than the solubility in pure water. This could be considered as uncharacteristically high for a salting-out effect. Also, the study reported two apparent values of pKa1, 1.48 and 1.00, in 0.1 M and 1.0 M NaCl solutions, respectively. The only other measured value found for pKa1 in the literature is -0.66 (Gupta and Cadwallader, 1968).
Experimental approach: It was reasoned that the there can be only a single pKa1 for BTB. Also, it was hypothesized that salting-out alone might not account for such a large difference in solubility observed at the two levels of salt. A generalized mass action approach incorporating activity corrections for charged species using the Stokes-Robinson hydration equation and for neutral species using the Setschenow equation, was selected to analyze the Schill solubility-pH data to seek a rationalization of these unusual results.
Key results: BTB reveals complex speciation chemistry in saturated aqueous solutions which had been poorly understood for many years. The appearance of two different values of pKa1 at different levels of NaCl and the anomalously high value of the empirical salting-out constant could be rationalized to normal values by invoking the formation of a very stable neutral dimer (log K2 = 10.0 ± 0.1 M-1). A 'normal' salting-out constant, 0.25 M-1 was then derived. It was also possible to estimate the 'self-interaction' constant. The data analysis in the present study critically depended on the pKa1 = -0.66 reported by Gupta and Cadwallader.
Conclusion: A more reasonable salting-out constant and a consistent single value for pKa1 have been determined by considering a self-interacting (aggregation) model involving an uncharged form of the molecule, which is likely a zwitterion, as suggested by literature spectrophotometric studies.
背景和目的:溴百里酚蓝(BTB)是一种在强酸性水溶液中存在的中性分子,是一种应用广泛且几乎不溶的二元酸性染料。Schill(1964)对溴百里酚蓝在0.1和1.0 M NaCl溶液中的广泛溶解度pH进行了测量,用HCl将pH从0.0调节到5.4,其特征是有几个不寻常的发现。数据表明,中性形式分子在1M NaCl中的溶解度差异比在纯水中的溶解度低0.7个对数单位以上。对于盐析效应来说,这可能被认为是异常高的。此外,该研究报告了pKa1在0.1M和1.0M NaCl溶液中的两个表观值,分别为1.48和1.00。文献中发现的pKa1的唯一其他测量值为-0.66(Gupta和Cadwallader,1968)。实验方法:认为BTB只能有一个pKa1。此外,据推测,单独的盐析可能无法解释在两种盐水平下观察到的溶解度差异如此之大。选择了一种广义质量作用方法,包括使用Stokes Robinson水合方程对带电物种和使用Setschenow方程对中性物种的活度校正,以分析Schill溶解度pH数据,从而寻求这些异常结果的合理化。关键结果:BTB揭示了饱和水溶液中复杂的物种化学,多年来人们对此知之甚少。在不同的NaCl水平下,pKa1的两个不同值的出现和经验盐析常数的异常高值可以通过调用非常稳定的中性二聚体的形成(log K2=10.0±0.1 M-1)来合理化为正常值。然后导出“正常”盐析常数0.25 M-1。还可以估计“自我互动”常数。本研究中的数据分析主要取决于Gupta和Cadwallader报道的pKa1=-0.66,如文献分光光度法研究所建议的。
{"title":"Anomalous salting-out, self-association and p<i>K</i><sub>a</sub> effects in the practically-insoluble bromothymol blue.","authors":"Alex Avdeef","doi":"10.5599/admet.1822","DOIUrl":"10.5599/admet.1822","url":null,"abstract":"<p><strong>Background and purpose: </strong>The widely-used and practically insoluble diprotic acidic dye, bromothymol blue (BTB), is a neutral molecule in strongly acidic aqueous solutions. The Schill (1964) extensive solubility-pH measurement of bromothymol blue in 0.1 and 1.0 M NaCl solutions, with pH adjusted with HCl from 0.0 to 5.4, featured several unusual findings. The data suggest that the difference in solubility of the neutral-form molecule in 1M NaCl is more than 0.7 log unit lower than the solubility in pure water. This could be considered as uncharacteristically high for a salting-out effect. Also, the study reported two apparent values of p<i>K</i><sub>a1</sub>, 1.48 and 1.00, in 0.1 M and 1.0 M NaCl solutions, respectively. The only other measured value found for pK<sub>a1</sub> in the literature is -0.66 (Gupta and Cadwallader, 1968).</p><p><strong>Experimental approach: </strong>It was reasoned that the there can be only a single p<i>K</i><sub>a1</sub> for BTB. Also, it was hypothesized that salting-out alone might not account for such a large difference in solubility observed at the two levels of salt. A generalized mass action approach incorporating activity corrections for charged species using the Stokes-Robinson hydration equation and for neutral species using the Setschenow equation, was selected to analyze the Schill solubility-pH data to seek a rationalization of these unusual results.</p><p><strong>Key results: </strong>BTB reveals complex speciation chemistry in saturated aqueous solutions which had been poorly understood for many years. The appearance of two different values of pK<sub>a1</sub> at different levels of NaCl and the anomalously high value of the empirical salting-out constant could be rationalized to normal values by invoking the formation of a very stable neutral dimer (log <i>K</i><sub>2</sub> = 10.0 ± 0.1 M<sup>-1</sup>). A 'normal' salting-out constant, 0.25 M<sup>-1</sup> was then derived. It was also possible to estimate the 'self-interaction' constant. The data analysis in the present study critically depended on the p<i>K</i><sub>a1</sub> = -0.66 reported by Gupta and Cadwallader.</p><p><strong>Conclusion: </strong>A more reasonable salting-out constant and a consistent single value for p<i>K</i><sub>a1</sub> have been determined by considering a self-interacting (aggregation) model involving an uncharged form of the molecule, which is likely a zwitterion, as suggested by literature spectrophotometric studies.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 3","pages":"419-432"},"PeriodicalIF":2.5,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-19eCollection Date: 2023-01-01DOI: 10.5599/admet.1711
Totka Dodevska, Dobrin Hadzhiev, Ivan Shterev
Reliable, rapid, highly selective and sensitive analytical methods for the determination of antineoplastic agent 5-fluorouracil (5-FU) in human body fluids (blood serum/plasma and urine) are required to improve the chemotherapy regimen to reduce its toxicity and improve efficacy. Nowadays, electrochemical techniques provide a powerful analytical tool for 5-FU detection systems. This comprehensive review covers the advances in the development of electrochemical sensors for the quantitative determination of 5-FU, mainly focused on original studies reported from 2015 to date. We have summarized recent trends in the electrochemical sensor systems applied for the analysis of 5-FU in pharmaceutical formulations and biological samples, and critically evaluated the key performance metrics of these sensors (limit of detection, linear range, stability and recovery). Challenges and future outlooks in this field have also been discussed.
{"title":"Recent advances in electrochemical determination of anticancer drug 5-fluorouracil.","authors":"Totka Dodevska, Dobrin Hadzhiev, Ivan Shterev","doi":"10.5599/admet.1711","DOIUrl":"10.5599/admet.1711","url":null,"abstract":"<p><p>Reliable, rapid, highly selective and sensitive analytical methods for the determination of antineoplastic agent 5-fluorouracil (5-FU) in human body fluids (blood serum/plasma and urine) are required to improve the chemotherapy regimen to reduce its toxicity and improve efficacy. Nowadays, electrochemical techniques provide a powerful analytical tool for 5-FU detection systems. This comprehensive review covers the advances in the development of electrochemical sensors for the quantitative determination of 5-FU, mainly focused on original studies reported from 2015 to date. We have summarized recent trends in the electrochemical sensor systems applied for the analysis of 5-FU in pharmaceutical formulations and biological samples, and critically evaluated the key performance metrics of these sensors (limit of detection, linear range, stability and recovery). Challenges and future outlooks in this field have also been discussed.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 2","pages":"135-150"},"PeriodicalIF":3.4,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10029919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-15eCollection Date: 2023-01-01DOI: 10.5599/admet.1705
Parisa Karami-Kolmoti, Reza Zaimbashi
A simple and sensitive method for the determination of propranolol using a modified carbon paste electrode with graphene/Co3O4 nanocomposite was presented. The electrochemical measurements of propranolol are studied using differential pulse voltammetry, cyclic voltammetry and chronoamperometry. The graphene/Co3O4 nanocomposite exhibits excellent catalytic activity towards the electrochemical oxidation of propranolol in phosphate buffer solution of pH 7.0. The graphene/Co3O4 nanocomposite facilitates the determination of propranolol in the concentration range 1.0-300.0 μM and a detection limit and sensitivity of 0.3 μM. and 0.1275 μA/μM were achieved.
{"title":"An electrochemical sensing platform based on a modified carbon paste electrode with graphene/Co<sub>3</sub>O<sub>4</sub> nanocomposite for sensitive propranolol determination.","authors":"Parisa Karami-Kolmoti, Reza Zaimbashi","doi":"10.5599/admet.1705","DOIUrl":"10.5599/admet.1705","url":null,"abstract":"<p><p>A simple and sensitive method for the determination of propranolol using a modified carbon paste electrode with graphene/Co<sub>3</sub>O<sub>4</sub> nanocomposite was presented. The electrochemical measurements of propranolol are studied using differential pulse voltammetry, cyclic voltammetry and chronoamperometry. The graphene/Co<sub>3</sub>O<sub>4</sub> nanocomposite exhibits excellent catalytic activity towards the electrochemical oxidation of propranolol in phosphate buffer solution of pH 7.0. The graphene/Co<sub>3</sub>O<sub>4</sub> nanocomposite facilitates the determination of propranolol in the concentration range 1.0-300.0 μM and a detection limit and sensitivity of 0.3 μM. and 0.1275 μA/μM were achieved.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 2","pages":"227-236"},"PeriodicalIF":3.4,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10029922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}