首页 > 最新文献

Cytoskeleton (Hoboken, N.J.)最新文献

英文 中文
Heterodimeric Ciliary Dynein f/I1 Adopts a Distinctive Structure, Providing Insight Into the Autoinhibitory Mechanism Common to the Dynein Family. 异二聚体纤毛动力蛋白f/I1采用独特的结构,提供了对动力蛋白家族共同的自抑制机制的见解。
Pub Date : 2025-01-04 DOI: 10.1002/cm.21987
Yici Lei, Akira Fukunaga, Hiroshi Imai, Ryosuke Yamamoto, Rieko Shimo-Kon, Shinji Kamimura, Kaoru Mitsuoka, Takako Kato-Minoura, Toshiki Yagi, Takahide Kon

Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins. In contrast, the structures of ciliary dyneins, as well as their regulatory mechanisms, have yet to be fully elucidated. Here, we isolated a heterodimeric ciliary dynein (IDA-f/I1) from Chlamydomonas reinhardtii, a ciliated green alga, and studied its structure in the presence or absence of ATP by negative-stain electron microscopy and single-particle analysis. Surprisingly, a population of IDA-f adopted a distinctive compact structure, which has been scarcely reported for ciliary dyneins but is very similar to the "phi-particle" structure widely recognized as the autoinhibited/inactivated conformation for cytoplasmic/IFT dyneins. Our results suggest that the inactivation mechanism of dimeric dyneins is conserved in all three dynein subfamilies, regardless of their cellular functions, highlighting the intriguing intrinsic regulatory mechanism that may have been acquired at an early stage in the evolution of dynein motors.

动力蛋白是一种巨大的运动蛋白复合物,对细胞运动、细胞分裂和细胞内运输至关重要。基于细胞内定位和功能,动力蛋白可分为三个主要亚家族,即细胞质、鞭毛内运输(IFT)和纤毛动力蛋白。最近,一些细胞质/IFT动力蛋白的近原子分辨率结构被报道。相比之下,纤毛动力蛋白的结构及其调控机制尚未完全阐明。本研究从纤毛绿藻莱茵衣藻(Chlamydomonas reinhardtii)中分离出一个异二聚体纤毛动力蛋白(IDA-f/I1),并通过负染色电镜和单粒子分析研究了其在ATP存在或不存在的情况下的结构。令人惊讶的是,IDA-f群体采用了一种独特的致密结构,这种结构在纤毛动力蛋白中几乎没有报道,但与被广泛认为是细胞质/IFT动力蛋白的自抑制/失活构象的“phi-particle”结构非常相似。我们的研究结果表明,二聚体动力蛋白的失活机制在所有三个动力蛋白亚家族中都是保守的,无论它们的细胞功能如何,这突出了在动力蛋白马达进化的早期阶段可能获得的有趣的内在调节机制。
{"title":"Heterodimeric Ciliary Dynein f/I1 Adopts a Distinctive Structure, Providing Insight Into the Autoinhibitory Mechanism Common to the Dynein Family.","authors":"Yici Lei, Akira Fukunaga, Hiroshi Imai, Ryosuke Yamamoto, Rieko Shimo-Kon, Shinji Kamimura, Kaoru Mitsuoka, Takako Kato-Minoura, Toshiki Yagi, Takahide Kon","doi":"10.1002/cm.21987","DOIUrl":"https://doi.org/10.1002/cm.21987","url":null,"abstract":"<p><p>Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins. In contrast, the structures of ciliary dyneins, as well as their regulatory mechanisms, have yet to be fully elucidated. Here, we isolated a heterodimeric ciliary dynein (IDA-f/I1) from Chlamydomonas reinhardtii, a ciliated green alga, and studied its structure in the presence or absence of ATP by negative-stain electron microscopy and single-particle analysis. Surprisingly, a population of IDA-f adopted a distinctive compact structure, which has been scarcely reported for ciliary dyneins but is very similar to the \"phi-particle\" structure widely recognized as the autoinhibited/inactivated conformation for cytoplasmic/IFT dyneins. Our results suggest that the inactivation mechanism of dimeric dyneins is conserved in all three dynein subfamilies, regardless of their cellular functions, highlighting the intriguing intrinsic regulatory mechanism that may have been acquired at an early stage in the evolution of dynein motors.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astral Microtubules Are Dispensable for Pavarotti Localization During Drosophila Spermatogonial Mitoses. 在果蝇精原细胞有丝分裂过程中,星体微管对帕瓦罗蒂定位是必不可少的。
Pub Date : 2025-01-03 DOI: 10.1002/cm.21986
Maria Giovanna Riparbelli, Massimo Migliorini, Giuliano Callaini

We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes. This unusual distribution restricts and enhances during anaphase where antiparallel cortical microtubules overlap. Additional Pav staining is also found in the inner central spindle where the microtubules overlap between the segregating chromosomes. At late telophase, Pav accumulates to the midbody and on a weak ring that surround the cytoplasmic bridges. Pav localizes in an equatorial discontinuous ring of Sas4 spermatogonia where the non-centrosomal microtubules overlap, but the motor protein is absent in the interior central spindle where the inner microtubules are lacking. However, the anastral spindles properly support cell division, suggesting that astral microtubules are dispensable for Pav localization in the Sas4 spermatogonial cell cortex. This function is presumably replaced by the antiparallel cortical microtubules extending from the acentriolar polar regions. In contrast, the majority of the meiotic spindles in Sas4 mutant testes do not progress beyond late anaphase, and only a small fraction of the primary spermatocytes experienced an abnormal division with the assembly of aberrant telophase spindles. Pav accumulates around the chromatin clusters or enhanced at the plus ends of the antiparallel non-centrosomal cortical bundles of microtubules. However, these bundles are not arranged properly in the equatorial region of the cell and cytokinesis is abnormal or fails. Therefore, the observations in Sas4 mutant testes suggest that the spermatogonial mitoses correctly occur in the absence of astral microtubules, whereas meiotic divisions fail.

本文分析了野生型和Sas4突变体蝇雄性配子体发生过程中运动蛋白样帕瓦罗蒂(Pav)的动态变化。Pav主要分布于野生型精原细胞的赤道区和后期后期的内中央纺锤体,并在后期后期表现出较强的中体浓度。在第一次减数分裂中期,Pav广泛定位于精母细胞的赤道区。这种不寻常的分布限制和增强在反平行皮层微管重叠的后期。在分裂染色体间微管重叠的内中心纺锤体中也发现了额外的Pav染色。在晚期,Pav积聚到体中部和环绕细胞质桥的弱环上。Pav定位于Sas4精原细胞的赤道不连续环中,在那里非中心体微管重叠,但在缺乏内微管的内部中央纺锤体中没有马达蛋白。然而,星侧梭形体支持细胞分裂,这表明星侧微管对于Pav在Sas4精原细胞皮层的定位是必不可少的。这一功能可能被从非中心极区延伸出来的反平行皮质微管所取代。相反,在Sas4突变体的睾丸中,大多数减数分裂纺锤体不会超过后期,只有一小部分原始精母细胞经历了异常分裂,并聚集了异常的末期纺锤体。Pav在染色质团簇周围积聚或在反平行的非中心体皮质微管束的正端增强。然而,这些束在细胞的赤道区排列不正确,细胞分裂异常或失败。因此,对Sas4突变睾丸的观察表明,在没有星状微管的情况下,精原细胞有丝分裂正常发生,而减数分裂失败。
{"title":"Astral Microtubules Are Dispensable for Pavarotti Localization During Drosophila Spermatogonial Mitoses.","authors":"Maria Giovanna Riparbelli, Massimo Migliorini, Giuliano Callaini","doi":"10.1002/cm.21986","DOIUrl":"https://doi.org/10.1002/cm.21986","url":null,"abstract":"<p><p>We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes. This unusual distribution restricts and enhances during anaphase where antiparallel cortical microtubules overlap. Additional Pav staining is also found in the inner central spindle where the microtubules overlap between the segregating chromosomes. At late telophase, Pav accumulates to the midbody and on a weak ring that surround the cytoplasmic bridges. Pav localizes in an equatorial discontinuous ring of Sas4 spermatogonia where the non-centrosomal microtubules overlap, but the motor protein is absent in the interior central spindle where the inner microtubules are lacking. However, the anastral spindles properly support cell division, suggesting that astral microtubules are dispensable for Pav localization in the Sas4 spermatogonial cell cortex. This function is presumably replaced by the antiparallel cortical microtubules extending from the acentriolar polar regions. In contrast, the majority of the meiotic spindles in Sas4 mutant testes do not progress beyond late anaphase, and only a small fraction of the primary spermatocytes experienced an abnormal division with the assembly of aberrant telophase spindles. Pav accumulates around the chromatin clusters or enhanced at the plus ends of the antiparallel non-centrosomal cortical bundles of microtubules. However, these bundles are not arranged properly in the equatorial region of the cell and cytokinesis is abnormal or fails. Therefore, the observations in Sas4 mutant testes suggest that the spermatogonial mitoses correctly occur in the absence of astral microtubules, whereas meiotic divisions fail.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polo-like kinase 1 inhibition modulates urinary tract smooth muscle contraction and bladder cell transcriptional programs. Polo-like kinase 1抑制剂可调节尿路平滑肌收缩和膀胱细胞转录程序。
Pub Date : 2025-01-01 Epub Date: 2024-07-12 DOI: 10.1002/cm.21888
Xiaolong Wang, Linfa Guo, Zuhaer Yisha, Aodun Gu, Tongzu Liu

The serine/threonine kinase polo-like kinase 1 (PLK1) is a master regulator of cell proliferation and contraction, but its physiological role in the lower urinary tract is unknown. We utilized transcriptomic programs of human bladder smooth muscle cells (hBSMCs), 3D bladder spheroid viability assays, and human ureterovesical junction contractility measurements to elucidate the impacts of PLK1 inhibition. This work reveals PLK1 reduction with the selective inhibitor TAK-960 (500 nM) suppresses high K+-evoked contractions of human urinary smooth muscle ex vivo while decreasing urothelial cell viability. Transcriptomic analysis of hBSMCs treated with TAK-960 shows modulation of cell cycle and contraction pathways, specifically through altered expression of Cys2/His2-type zinc finger transcription factors. In bladder spheroids, PLK1 inhibition also suppresses smooth muscle contraction protein filamin. Taken together, these findings establish PLK1 is a critical governor of urinary smooth muscle contraction and urothelial proliferation with implications for lower urinary tract disorders. Targeting PLK1 pharmacologically may therefore offer therapeutic potential to ameliorate hypercontractility and aberrant growth. Further elucidation of PLK1 signaling networks promises new insights into pathogenesis and much needed treatment advances for debilitating urinary symptoms.

丝氨酸/苏氨酸激酶Polo-like kinase 1(PLK1)是细胞增殖和收缩的主要调节因子,但它在下尿路中的生理作用尚不清楚。我们利用人体膀胱平滑肌细胞(hBSMCs)的转录组计划、三维膀胱球体活力测定和人体输尿管交界处收缩力测量来阐明抑制 PLK1 的影响。这项研究发现,使用选择性抑制剂 TAK-960 (500 nM)抑制 PLK1 可抑制高 K+诱发的人尿路平滑肌体内外收缩,同时降低尿路上皮细胞的活力。用 TAK-960 处理的 hBSMC 的转录组分析表明,细胞周期和收缩途径受到了调节,特别是通过改变 Cys2/His2 型锌指转录因子的表达。在膀胱球体内,抑制 PLK1 还能抑制平滑肌收缩蛋白丝胺。综上所述,这些研究结果表明,PLK1 是泌尿平滑肌收缩和尿路上皮增生的关键调控因子,对下尿路疾病具有重要影响。因此,以 PLK1 为药理靶点可能为改善过度收缩和异常增生提供治疗潜力。进一步阐明 PLK1 信号传导网络有望为了解发病机制提供新的视角,并为治疗令人衰弱的泌尿系统症状提供亟需的进展。
{"title":"Polo-like kinase 1 inhibition modulates urinary tract smooth muscle contraction and bladder cell transcriptional programs.","authors":"Xiaolong Wang, Linfa Guo, Zuhaer Yisha, Aodun Gu, Tongzu Liu","doi":"10.1002/cm.21888","DOIUrl":"10.1002/cm.21888","url":null,"abstract":"<p><p>The serine/threonine kinase polo-like kinase 1 (PLK1) is a master regulator of cell proliferation and contraction, but its physiological role in the lower urinary tract is unknown. We utilized transcriptomic programs of human bladder smooth muscle cells (hBSMCs), 3D bladder spheroid viability assays, and human ureterovesical junction contractility measurements to elucidate the impacts of PLK1 inhibition. This work reveals PLK1 reduction with the selective inhibitor TAK-960 (500 nM) suppresses high K+-evoked contractions of human urinary smooth muscle ex vivo while decreasing urothelial cell viability. Transcriptomic analysis of hBSMCs treated with TAK-960 shows modulation of cell cycle and contraction pathways, specifically through altered expression of Cys2/His2-type zinc finger transcription factors. In bladder spheroids, PLK1 inhibition also suppresses smooth muscle contraction protein filamin. Taken together, these findings establish PLK1 is a critical governor of urinary smooth muscle contraction and urothelial proliferation with implications for lower urinary tract disorders. Targeting PLK1 pharmacologically may therefore offer therapeutic potential to ameliorate hypercontractility and aberrant growth. Further elucidation of PLK1 signaling networks promises new insights into pathogenesis and much needed treatment advances for debilitating urinary symptoms.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":"58-70"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Picture of the Month by Katia Brock. 卡蒂亚·布洛克(Katia Brock)的月度图片。
Pub Date : 2025-01-01 Epub Date: 2025-01-20 DOI: 10.1002/cm.21982
{"title":"Picture of the Month by Katia Brock.","authors":"","doi":"10.1002/cm.21982","DOIUrl":"https://doi.org/10.1002/cm.21982","url":null,"abstract":"","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":"82 1-2","pages":"71"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single molecule visualization of tropomyosin isoform organization in the mammalian actin cytoskeleton. 哺乳动物肌动蛋白细胞骨架中肌球蛋白同工酶组织的单分子可视化。
Pub Date : 2025-01-01 Epub Date: 2024-06-14 DOI: 10.1002/cm.21883
Maria L Cagigas, Nicholas Ariotti, Jeff Hook, James Rae, Robert G Parton, Nicole S Bryce, Peter W Gunning, Edna C Hardeman

The actin cytoskeleton is composed of both branched and unbranched actin filaments. In mammals, the unbranched actin filaments are primarily copolymers of actin and tropomyosin. Biochemical and imaging studies indicate that different tropomyosin isoforms are segregated to different actin filament populations in cells and tissues, providing isoform-specific functionality to the actin filament. Intrinsic to this model is the prediction that single-molecule imaging of tropomyosin isoforms would confirm homopolymer formation along the length of single actin filaments, a knowledge gap that remains unaddressed in the cellular environment. We combined chemical labeling of genetically engineered tropomyosin isoforms with electron tomography to locate individual tropomyosin molecules in fibroblasts. We find that the organization of two non-muscle tropomyosins, Tpm3.1 with Tpm4.2, can be distinguished from each other using light and electron microscopy. Visualization of single tropomyosin molecules associated with actin filaments supports the hypothesis that tropomyosins form continuous homopolymers, instead of heteropolymers, in the presence of all physiologically native actin-binding proteins. This is true for both isoforms tested. Furthermore, the data suggest that the tropomyosin molecules on one side of an actin filament may not be in register with those on the opposite side, indicating that each tropomyosin polymer may assembly independently.

肌动蛋白细胞骨架由分枝和不分枝肌动蛋白丝组成。在哺乳动物中,不分枝的肌动蛋白丝主要是肌动蛋白和肌球蛋白的共聚物。生化和成像研究表明,在细胞和组织中,不同的肌球蛋白同工酶被分离到不同的肌动蛋白丝群中,从而为肌动蛋白丝提供了同工酶特异性功能。这一模型的本质是预测肌球蛋白同工酶的单分子成像将确认沿单肌动蛋白丝长度的同聚物形成,而这一知识空白在细胞环境中仍未得到解决。我们将基因工程肌球蛋白同工酶的化学标记与电子断层扫描相结合,以确定成纤维细胞中单个肌球蛋白分子的位置。我们发现,两种非肌肉肌球蛋白(Tpm3.1 和 Tpm4.2)的组织可通过光镜和电子显微镜相互区分。与肌动蛋白丝相关的单个肌球蛋白分子的可视化支持了这样一种假设,即肌球蛋白在所有生理原生肌动蛋白结合蛋白的存在下形成连续的均聚物,而不是杂聚物。测试的两种同工酶都是如此。此外,数据还表明,肌动蛋白丝一侧的肌球蛋白分子可能与另一侧的肌球蛋白分子不一致,这表明每种肌球蛋白聚合物都可能独立组装。
{"title":"Single molecule visualization of tropomyosin isoform organization in the mammalian actin cytoskeleton.","authors":"Maria L Cagigas, Nicholas Ariotti, Jeff Hook, James Rae, Robert G Parton, Nicole S Bryce, Peter W Gunning, Edna C Hardeman","doi":"10.1002/cm.21883","DOIUrl":"10.1002/cm.21883","url":null,"abstract":"<p><p>The actin cytoskeleton is composed of both branched and unbranched actin filaments. In mammals, the unbranched actin filaments are primarily copolymers of actin and tropomyosin. Biochemical and imaging studies indicate that different tropomyosin isoforms are segregated to different actin filament populations in cells and tissues, providing isoform-specific functionality to the actin filament. Intrinsic to this model is the prediction that single-molecule imaging of tropomyosin isoforms would confirm homopolymer formation along the length of single actin filaments, a knowledge gap that remains unaddressed in the cellular environment. We combined chemical labeling of genetically engineered tropomyosin isoforms with electron tomography to locate individual tropomyosin molecules in fibroblasts. We find that the organization of two non-muscle tropomyosins, Tpm3.1 with Tpm4.2, can be distinguished from each other using light and electron microscopy. Visualization of single tropomyosin molecules associated with actin filaments supports the hypothesis that tropomyosins form continuous homopolymers, instead of heteropolymers, in the presence of all physiologically native actin-binding proteins. This is true for both isoforms tested. Furthermore, the data suggest that the tropomyosin molecules on one side of an actin filament may not be in register with those on the opposite side, indicating that each tropomyosin polymer may assembly independently.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":"45-54"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Picture of the Month by Jeff Hook. 月度图片,杰夫·胡克。
Pub Date : 2025-01-01 Epub Date: 2025-01-11 DOI: 10.1002/cm.21983
{"title":"Picture of the Month by Jeff Hook.","authors":"","doi":"10.1002/cm.21983","DOIUrl":"10.1002/cm.21983","url":null,"abstract":"","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":"72"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MEK inhibitors and DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, prevent the migration and invasion of KRAS-mutant cancer cells. MEK抑制剂和Ras-ERK通路显性阴性拮抗剂DA-Raf能阻止KRAS突变癌细胞的迁移和侵袭。
Pub Date : 2025-01-01 Epub Date: 2024-06-14 DOI: 10.1002/cm.21881
Aoi Matsuda, Ryuichi Masuzawa, Kazuya Takahashi, Kazunori Takano, Takeshi Endo

The Ras-induced ERK pathway (Raf-MEK-ERK signaling cascade) regulates a variety of cellular responses including cell proliferation, survival, and migration. Activating mutations in RAS genes, particularly in the KRAS gene, constitutively activate the ERK pathway, resulting in tumorigenesis, cancer cell invasion, and metastasis. DA-Raf1 (DA-Raf) is a splicing isoform of A-Raf and contains the Ras-binding domain but lacks the kinase domain. Consequently, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative manner and can serve as a tumor suppressor that targets mutant Ras protein-induced tumorigenesis. We show here that MEK inhibitors and DA-Raf interfere with the in vitro collective cell migration and invasion of human KRAS-mutant carcinoma cell lines, the lung adenocarcinoma A549, colorectal carcinoma HCT116, and pancreatic carcinoma MIA PaCa-2 cells. DA-Raf expression was silenced in these cancer cell lines. All these cell lines had high collective migration abilities and invasion properties in Matrigel, compared with nontumor cells. Their migration and invasion abilities were impaired by suppressing the ERK pathway with the MEK inhibitors U0126 and trametinib, an approved anticancer drug. Expression of DA-Raf in MIA PaCa-2 cells reduced the ERK activity and hindered the migration and invasion abilities. Therefore, DA-Raf may function as an invasion suppressor protein in the KRAS-mutant cancer cells by blocking the Ras-ERK pathway when DA-Raf expression is induced in invasive cancer cells.

Ras 诱导的 ERK 通路(Raf-MEK-ERK 信号级联)可调节多种细胞反应,包括细胞增殖、存活和迁移。RAS 基因(尤其是 KRAS 基因)的激活突变会组成性地激活 ERK 通路,导致肿瘤发生、癌细胞侵袭和转移。DA-Raf1(DA-Raf)是 A-Raf 的剪接异构体,含有 Ras 结合结构域,但缺乏激酶结构域。因此,DA-Raf以显性阴性方式拮抗Ras-ERK通路,可作为一种肿瘤抑制剂,靶向突变Ras蛋白诱导的肿瘤发生。我们在此表明,MEK 抑制剂和 DA-Raf 会干扰人类 KRAS 突变癌细胞系、肺腺癌 A549、结直肠癌 HCT116 和胰腺癌 MIA PaCa-2 细胞的体外集体细胞迁移和侵袭。在这些癌细胞系中,DA-Raf 的表达被沉默。与非肿瘤细胞相比,所有这些细胞系在 Matrigel 中都具有较高的集体迁移能力和侵袭特性。通过使用 MEK 抑制剂 U0126 和曲美替尼(一种已获批准的抗癌药物)抑制 ERK 通路,这些细胞株的迁移和侵袭能力都会受到影响。在MIA PaCa-2细胞中表达DA-Raf可降低ERK活性,阻碍其迁移和侵袭能力。因此,当DA-Raf在侵袭性癌细胞中表达时,它可能通过阻断Ras-ERK通路,在KRAS突变癌细胞中发挥侵袭抑制蛋白的作用。
{"title":"MEK inhibitors and DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, prevent the migration and invasion of KRAS-mutant cancer cells.","authors":"Aoi Matsuda, Ryuichi Masuzawa, Kazuya Takahashi, Kazunori Takano, Takeshi Endo","doi":"10.1002/cm.21881","DOIUrl":"10.1002/cm.21881","url":null,"abstract":"<p><p>The Ras-induced ERK pathway (Raf-MEK-ERK signaling cascade) regulates a variety of cellular responses including cell proliferation, survival, and migration. Activating mutations in RAS genes, particularly in the KRAS gene, constitutively activate the ERK pathway, resulting in tumorigenesis, cancer cell invasion, and metastasis. DA-Raf1 (DA-Raf) is a splicing isoform of A-Raf and contains the Ras-binding domain but lacks the kinase domain. Consequently, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative manner and can serve as a tumor suppressor that targets mutant Ras protein-induced tumorigenesis. We show here that MEK inhibitors and DA-Raf interfere with the in vitro collective cell migration and invasion of human KRAS-mutant carcinoma cell lines, the lung adenocarcinoma A549, colorectal carcinoma HCT116, and pancreatic carcinoma MIA PaCa-2 cells. DA-Raf expression was silenced in these cancer cell lines. All these cell lines had high collective migration abilities and invasion properties in Matrigel, compared with nontumor cells. Their migration and invasion abilities were impaired by suppressing the ERK pathway with the MEK inhibitors U0126 and trametinib, an approved anticancer drug. Expression of DA-Raf in MIA PaCa-2 cells reduced the ERK activity and hindered the migration and invasion abilities. Therefore, DA-Raf may function as an invasion suppressor protein in the KRAS-mutant cancer cells by blocking the Ras-ERK pathway when DA-Raf expression is induced in invasive cancer cells.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":"32-44"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microtubule shaft integrity emerges as a crucial determinant of the acetylation pattern. 微管轴的完整性成为乙酰化模式的关键决定因素。
Pub Date : 2025-01-01 Epub Date: 2024-06-24 DOI: 10.1002/cm.21887
Mireia Andreu-Carbó, Cornelia Egoldt, Charlotte Aumeier
{"title":"Microtubule shaft integrity emerges as a crucial determinant of the acetylation pattern.","authors":"Mireia Andreu-Carbó, Cornelia Egoldt, Charlotte Aumeier","doi":"10.1002/cm.21887","DOIUrl":"10.1002/cm.21887","url":null,"abstract":"","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":"55-57"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative analysis of paxillin and Hic-5 proximity interactomes. paxillin 和 Hic-5 邻近相互作用组的比较分析。
Pub Date : 2025-01-01 Epub Date: 2024-05-27 DOI: 10.1002/cm.21878
Katia Brock, Kyle M Alpha, Grant Brennan, Ebbing P De Jong, Elizabeth Luke, Christopher E Turner

Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.

病灶粘附是结构和信号枢纽,可促进细胞-细胞外基质界面的双向交流。Paxillin和相关的Hic-5 (TGFβ1i1)是适配蛋白/支架蛋白,它们将许多结构蛋白和调控蛋白募集到病灶粘附处,并在那里发挥重叠和分离的功能。本研究将 paxillin 和 Hic-5 作为生物素连接酶(BioID2)融合蛋白在 U2OS 骨肉瘤细胞中表达,并将其作为诱饵蛋白进行近距离依赖性生物素化,以直接比较它们各自的相互作用组。融合蛋白定位于病灶粘附和中心体,从而使这两种结构中的成分都发生生物素化。生物素化的蛋白质被纯化并通过质谱进行分析。paxillin和Hic-5的近距离互作物列表包括许多共享的核心焦点粘附蛋白,这些蛋白可能有助于它们在细胞粘附和迁移中发挥类似的功能,还包括paxillin和Hic-5特有的蛋白,这些蛋白以前曾被定位到焦点粘附、中心体或细胞核中。Western 印迹证实了 FAK 和 vinculin 的生物素化和富集,FAK 和 vinculin 是 Hic-5 和 paxillin 的已知相互作用物,Hic-5 和 paxillin 还有几种潜在的独特近距离相互作用物,分别包括 septin 7 和 ponsin。进一步研究这些独特的相互作用因子与 Hic-5 或 paxillin 之间的功能关系,可能会对它们在细胞迁移中的不同作用产生新的见解。
{"title":"A comparative analysis of paxillin and Hic-5 proximity interactomes.","authors":"Katia Brock, Kyle M Alpha, Grant Brennan, Ebbing P De Jong, Elizabeth Luke, Christopher E Turner","doi":"10.1002/cm.21878","DOIUrl":"10.1002/cm.21878","url":null,"abstract":"<p><p>Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":"12-31"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Profile: Abigail Allen-Gondringer. 作者简介:Abigail Allen-Gondringer。
Pub Date : 2024-12-28 DOI: 10.1002/cm.21976
Abigail Allen-Gondringer
{"title":"Author Profile: Abigail Allen-Gondringer.","authors":"Abigail Allen-Gondringer","doi":"10.1002/cm.21976","DOIUrl":"10.1002/cm.21976","url":null,"abstract":"","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cytoskeleton (Hoboken, N.J.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1