首页 > 最新文献

Computational brain & behavior最新文献

英文 中文
When Fixed and Random Effects Mismatch: Another Case of Inflation of Evidence in Non-Maximal Models 当固定效应和随机效应不匹配时:非最大值模型中证据膨胀的另一个例子
Pub Date : 2022-09-15 DOI: 10.1007/s42113-022-00152-3
J. Veríssimo
{"title":"When Fixed and Random Effects Mismatch: Another Case of Inflation of Evidence in Non-Maximal Models","authors":"J. Veríssimo","doi":"10.1007/s42113-022-00152-3","DOIUrl":"https://doi.org/10.1007/s42113-022-00152-3","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"77 1","pages":"84-101"},"PeriodicalIF":0.0,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74156970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Relating a Spiking Neural Network Model and the Diffusion Model of Decision-Making. 将尖峰神经网络模型与决策扩散模型联系起来。
Pub Date : 2022-09-01 Epub Date: 2022-06-13 DOI: 10.1007/s42113-022-00143-4
Akash Umakantha, Braden A Purcell, Thomas J Palmeri

Many models of decision making assume accumulation of evidence to threshold as a core mechanism to predict response probabilities and response times. A spiking neural network model (Wang, 2002) instantiates these mechanisms at the level of biophysically-plausible pools of neurons with excitatory and inhibitory connections, and has numerous model parameters tuned by physiological measures. The diffusion model (Ratcliff, 1978) is a cognitive model that can be fitted to a range of behaviors and conditions. We investigated how parameters of the cognitive-level diffusion model relate to the parameters of a neural-level spiking model. In each simulated "experiment", we generated "data" from the spiking neural network by factorially combining a manipulation of choice difficulty (via the input to the spiking model) and a manipulation of one of the core parameters of the spiking model. We then fitted the diffusion model to these simulated data to observe how manipulation of each core spiking model parameter mapped on to fitted drift rate, response threshold, and non-decision time. Manipulations of parameters in the spiking model related to input sensitivity, threshold, and stimulus processing time mapped on to their conceptual analogues in the diffusion model, namely drift rate, threshold, and non-decision time. Manipulations of parameters in the spiking model with no direct analogue to the diffusion model, non-stimulus-specific background input, strength of recurrent excitation, and receptor conductances, mapped on to threshold in the diffusion model. We discuss implications of these results for interpretations of fits of the diffusion model to behavioral data.

许多决策模型都将证据积累到阈值作为预测反应概率和反应时间的核心机制。尖峰神经网络模型(Wang,2002 年)在具有兴奋和抑制连接的生物物理上可信的神经元池水平上将这些机制实例化,并通过生理测量调整了许多模型参数。扩散模型(Ratcliff,1978 年)是一种认知模型,可适用于一系列行为和条件。我们研究了认知水平扩散模型参数与神经水平尖峰模型参数之间的关系。在每个模拟 "实验 "中,我们通过对选择难度的操作(通过对尖峰模型的输入)和对尖峰模型核心参数之一的操作,从尖峰神经网络中生成 "数据"。然后,我们将扩散模型拟合到这些模拟数据中,观察对每个尖峰模型核心参数的操作如何映射到拟合的漂移率、反应阈值和非决策时间上。对尖峰模型中与输入灵敏度、阈值和刺激处理时间有关的参数的操作,可映射到扩散模型中的概念类似参数,即漂移率、阈值和非决策时间。对尖峰模型中与扩散模型没有直接对应关系的参数(非刺激特异性背景输入、递归兴奋强度和受体电导)的操作,则与扩散模型中的阈值对应。我们讨论了这些结果对解释扩散模型与行为数据拟合的影响。
{"title":"Relating a Spiking Neural Network Model and the Diffusion Model of Decision-Making.","authors":"Akash Umakantha, Braden A Purcell, Thomas J Palmeri","doi":"10.1007/s42113-022-00143-4","DOIUrl":"10.1007/s42113-022-00143-4","url":null,"abstract":"<p><p>Many models of decision making assume accumulation of evidence to threshold as a core mechanism to predict response probabilities and response times. A spiking neural network model (Wang, 2002) instantiates these mechanisms at the level of biophysically-plausible pools of neurons with excitatory and inhibitory connections, and has numerous model parameters tuned by physiological measures. The diffusion model (Ratcliff, 1978) is a cognitive model that can be fitted to a range of behaviors and conditions. We investigated how parameters of the cognitive-level diffusion model relate to the parameters of a neural-level spiking model. In each simulated \"experiment\", we generated \"data\" from the spiking neural network by factorially combining a manipulation of choice difficulty (via the input to the spiking model) and a manipulation of one of the core parameters of the spiking model. We then fitted the diffusion model to these simulated data to observe how manipulation of each core spiking model parameter mapped on to fitted drift rate, response threshold, and non-decision time. Manipulations of parameters in the spiking model related to input sensitivity, threshold, and stimulus processing time mapped on to their conceptual analogues in the diffusion model, namely drift rate, threshold, and non-decision time. Manipulations of parameters in the spiking model with no direct analogue to the diffusion model, non-stimulus-specific background input, strength of recurrent excitation, and receptor conductances, mapped on to threshold in the diffusion model. We discuss implications of these results for interpretations of fits of the diffusion model to behavioral data.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"5 3","pages":"279-301"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673774/pdf/nihms-1830711.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40480290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multinomial Processing Tree Model of the 2-back Working Memory Task. 双背工作记忆任务的多项式处理树模型。
Pub Date : 2022-09-01 Epub Date: 2022-06-07 DOI: 10.1007/s42113-022-00138-1
Michael D Lee, Percy K Mistry, Vinod Menon

The n-back task is a widely used behavioral task for measuring working memory and the ability to inhibit interfering information. We develop a novel model of the commonly used 2-back task using the cognitive psychometric framework provided by Multinomial Processing Trees. Our model involves three parameters: a memory parameter, corresponding to how well an individual encodes and updates sequence information about presented stimuli; a decision parameter corresponding to how well participants execute choices based on information stored in memory; and a base-rate parameter corresponding to bias for responding "yes" or "no". We test the parameter recovery properties of the model using existing 2-back experimental designs, and demonstrate the application of the model to two previous data sets: one from social psychology involving faces corresponding to different races (Stelter and Degner, British Journal of Psychology 109:777-798, 2018), and one from cognitive neuroscience involving more than 1000 participants from the Human Connectome Project (Van Essen et al., Neuroimage 80:62-79, 2013). We demonstrate that the model can be used to infer interpretable individual-level parameters. We develop a hierarchical extension of the model to test differences between stimulus conditions, comparing faces of different races, and comparing face to non-face stimuli. We also develop a multivariate regression extension to examine the relationship between the model parameters and individual performance on standardized cognitive measures including the List Sorting and Flanker tasks. We conclude by discussing how our model can be used to dissociate underlying cognitive processes such as encoding failures, inhibition failures, and binding failures.

n-back任务是一种广泛使用的行为任务,用于测量工作记忆和抑制干扰信息的能力。我们利用多项式处理树提供的认知心理测量框架,开发了一个常用的双背任务的新模型。我们的模型包括三个参数:记忆参数,对应于个体对所呈现刺激的序列信息的编码和更新程度;决策参数,所述决策参数对应于参与者基于存储在存储器中的信息执行选择的程度;以及与用于响应“是”或“否”的偏置相对应的基本速率参数。我们使用现有的双背实验设计测试了该模型的参数恢复特性,并将该模型应用于之前的两个数据集:一个来自社会心理学,涉及不同种族的人脸(Stelter和Degner,《英国心理学杂志》109:777-77982018),一个来自认知神经科学,涉及人类连接体项目的1000多名参与者(Van Essen等人,Neuroimage 80:62-792013)。我们证明了该模型可以用来推断可解释的个体水平参数。我们开发了该模型的层次扩展,以测试刺激条件之间的差异,比较不同种族的面孔,并比较面孔和非面孔刺激。我们还开发了一个多元回归扩展,以检验模型参数与个体在标准化认知测量中的表现之间的关系,包括列表排序和Flanker任务。最后,我们讨论了如何使用我们的模型来分离潜在的认知过程,如编码失败、抑制失败和绑定失败。
{"title":"A Multinomial Processing Tree Model of the 2-back Working Memory Task.","authors":"Michael D Lee, Percy K Mistry, Vinod Menon","doi":"10.1007/s42113-022-00138-1","DOIUrl":"10.1007/s42113-022-00138-1","url":null,"abstract":"<p><p>The <math><mi>n</mi></math>-back task is a widely used behavioral task for measuring working memory and the ability to inhibit interfering information. We develop a novel model of the commonly used 2-back task using the cognitive psychometric framework provided by Multinomial Processing Trees. Our model involves three parameters: a memory parameter, corresponding to how well an individual encodes and updates sequence information about presented stimuli; a decision parameter corresponding to how well participants execute choices based on information stored in memory; and a base-rate parameter corresponding to bias for responding \"yes\" or \"no\". We test the parameter recovery properties of the model using existing 2-back experimental designs, and demonstrate the application of the model to two previous data sets: one from social psychology involving faces corresponding to different races (Stelter and Degner, <i>British Journal of Psychology</i> 109:777-798, 2018), and one from cognitive neuroscience involving more than 1000 participants from the Human Connectome Project (Van Essen et al., <i>Neuroimage</i> 80:62-79, 2013). We demonstrate that the model can be used to infer interpretable individual-level parameters. We develop a hierarchical extension of the model to test differences between stimulus conditions, comparing faces of different races, and comparing face to non-face stimuli. We also develop a multivariate regression extension to examine the relationship between the model parameters and individual performance on standardized cognitive measures including the List Sorting and Flanker tasks. We conclude by discussing how our model can be used to dissociate underlying cognitive processes such as encoding failures, inhibition failures, and binding failures.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"5 3","pages":"261-278"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593202/pdf/nihms-1890058.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalization in Distant Regions of a Rule-Described Category Space: a Mixed Exemplar and Logical-Rule-Based Account 规则描述的范畴空间的远域泛化:一个混合范例和基于逻辑规则的解释
Pub Date : 2022-08-16 DOI: 10.1007/s42113-022-00151-4
Robert M. Nosofsky, Mingjia Hu
{"title":"Generalization in Distant Regions of a Rule-Described Category Space: a Mixed Exemplar and Logical-Rule-Based Account","authors":"Robert M. Nosofsky, Mingjia Hu","doi":"10.1007/s42113-022-00151-4","DOIUrl":"https://doi.org/10.1007/s42113-022-00151-4","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"44 1","pages":"435 - 466"},"PeriodicalIF":0.0,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73572603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion Decision Modeling of Retrieval Following the Temporal Selection of Behaviorally Relevant Moments 基于行为相关时刻时间选择的检索扩散决策建模
Pub Date : 2022-08-10 DOI: 10.1007/s42113-022-00148-z
Hamid B. Turker, K. Swallow
{"title":"Diffusion Decision Modeling of Retrieval Following the Temporal Selection of Behaviorally Relevant Moments","authors":"Hamid B. Turker, K. Swallow","doi":"10.1007/s42113-022-00148-z","DOIUrl":"https://doi.org/10.1007/s42113-022-00148-z","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"17 1","pages":"302 - 325"},"PeriodicalIF":0.0,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75656183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Choice Rules Can Affect the Informativeness of Model Comparisons 选择规则会影响模型比较的信息量
Pub Date : 2022-07-21 DOI: 10.1007/s42113-022-00142-5
Veronika Zilker
{"title":"Choice Rules Can Affect the Informativeness of Model Comparisons","authors":"Veronika Zilker","doi":"10.1007/s42113-022-00142-5","DOIUrl":"https://doi.org/10.1007/s42113-022-00142-5","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"31 1","pages":"397 - 421"},"PeriodicalIF":0.0,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75769994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disentangling Different Aspects of Between-Item Similarity Unveils Evidence Against the Ensemble Model of Lineup Memory 解开项目间相似性的不同方面揭示了反对阵容记忆集合模型的证据
Pub Date : 2022-07-18 DOI: 10.1007/s42113-022-00135-4
Constantin G. Meyer-Grant, K. C. Klauer
{"title":"Disentangling Different Aspects of Between-Item Similarity Unveils Evidence Against the Ensemble Model of Lineup Memory","authors":"Constantin G. Meyer-Grant, K. C. Klauer","doi":"10.1007/s42113-022-00135-4","DOIUrl":"https://doi.org/10.1007/s42113-022-00135-4","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"43 6 1","pages":"509 - 526"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88197895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Influences of Reinforcement and Choice Histories on Choice Behavior in Actor-Critic Learning 强化和选择历史对行动者-批评学习中选择行为的影响
Pub Date : 2022-07-11 DOI: 10.1007/s42113-022-00145-2
K. Katahira, K. Kimura
{"title":"Influences of Reinforcement and Choice Histories on Choice Behavior in Actor-Critic Learning","authors":"K. Katahira, K. Kimura","doi":"10.1007/s42113-022-00145-2","DOIUrl":"https://doi.org/10.1007/s42113-022-00145-2","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"9 1","pages":"172 - 194"},"PeriodicalIF":0.0,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85769230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Over-precise Predictions Cannot Identify Good Choice Models 过于精确的预测无法识别出好的选择模型
Pub Date : 2022-07-07 DOI: 10.1007/s42113-022-00146-1
A. Sifar, Nisheeth Srivastava
{"title":"Over-precise Predictions Cannot Identify Good Choice Models","authors":"A. Sifar, Nisheeth Srivastava","doi":"10.1007/s42113-022-00146-1","DOIUrl":"https://doi.org/10.1007/s42113-022-00146-1","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"144 1","pages":"378 - 396"},"PeriodicalIF":0.0,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80431202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Machine Learning to Automatically Derive Robust Decision Strategies from Imperfect Knowledge of the Real World 利用机器学习从现实世界的不完美知识中自动获得稳健的决策策略
Pub Date : 2022-06-23 DOI: 10.1007/s42113-022-00141-6
A. Mehta, Y. Jain, Anirudha Kemtur, Jugoslav Stojcheski, Saksham Consul, Mateo Tosic, Falk Lieder
{"title":"Leveraging Machine Learning to Automatically Derive Robust Decision Strategies from Imperfect Knowledge of the Real World","authors":"A. Mehta, Y. Jain, Anirudha Kemtur, Jugoslav Stojcheski, Saksham Consul, Mateo Tosic, Falk Lieder","doi":"10.1007/s42113-022-00141-6","DOIUrl":"https://doi.org/10.1007/s42113-022-00141-6","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"41 1","pages":"343 - 377"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76010501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Computational brain & behavior
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1