首页 > 最新文献

Computational brain & behavior最新文献

英文 中文
Switch It Up! How Context Influences the Efficiency of Redundancy Gains in a Peripheral Task 改变一下!上下文如何影响外围任务冗余增益的效率
Pub Date : 2022-02-09 DOI: 10.1007/s42113-022-00159-w
Zachary L. Howard, Alexander Thorpe, Elizabeth L. Fox
{"title":"Switch It Up! How Context Influences the Efficiency of Redundancy Gains in a Peripheral Task","authors":"Zachary L. Howard, Alexander Thorpe, Elizabeth L. Fox","doi":"10.1007/s42113-022-00159-w","DOIUrl":"https://doi.org/10.1007/s42113-022-00159-w","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"92 1","pages":"195 - 212"},"PeriodicalIF":0.0,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90873465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Motivation with the Progressive Ratio Task: a Hierarchical Bayesian Model 用递进比例任务理解动机:一个层次贝叶斯模型
Pub Date : 2022-01-03 DOI: 10.1007/s42113-021-00114-1
Yiyang Chen, Nicholas J K Breitborde, M. Peruggia, T. Van Zandt
{"title":"Understanding Motivation with the Progressive Ratio Task: a Hierarchical Bayesian Model","authors":"Yiyang Chen, Nicholas J K Breitborde, M. Peruggia, T. Van Zandt","doi":"10.1007/s42113-021-00114-1","DOIUrl":"https://doi.org/10.1007/s42113-021-00114-1","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"185 1","pages":"81 - 102"},"PeriodicalIF":0.0,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73376673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Tale of Two Literatures: A Fidelity-Based Integration Account of Central Tendency Bias and Serial Dependency 两个文献的故事:基于忠诚的集中倾向偏差和序列依赖的整合解释
Pub Date : 2022-01-03 DOI: 10.1007/s42113-021-00123-0
Ke Tong, Chad Dubé
{"title":"A Tale of Two Literatures: A Fidelity-Based Integration Account of Central Tendency Bias and Serial Dependency","authors":"Ke Tong, Chad Dubé","doi":"10.1007/s42113-021-00123-0","DOIUrl":"https://doi.org/10.1007/s42113-021-00123-0","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"26 1","pages":"103 - 123"},"PeriodicalIF":0.0,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74782346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
How Do People Generalize Causal Relations over Objects? A Non-parametric Bayesian Account. 人们如何概括物体的因果关系?非参数贝叶斯论述。
Pub Date : 2022-01-01 Epub Date: 2021-11-30 DOI: 10.1007/s42113-021-00124-z
Bonan Zhao, Christopher G Lucas, Neil R Bramley

How do people decide how general a causal relationship is, in terms of the entities or situations it applies to? What features do people use to decide whether a new situation is governed by a new causal law or an old one? How can people make these difficult judgments in a fast, efficient way? We address these questions in two experiments that ask participants to generalize from one (Experiment 1) or several (Experiment 2) causal interactions between pairs of objects. In each case, participants see an agent object act on a recipient object, causing some changes to the recipient. In line with the human capacity for few-shot concept learning, we find systematic patterns of causal generalizations favoring simpler causal laws that extend over categories of similar objects. In Experiment 1, we find that participants' inferences are shaped by the order of the generalization questions they are asked. In both experiments, we find an asymmetry in the formation of causal categories: participants preferentially identify causal laws with features of the agent objects rather than recipients. To explain this, we develop a computational model that combines program induction (about the hidden causal laws) with non-parametric category inference (about their domains of influence). We demonstrate that our modeling approach can both explain the order effect in Experiment 1 and the causal asymmetry, and outperforms a naïve Bayesian account while providing a computationally plausible mechanism for real-world causal generalization.

人们如何根据一个因果关系所适用的实体或情况来决定它的普遍性?人们用什么特征来决定一个新情况是受新因果律还是旧因果律支配?人们如何才能快速、高效地做出这些困难的判断?我们在两个实验中解决了这些问题,这两个实验要求参与者从一对物体之间的一次(实验 1)或多次(实验 2)因果互动中归纳出规律。在每种情况下,参与者都会看到一个代理对象作用于一个接受对象,从而导致接受对象发生一些变化。与人类少量概念学习的能力相一致,我们发现因果概括的系统模式更倾向于较简单的因果律,这些因果律会扩展到类似物体的类别中。在实验 1 中,我们发现参与者的推论受他们被问及的概括问题顺序的影响。在这两个实验中,我们都发现了因果类别形成的不对称性:参与者更倾向于根据代理对象的特征而不是接受者的特征来识别因果律。为了解释这一现象,我们开发了一个计算模型,该模型结合了程序归纳(关于隐藏的因果律)和非参数类别推断(关于其影响领域)。我们证明,我们的建模方法既能解释实验 1 中的顺序效应,也能解释因果不对称现象,其效果优于天真的贝叶斯解释,同时还为现实世界的因果泛化提供了一种计算上合理的机制。
{"title":"How Do People Generalize Causal Relations over Objects? A Non-parametric Bayesian Account.","authors":"Bonan Zhao, Christopher G Lucas, Neil R Bramley","doi":"10.1007/s42113-021-00124-z","DOIUrl":"10.1007/s42113-021-00124-z","url":null,"abstract":"<p><p>How do people decide how general a causal relationship is, in terms of the entities or situations it applies to? What features do people use to decide whether a new situation is governed by a new causal law or an old one? How can people make these difficult judgments in a fast, efficient way? We address these questions in two experiments that ask participants to generalize from one (Experiment 1) or several (Experiment 2) causal interactions between pairs of objects. In each case, participants see an agent object act on a recipient object, causing some changes to the recipient. In line with the human capacity for few-shot concept learning, we find systematic patterns of causal generalizations favoring simpler causal laws that extend over categories of similar objects. In Experiment 1, we find that participants' inferences are shaped by the order of the generalization questions they are asked. In both experiments, we find an asymmetry in the formation of causal categories: participants preferentially identify causal laws with features of the agent objects rather than recipients. To explain this, we develop a computational model that combines program induction (about the hidden causal laws) with non-parametric category inference (about their domains of influence). We demonstrate that our modeling approach can both explain the order effect in Experiment 1 and the causal asymmetry, and outperforms a naïve Bayesian account while providing a computationally plausible mechanism for real-world causal generalization.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"5 1","pages":"22-44"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9266107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Similarity-Based Interference in Sentence Comprehension in Aphasia: a Computational Evaluation of Two Models of Cue-Based Retrieval 失语症句子理解中的相似干扰:两种线索检索模型的计算评价
Pub Date : 2021-12-06 DOI: 10.1007/s42113-023-00168-3
P. Lissón, Dario Paape, Dorothea Pregla, F. Burchert, N. Stadie, S. Vasishth
{"title":"Similarity-Based Interference in Sentence Comprehension in Aphasia: a Computational Evaluation of Two Models of Cue-Based Retrieval","authors":"P. Lissón, Dario Paape, Dorothea Pregla, F. Burchert, N. Stadie, S. Vasishth","doi":"10.1007/s42113-023-00168-3","DOIUrl":"https://doi.org/10.1007/s42113-023-00168-3","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"32 1","pages":"1-30"},"PeriodicalIF":0.0,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91140394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Comparing Probabilistic Accounts of Probability Judgments 比较概率判断的概率计算
Pub Date : 2021-12-06 DOI: 10.1007/s42113-022-00164-z
Derek Powell
{"title":"Comparing Probabilistic Accounts of Probability Judgments","authors":"Derek Powell","doi":"10.1007/s42113-022-00164-z","DOIUrl":"https://doi.org/10.1007/s42113-022-00164-z","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"47 1","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86369041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Principles of Model Specification in ANOVA Designs 方差分析设计中的模型规范原则
Pub Date : 2021-11-12 DOI: 10.1007/s42113-022-00132-7
Jeffrey N. Rouder, Martin Schnuerch, J. Haaf, R. Morey
{"title":"Principles of Model Specification in ANOVA Designs","authors":"Jeffrey N. Rouder, Martin Schnuerch, J. Haaf, R. Morey","doi":"10.1007/s42113-022-00132-7","DOIUrl":"https://doi.org/10.1007/s42113-022-00132-7","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"9 1","pages":"50-63"},"PeriodicalIF":0.0,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78444135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Benefits of Bayesian Model Averaging for Mixed-Effects Modeling 混合效应建模中贝叶斯平均模型的优点
Pub Date : 2021-10-13 DOI: 10.1007/s42113-021-00118-x
D. Heck, F. Bockting
{"title":"Benefits of Bayesian Model Averaging for Mixed-Effects Modeling","authors":"D. Heck, F. Bockting","doi":"10.1007/s42113-021-00118-x","DOIUrl":"https://doi.org/10.1007/s42113-021-00118-x","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"41 1","pages":"35-49"},"PeriodicalIF":0.0,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73506559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On Logical Inference over Brains, Behaviour, and Artificial Neural Networks 关于大脑、行为和人工神经网络的逻辑推理
Pub Date : 2021-10-06 DOI: 10.1007/s42113-022-00166-x
Olivia Guest, Andrea E. Martin
{"title":"On Logical Inference over Brains, Behaviour, and Artificial Neural Networks","authors":"Olivia Guest, Andrea E. Martin","doi":"10.1007/s42113-022-00166-x","DOIUrl":"https://doi.org/10.1007/s42113-022-00166-x","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"243 ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72438229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Variable-Drift Diffusion Models of Pedestrian Road-Crossing Decisions 行人过马路决策的变漂移扩散模型
Pub Date : 2021-10-05 DOI: 10.1007/s42113-021-00116-z
J. Pekkanen, Oscar Giles, Yee Mun Lee, R. Madigan, T. Daimon, N. Merat, G. Markkula
{"title":"Variable-Drift Diffusion Models of Pedestrian Road-Crossing Decisions","authors":"J. Pekkanen, Oscar Giles, Yee Mun Lee, R. Madigan, T. Daimon, N. Merat, G. Markkula","doi":"10.1007/s42113-021-00116-z","DOIUrl":"https://doi.org/10.1007/s42113-021-00116-z","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"29 1","pages":"60 - 80"},"PeriodicalIF":0.0,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74932414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
期刊
Computational brain & behavior
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1