首页 > 最新文献

Cytoskeleton (Hoboken, N.J.)最新文献

英文 中文
F-actin in the cuticular plate and junctions of auditory hair cells is regulated by ADF and cofilin to allow for normal stereocilia bundle patterning and maintenance. 听觉毛细胞角质板和连接处的 F-肌动蛋白受 ADF 和 cofilin 的调控,以实现正常的立体纤毛束模式化和维持。
Pub Date : 2024-09-21 DOI: 10.1002/cm.21933
Jamis McGrath, Katelin Hawbaker, Benjamin J Perrin

Auditory hair cells, which convert sound-induced vibrations in the inner ear into neural signals, depend on multiple actin populations for normal function. Stereocilia are mechanosensory protrusions formed around a core of linear, crosslinked F-actin. They are anchored in the cuticular plate, which predominantly consists of randomly oriented actin filaments. A third actin population is found near hair cell junctions, consisting of both parallel and branched filaments. Actin depolymerizing factor (ADF) and cofilin-1 (CFL1) proteins disassemble actin filaments and are required to regulate F-actin in stereocilia, but their effect on cuticular plate and junctional actin populations is unclear. Here, we show that loss of ADF and CFL1 disrupts the patterning of stereocilia into orderly bundles and that this phenotype correlates with defective development of the cuticular plate and junctional actin populations. ADF/CFL1 continue to regulate these actin populations in mature cells, which is necessary for long-term maintenance of hair cell morphology.

听觉毛细胞将声音引起的内耳振动转化为神经信号,其正常功能依赖于多种肌动蛋白群。立体纤毛是围绕线性交联 F-肌动蛋白核心形成的机械感觉突起。它们固定在主要由随机定向的肌动蛋白丝组成的角质板上。第三种肌动蛋白群存在于毛细胞连接处附近,由平行和分枝的细丝组成。肌动蛋白解聚因子(ADF)和cofilin-1(CFL1)蛋白能分解肌动蛋白丝,是调节立体纤毛中F-肌动蛋白所必需的,但它们对角质板和交界处肌动蛋白群的影响尚不清楚。在这里,我们发现 ADF 和 CFL1 的缺失会破坏立体纤毛有序成束的模式,而且这种表型与角质板和交界肌动蛋白群的发育缺陷相关。ADF/CFL1 在成熟细胞中继续调节这些肌动蛋白群,这对于长期维持毛细胞形态是必要的。
{"title":"F-actin in the cuticular plate and junctions of auditory hair cells is regulated by ADF and cofilin to allow for normal stereocilia bundle patterning and maintenance.","authors":"Jamis McGrath, Katelin Hawbaker, Benjamin J Perrin","doi":"10.1002/cm.21933","DOIUrl":"https://doi.org/10.1002/cm.21933","url":null,"abstract":"<p><p>Auditory hair cells, which convert sound-induced vibrations in the inner ear into neural signals, depend on multiple actin populations for normal function. Stereocilia are mechanosensory protrusions formed around a core of linear, crosslinked F-actin. They are anchored in the cuticular plate, which predominantly consists of randomly oriented actin filaments. A third actin population is found near hair cell junctions, consisting of both parallel and branched filaments. Actin depolymerizing factor (ADF) and cofilin-1 (CFL1) proteins disassemble actin filaments and are required to regulate F-actin in stereocilia, but their effect on cuticular plate and junctional actin populations is unclear. Here, we show that loss of ADF and CFL1 disrupts the patterning of stereocilia into orderly bundles and that this phenotype correlates with defective development of the cuticular plate and junctional actin populations. ADF/CFL1 continue to regulate these actin populations in mature cells, which is necessary for long-term maintenance of hair cell morphology.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing our Associate Editorial Board-Jayne Aiken, University of Pennsylvania, USA. 介绍我们的副编委--美国宾夕法尼亚大学的杰恩-艾肯(Jayne Aiken)。
Pub Date : 2024-09-09 DOI: 10.1002/cm.21915
Paul Trevorrow, Jayne Aiken
{"title":"Introducing our Associate Editorial Board-Jayne Aiken, University of Pennsylvania, USA.","authors":"Paul Trevorrow, Jayne Aiken","doi":"10.1002/cm.21915","DOIUrl":"https://doi.org/10.1002/cm.21915","url":null,"abstract":"","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the potential role of palladin in modulating human CAF/ECM functional units. 探索 palladin 在调节人类 CAF/ECM 功能单元中的潜在作用。
Pub Date : 2024-09-06 DOI: 10.1002/cm.21926
Aleksandr Dolskii, Sérgio A Alcantara Dos Santos, Mark Andrake, Janusz Franco-Barraza, Roland L Dunbrack, Edna Cukierman

Fibroblasts, crucial for maintaining tissue homeostasis, significantly shape the tumor microenvironment (TME). In pancreatic cancer, a highly aggressive malignancy, cancer-associated fibroblast (CAF)/extracellular matrix (ECM) units dominate the TME, influencing tumor initiation, progression, and treatment responses. Palladin, an actin-associated protein, is vital for fibroblast structural integrity and activation, playing a key role in CAF/ECM functionality. Palladin interacts with cytoskeletal proteins such as alpha-actinin (α-Act) and can therefore regulate other proteins like syndecans, modulating cytoskeletal features, cell adhesion, integrin recycling, and signaling. In this review, we propose that targeting the palladin/α-Act/syndecan interaction network could modulate CAF/ECM units, potentially shifting the TME from a tumor-promoting to a tumor-suppressive state. In silico data and reported studies to suggest that stabilizing palladin-α-Act interactions, via excess palladin, influences syndecan functions; potentially modulating integrin endocytosis via syndecan engagement with protein kinase C alpha as opposed to syndecan binding to α-Act. This mechanism can then affect the distribution of active α5β1-integrin between the plasma membrane and known intracellular vesicular compartments, thereby influencing the tumor-suppressive versus tumor-promoting functions of CAF/ECM units. Understanding these interactions offers likely future therapeutic avenues for stroma normalization in pancreatic and other cancers, aiming to inhibit tumor progression and improve future treatment outcomes.

成纤维细胞是维持组织平衡的关键,对肿瘤微环境(TME)的形成起着重要作用。在胰腺癌这种侵袭性极强的恶性肿瘤中,癌相关成纤维细胞(CAF)/细胞外基质(ECM)单元主导着肿瘤微环境,影响着肿瘤的发生、发展和治疗反应。Palladin是一种肌动蛋白相关蛋白,对成纤维细胞的结构完整性和活化至关重要,在CAF/ECM功能中发挥着关键作用。Palladin 与细胞骨架蛋白(如α-肌动蛋白(α-Act))相互作用,因此可以调控其他蛋白(如辛迪加),从而调节细胞骨架特征、细胞粘附、整合素循环和信号传导。在这篇综述中,我们提出以 palladin/α-Act/yndecan 相互作用网络为靶点可以调节 CAF/ECM 单元,从而有可能将 TME 从肿瘤促进状态转变为肿瘤抑制状态。硅学数据和已报道的研究表明,通过过量的 palladin 来稳定 palladin-α-Act 相互作用会影响 syndecan 的功能;可能通过 syndecan 与蛋白激酶 C alpha 的接合(而不是 syndecan 与 α-Act 的结合)来调节整合素的内吞。这种机制会影响活性α5β1-整合素在质膜和已知细胞内囊腔之间的分布,从而影响 CAF/ECM 单元的肿瘤抑制功能和肿瘤促进功能。了解这些相互作用为胰腺癌和其他癌症的基质正常化提供了可能的治疗途径,目的是抑制肿瘤进展和改善未来的治疗效果。
{"title":"Exploring the potential role of palladin in modulating human CAF/ECM functional units.","authors":"Aleksandr Dolskii, Sérgio A Alcantara Dos Santos, Mark Andrake, Janusz Franco-Barraza, Roland L Dunbrack, Edna Cukierman","doi":"10.1002/cm.21926","DOIUrl":"https://doi.org/10.1002/cm.21926","url":null,"abstract":"<p><p>Fibroblasts, crucial for maintaining tissue homeostasis, significantly shape the tumor microenvironment (TME). In pancreatic cancer, a highly aggressive malignancy, cancer-associated fibroblast (CAF)/extracellular matrix (ECM) units dominate the TME, influencing tumor initiation, progression, and treatment responses. Palladin, an actin-associated protein, is vital for fibroblast structural integrity and activation, playing a key role in CAF/ECM functionality. Palladin interacts with cytoskeletal proteins such as alpha-actinin (α-Act) and can therefore regulate other proteins like syndecans, modulating cytoskeletal features, cell adhesion, integrin recycling, and signaling. In this review, we propose that targeting the palladin/α-Act/syndecan interaction network could modulate CAF/ECM units, potentially shifting the TME from a tumor-promoting to a tumor-suppressive state. In silico data and reported studies to suggest that stabilizing palladin-α-Act interactions, via excess palladin, influences syndecan functions; potentially modulating integrin endocytosis via syndecan engagement with protein kinase C alpha as opposed to syndecan binding to α-Act. This mechanism can then affect the distribution of active α5β1-integrin between the plasma membrane and known intracellular vesicular compartments, thereby influencing the tumor-suppressive versus tumor-promoting functions of CAF/ECM units. Understanding these interactions offers likely future therapeutic avenues for stroma normalization in pancreatic and other cancers, aiming to inhibit tumor progression and improve future treatment outcomes.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of open chromatin sensitive to actin polymerization and identification of core-binding factor subunit beta as mechanosensitive nucleocytoplasmic shuttling protein. 对肌动蛋白聚合敏感的开放染色质的特征以及作为机械敏感核细胞质穿梭蛋白的核心结合因子亚基 beta 的鉴定
Pub Date : 2024-09-06 DOI: 10.1002/cm.21925
Yaxin Li, Kangjing Li, Fumihiko Nakamura

Mechanotransduction leads to a variety of biological responses including gene expression, changes in cell shape, migration, tissue development, and immune responses. Dysregulation of mechanotransduction is implicated in the progression of various diseases such as cardiovascular diseases and cancer. The actin cytoskeleton plays a crucial role in transmitting mechanical stimuli. Actin filaments, essential for cell motility and shape changes, respond to mechanical cues by remodeling, influencing gene expression via the linker of nucleoskeleton and cytoskeleton complex and mechanosensitive transcription factors. This study employs the dithiobis(succinimidyl propionate) (DSP)-micrococcal nuclease (MNase) proteogenomics method to explore the relationship between cellular mechanosensing, chromatin architecture, and the identification of proteins involved in mechanosensitive nucleocytoplasmic shuttling, revealing how actin polymerization affects chromatin and gene expression. We found that depolymerization of actin filaments by latrunculin B (Lat B) for 30 min is sufficient to alter open chromatin and identified core-binding factor subunit beta as mechanosensitive nucleocytoplasmic shuttling protein.

机械传导会导致各种生物反应,包括基因表达、细胞形状变化、迁移、组织发育和免疫反应。机械传导失调与心血管疾病和癌症等多种疾病的进展有关。肌动蛋白细胞骨架在传递机械刺激方面起着至关重要的作用。肌动蛋白丝对细胞运动和形状变化至关重要,它通过重塑对机械线索做出反应,并通过核骨架和细胞骨架复合体的连接体以及机械敏感转录因子影响基因表达。本研究采用二硫代双(琥珀酰亚胺基丙酸酯)(DSP)-微球核酸酶(MNase)蛋白基因组学方法,探讨了细胞机械感应、染色质结构之间的关系,并鉴定了参与机械敏感核胞质穿梭的蛋白质,揭示了肌动蛋白聚合如何影响染色质和基因表达。我们发现拉特鲁库林 B(Lat B)对肌动蛋白丝的解聚作用持续 30 分钟就足以改变开放染色质,并鉴定出核心结合因子亚基 beta 是机械敏感性核胞质穿梭蛋白。
{"title":"Characterization of open chromatin sensitive to actin polymerization and identification of core-binding factor subunit beta as mechanosensitive nucleocytoplasmic shuttling protein.","authors":"Yaxin Li, Kangjing Li, Fumihiko Nakamura","doi":"10.1002/cm.21925","DOIUrl":"https://doi.org/10.1002/cm.21925","url":null,"abstract":"<p><p>Mechanotransduction leads to a variety of biological responses including gene expression, changes in cell shape, migration, tissue development, and immune responses. Dysregulation of mechanotransduction is implicated in the progression of various diseases such as cardiovascular diseases and cancer. The actin cytoskeleton plays a crucial role in transmitting mechanical stimuli. Actin filaments, essential for cell motility and shape changes, respond to mechanical cues by remodeling, influencing gene expression via the linker of nucleoskeleton and cytoskeleton complex and mechanosensitive transcription factors. This study employs the dithiobis(succinimidyl propionate) (DSP)-micrococcal nuclease (MNase) proteogenomics method to explore the relationship between cellular mechanosensing, chromatin architecture, and the identification of proteins involved in mechanosensitive nucleocytoplasmic shuttling, revealing how actin polymerization affects chromatin and gene expression. We found that depolymerization of actin filaments by latrunculin B (Lat B) for 30 min is sufficient to alter open chromatin and identified core-binding factor subunit beta as mechanosensitive nucleocytoplasmic shuttling protein.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disruption of salt bridge interactions in the inter-domain cleft of the tubulin-like protein FtsZ of Escherichia coli makes cells sensitive to the cell division inhibitor PC190723. 大肠杆菌的类管蛋白 FtsZ 的结构域间隙中的盐桥相互作用被破坏,使细胞对细胞分裂抑制剂 PC190723 敏感。
Pub Date : 2024-09-04 DOI: 10.1002/cm.21924
Sakshi Mahesh Poddar, Joyeeta Chakraborty, Pananghat Gayathri, Ramanujam Srinivasan

FtsZ forms a ring-like assembly at the site of division in bacteria. It is the first protein involved in the formation of the divisome complex to split the cell into two halves, indicating its importance in bacterial cell division. FtsZ is an attractive target for developing new anti-microbial drugs to overcome the challenges of antibiotic resistance. The most potent inhibitor against FtsZ is PC190723, which is effective against all strains and species of Staphylococcus, including the methicillin- and multi-drug-resistant Staphylococcus aureus and strains of Bacillus. However, FtsZs from bacteria such as E. coli, Streptococcus, and Enterococcus were shown to be resistant to this inhibitor. In this study, we provide further evidence that the three pairwise bridging interactions, between residues S227 and G191, R307 and E198 and D299 and R202, between S7, S9, S10 β-strands and the H7 helix occlude the inhibitor from binding to E. coli FtsZ. We generated single, double and triple mutations to disrupt those bridges and tested the effectiveness of PC190723 directly on Z-ring assembly in vivo. Our results show that the disruption of S227-G191 and R307-E198 bridges render EcFtsZ highly sensitive to PC190723 for Z-ring assembly. Ectopic expression of the double mutants, FtsZ S227I R307V results in hypersensitivity of the susceptible E. coli imp4213 strain to PC190723. Our studies could further predict the effectiveness of PC190723 or its derivatives towards FtsZs of other bacterial genera.

FtsZ 在细菌分裂部位形成环状集合体。它是第一个参与形成分裂体复合物的蛋白质,将细胞分成两半,这表明它在细菌细胞分裂中的重要性。FtsZ 是开发新型抗微生物药物以克服抗生素耐药性挑战的一个极具吸引力的靶点。对 FtsZ 最有效的抑制剂是 PC190723,它对所有葡萄球菌菌株和菌种都有效,包括耐甲氧西林和耐多种药物的金黄色葡萄球菌和芽孢杆菌菌株。然而,大肠杆菌、链球菌和肠球菌等细菌的 FtsZs 对这种抑制剂具有抗药性。在本研究中,我们提供了进一步的证据,证明在 S7、S9、S10 β 链和 H7 螺旋之间的残基 S227 和 G191、R307 和 E198 以及 D299 和 R202 之间的三对桥接相互作用阻止了抑制剂与大肠杆菌 FtsZ 的结合。我们产生了单突变、双突变和三突变来破坏这些桥,并测试了 PC190723 直接在体内对 Z 环组装的有效性。结果表明,S227-G191 和 R307-E198 桥的破坏使 EcFtsZ 对 PC190723 的 Z 环组装高度敏感。异位表达双突变体 FtsZ S227I R307V 会导致易感的大肠杆菌 imp4213 菌株对 PC190723 超敏。我们的研究可以进一步预测 PC190723 或其衍生物对其他细菌属的 FtsZ 的有效性。
{"title":"Disruption of salt bridge interactions in the inter-domain cleft of the tubulin-like protein FtsZ of Escherichia coli makes cells sensitive to the cell division inhibitor PC190723.","authors":"Sakshi Mahesh Poddar, Joyeeta Chakraborty, Pananghat Gayathri, Ramanujam Srinivasan","doi":"10.1002/cm.21924","DOIUrl":"https://doi.org/10.1002/cm.21924","url":null,"abstract":"<p><p>FtsZ forms a ring-like assembly at the site of division in bacteria. It is the first protein involved in the formation of the divisome complex to split the cell into two halves, indicating its importance in bacterial cell division. FtsZ is an attractive target for developing new anti-microbial drugs to overcome the challenges of antibiotic resistance. The most potent inhibitor against FtsZ is PC190723, which is effective against all strains and species of Staphylococcus, including the methicillin- and multi-drug-resistant Staphylococcus aureus and strains of Bacillus. However, FtsZs from bacteria such as E. coli, Streptococcus, and Enterococcus were shown to be resistant to this inhibitor. In this study, we provide further evidence that the three pairwise bridging interactions, between residues S227 and G191, R307 and E198 and D299 and R202, between S7, S9, S10 β-strands and the H7 helix occlude the inhibitor from binding to E. coli FtsZ. We generated single, double and triple mutations to disrupt those bridges and tested the effectiveness of PC190723 directly on Z-ring assembly in vivo. Our results show that the disruption of S227-G191 and R307-E198 bridges render EcFtsZ highly sensitive to PC190723 for Z-ring assembly. Ectopic expression of the double mutants, FtsZ S227I R307V results in hypersensitivity of the susceptible E. coli imp4213 strain to PC190723. Our studies could further predict the effectiveness of PC190723 or its derivatives towards FtsZs of other bacterial genera.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collective effect of Vigna sp. (mung) tubulin GTP hydrolysis rate divergence on microtubule filament assembly. Vigna sp. (mung)管蛋白 GTP 水解速率差异对微管丝组装的集体影响。
Pub Date : 2024-09-02 DOI: 10.1002/cm.21923
Jashaswi Basu, Chaitanya A Athale

Microtubules (MTs) are dynamic cytoskeletal filaments with highly conserved sequences across evolution, polymerizing by the GTP-dependent assembly of tubulin subunits. Despite the sequence conservation, MT polymerization kinetics diverge quantitatively between vertebrate brain, the model plant Arabidopsis and the protozoan Plasmodium. Previously, tubulin purified from seedlings of the plant Vigna sp. (mung) by temperature cycling was found to have a very low critical concentration. However, the lengths of MTs were sub-micron, much shorter than brain tubulin filaments. This was explained in simulations to be the result of the collective effect of high nucleation and GTP hydrolysis rates. Here, we test the effect of GTPase rates of affinity-purified Vigna sp. tubulin on microtubule polymerization and elongation. Affinity-purified mung tubulin is active and has a critical concentration of .37 μM. The GTP-dependent polymerization kinetics are transient, consistent with previous results. Polymerization is stabilized in the presence of either GTP analog GMPPNP (non-hydrolyzable) or GMPCPP (slow-hydrolyzable). Using interference reflection microscopy (IRM) we find polymerization with the non-hydrolysable analog significantly increases filament numbers, while lengths are unaffected for both GTP analogs. However, prolonged incubation with slow-hydrolyzable GMPCPP results in long filaments, pointing to GTP hydrolysis as a key factor determining MT length. We find the average GTPase turnover number of mung tubulin is 22.8 min-1, compared to 2.04 min-1 for goat brain tubulin. Thus modulating GTPase rates affects both nucleation and elongation. This quantitative divergence in kinetics despite high sequence conservation in the GTPase domains of α- and β-tubulin could help better understand the roles of selective pressure and function in the diverse organisms.

微管(MT)是一种动态细胞骨架细丝,其序列在进化过程中高度保守,通过依赖 GTP 的微管蛋白亚基组装而聚合。尽管序列保守,但脊椎动物大脑、模式植物拟南芥和原生动物疟原虫的MT聚合动力学在数量上存在差异。在此之前,通过温度循环从植物Vigna sp.(绿豆)幼苗中纯化的微管蛋白被发现临界浓度非常低。然而,MT 的长度为亚微米级,比脑微管蛋白丝短得多。这在模拟中被解释为高成核率和 GTP 水解率共同作用的结果。在这里,我们测试了亲和纯化的木犀草小管蛋白的 GTPase 速率对微管聚合和伸长的影响。亲和纯化的孟小管蛋白具有活性,临界浓度为 0.37 μM。GTP 依赖性聚合动力学是瞬时的,与之前的结果一致。在 GTP 类似物 GMPPNP(不可水解)或 GMPCPP(可缓慢水解)存在的情况下,聚合会趋于稳定。通过干涉反射显微镜(IRM),我们发现使用不可水解类似物进行聚合会显著增加细丝数量,而两种 GTP 类似物的长度均不受影响。然而,长时间与可缓慢水解的 GMPCPP 培养会产生长丝,这表明 GTP 的水解是决定 MT 长度的关键因素。我们发现蒙氏管蛋白的 GTPase 平均周转次数为 22.8 分钟-1,而山羊脑管蛋白的周转次数为 2.04 分钟-1。因此,调节 GTPase 的速率会影响成核和伸长。尽管α和β-微管蛋白的GTPase结构域序列高度保守,但这种动力学上的定量差异有助于更好地理解选择压力和功能在不同生物体中的作用。
{"title":"Collective effect of Vigna sp. (mung) tubulin GTP hydrolysis rate divergence on microtubule filament assembly.","authors":"Jashaswi Basu, Chaitanya A Athale","doi":"10.1002/cm.21923","DOIUrl":"https://doi.org/10.1002/cm.21923","url":null,"abstract":"<p><p>Microtubules (MTs) are dynamic cytoskeletal filaments with highly conserved sequences across evolution, polymerizing by the GTP-dependent assembly of tubulin subunits. Despite the sequence conservation, MT polymerization kinetics diverge quantitatively between vertebrate brain, the model plant Arabidopsis and the protozoan Plasmodium. Previously, tubulin purified from seedlings of the plant Vigna sp. (mung) by temperature cycling was found to have a very low critical concentration. However, the lengths of MTs were sub-micron, much shorter than brain tubulin filaments. This was explained in simulations to be the result of the collective effect of high nucleation and GTP hydrolysis rates. Here, we test the effect of GTPase rates of affinity-purified Vigna sp. tubulin on microtubule polymerization and elongation. Affinity-purified mung tubulin is active and has a critical concentration of .37 μM. The GTP-dependent polymerization kinetics are transient, consistent with previous results. Polymerization is stabilized in the presence of either GTP analog GMPPNP (non-hydrolyzable) or GMPCPP (slow-hydrolyzable). Using interference reflection microscopy (IRM) we find polymerization with the non-hydrolysable analog significantly increases filament numbers, while lengths are unaffected for both GTP analogs. However, prolonged incubation with slow-hydrolyzable GMPCPP results in long filaments, pointing to GTP hydrolysis as a key factor determining MT length. We find the average GTPase turnover number of mung tubulin is 22.8 min<sup>-1</sup>, compared to 2.04 min<sup>-1</sup> for goat brain tubulin. Thus modulating GTPase rates affects both nucleation and elongation. This quantitative divergence in kinetics despite high sequence conservation in the GTPase domains of α- and β-tubulin could help better understand the roles of selective pressure and function in the diverse organisms.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear α-actinin-4 regulates breast cancer invasiveness and EMT. 核α-肌动蛋白-4调节乳腺癌的侵袭性和EMT
Pub Date : 2024-08-15 DOI: 10.1002/cm.21901
Sumon Kumar Saha, Madhurima Sarkar, Mahima Srivastava, Sarbajeet Dutta, Shamik Sen

Epithelial-to-mesenchymal transition (EMT) is a key process where cells lose their adhesion properties and augment their invasive properties. α-Actinin4 (ACTN4) is an actin crosslinking protein that responds to mechanical stimuli and is found to be elevated in breast cancer patients. While ACTN4 has been implicated in regulating cancer invasiveness by modulating cytoskeletal organization, its nuclear functions remain much less explored. Here we address this question by first establishing a correlation between nuclear localization and invasiveness in breast cancer cells. Using cancer databases, we then establish a correlation between ACTN4 expression and EMT in breast cancer. Interestingly, TGFβ-induced EMT induction in MCF10A normal mammary epithelial cells leads to increased ACTN4 expression and nuclear enrichment. We then show that ACTN4 knockdown in MDA-MB-231 breast cancer cells, which harbor sizeable fraction of nuclear ACTN4, leads to reduced invasiveness and loss of mesenchymal traits. Similar behavior was observed in knockdown cells expressing K255E ACTN4, which is primarily localized to the cytosol. Together, our findings establish a role for nuclear ACTN4 in regulating invasiveness via modulation of EMT.

上皮细胞向间质转化(EMT)是一个关键过程,在这一过程中细胞会失去粘附特性并增强其侵袭性。α-肌动蛋白4(ACTN4)是一种肌动蛋白交联蛋白,会对机械刺激做出反应,在乳腺癌患者中发现其含量升高。虽然 ACTN4 与通过调节细胞骨架组织来调节癌症侵袭性有关,但对其核功能的探索仍然较少。为了解决这个问题,我们首先建立了乳腺癌细胞核定位与侵袭性之间的相关性。然后,我们利用癌症数据库建立了 ACTN4 表达与乳腺癌 EMT 之间的相关性。有趣的是,在 MCF10A 正常乳腺上皮细胞中,TGFβ 诱导的 EMT 会导致 ACTN4 表达和核富集增加。我们随后发现,在MDA-MB-231乳腺癌细胞中敲除ACTN4会导致侵袭性降低和间质特征丧失,而MDA-MB-231乳腺癌细胞核中富含大量ACTN4。在表达 K255E ACTN4 的基因敲除细胞中也观察到了类似的行为,K255E ACTN4 主要定位于细胞质。总之,我们的研究结果确立了核ACTN4在通过调节EMT调节侵袭性中的作用。
{"title":"Nuclear α-actinin-4 regulates breast cancer invasiveness and EMT.","authors":"Sumon Kumar Saha, Madhurima Sarkar, Mahima Srivastava, Sarbajeet Dutta, Shamik Sen","doi":"10.1002/cm.21901","DOIUrl":"https://doi.org/10.1002/cm.21901","url":null,"abstract":"<p><p>Epithelial-to-mesenchymal transition (EMT) is a key process where cells lose their adhesion properties and augment their invasive properties. α-Actinin4 (ACTN4) is an actin crosslinking protein that responds to mechanical stimuli and is found to be elevated in breast cancer patients. While ACTN4 has been implicated in regulating cancer invasiveness by modulating cytoskeletal organization, its nuclear functions remain much less explored. Here we address this question by first establishing a correlation between nuclear localization and invasiveness in breast cancer cells. Using cancer databases, we then establish a correlation between ACTN4 expression and EMT in breast cancer. Interestingly, TGFβ-induced EMT induction in MCF10A normal mammary epithelial cells leads to increased ACTN4 expression and nuclear enrichment. We then show that ACTN4 knockdown in MDA-MB-231 breast cancer cells, which harbor sizeable fraction of nuclear ACTN4, leads to reduced invasiveness and loss of mesenchymal traits. Similar behavior was observed in knockdown cells expressing K255E ACTN4, which is primarily localized to the cytosol. Together, our findings establish a role for nuclear ACTN4 in regulating invasiveness via modulation of EMT.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of lamin A/C mechanotransduction under different surface topography in LMNA related muscular dystrophy. 评估 LMNA 相关性肌营养不良症患者在不同表面形貌下的层粘连 A/C机械传导。
Pub Date : 2024-08-01 DOI: 10.1002/cm.21895
Subarna Dutta, T Muraganadan, Madavan Vasudevan

Most of the single point mutations of the LMNA gene are associated with distinct muscular dystrophies, marked by heterogenous phenotypes but primarily the loss and symmetric weakness of skeletal muscle tissue. The molecular mechanism and phenotype-genotype relationships in these muscular dystrophies are poorly understood. An effort has been here to delineating the adaptation of mechanical inputs into biological response by mutant cells of lamin A associated muscular dystrophy. In this study, we implement engineered smooth and pattern surfaces of particular young modulus to mimic muscle physiological range. Using fluorescence and atomic force microscopy, we present distinct architecture of the actin filament along with abnormally distorted cell and nuclear shape in mutants, which showed a tendency to deviate from wild type cells. Topographic features of pattern surface antagonize the binding of the cell with it. Correspondingly, from the analysis of genome wide expression data in wild type and mutant cells, we report differential expression of the gene products of the structural components of cell adhesion as well as LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes. This study also reveals mis expressed downstream signaling processes in mutant cells, which could potentially lead to onset of the disease upon the application of engineered materials to substitute the role of conventional cues in instilling cellular behaviors in muscular dystrophies. Collectively, these data support the notion that lamin A is essential for proper cellular mechanotransduction from extracellular environment to the genome and impairment of the muscle cell differentiation in the pathogenic mechanism for lamin A associated muscular dystrophy.

大多数 LMNA 基因的单点突变都与不同的肌肉萎缩症有关,其表型各异,但主要表现为骨骼肌组织的缺失和对称性无力。人们对这些肌肉萎缩症的分子机制和表型与基因型之间的关系知之甚少。我们一直在努力研究层粘连A型肌营养不良症突变细胞对机械输入的适应,并将其转化为生物反应。在这项研究中,我们采用了具有特定年轻模量的工程光滑表面和图案表面来模拟肌肉的生理范围。利用荧光和原子力显微镜,我们发现了肌动蛋白丝的独特结构,以及突变体中异常扭曲的细胞和核形状,这些突变体显示出偏离野生型细胞的趋势。图案表面的拓扑特征拮抗了细胞与图案表面的结合。相应地,通过分析野生型细胞和突变体细胞的全基因组表达数据,我们报告了细胞粘附结构成分以及 LINC(核骨架和细胞骨架的连接体)蛋白复合物的基因产物的不同表达。这项研究还揭示了突变细胞中错误表达的下游信号转导过程,当应用工程材料替代传统线索在肌肉萎缩症中灌输细胞行为时,这可能会导致疾病的发生。总之,这些数据支持了这样一种观点,即层压板 A 对于从细胞外环境到基因组的适当细胞机械传导以及层压板 A 相关肌营养不良症致病机制中的肌肉细胞分化损伤至关重要。
{"title":"Evaluation of lamin A/C mechanotransduction under different surface topography in LMNA related muscular dystrophy.","authors":"Subarna Dutta, T Muraganadan, Madavan Vasudevan","doi":"10.1002/cm.21895","DOIUrl":"https://doi.org/10.1002/cm.21895","url":null,"abstract":"<p><p>Most of the single point mutations of the LMNA gene are associated with distinct muscular dystrophies, marked by heterogenous phenotypes but primarily the loss and symmetric weakness of skeletal muscle tissue. The molecular mechanism and phenotype-genotype relationships in these muscular dystrophies are poorly understood. An effort has been here to delineating the adaptation of mechanical inputs into biological response by mutant cells of lamin A associated muscular dystrophy. In this study, we implement engineered smooth and pattern surfaces of particular young modulus to mimic muscle physiological range. Using fluorescence and atomic force microscopy, we present distinct architecture of the actin filament along with abnormally distorted cell and nuclear shape in mutants, which showed a tendency to deviate from wild type cells. Topographic features of pattern surface antagonize the binding of the cell with it. Correspondingly, from the analysis of genome wide expression data in wild type and mutant cells, we report differential expression of the gene products of the structural components of cell adhesion as well as LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes. This study also reveals mis expressed downstream signaling processes in mutant cells, which could potentially lead to onset of the disease upon the application of engineered materials to substitute the role of conventional cues in instilling cellular behaviors in muscular dystrophies. Collectively, these data support the notion that lamin A is essential for proper cellular mechanotransduction from extracellular environment to the genome and impairment of the muscle cell differentiation in the pathogenic mechanism for lamin A associated muscular dystrophy.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using ALS to understand profilin 1's diverse roles in cellular physiology. 利用 ALS 了解 profilin 1 在细胞生理学中的各种作用。
Pub Date : 2024-07-26 DOI: 10.1002/cm.21896
Halli L Lindamood, Tatiana M Liu, Tracy-Ann Read, Eric A Vitriol

Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.

profilin 是一种肌动蛋白单体结合蛋白,人们对它在肌动蛋白聚合中的作用已经研究了近 50 年。虽然现在人们对它的主要生化特征已经有了很好的了解,但对于肌动蛋白如何控制细胞内的各种过程仍有许多疑问。profilin 的失调与多种人类疾病有关,包括神经变性、炎症性疾病、心脏病和癌症。例如,profilin 1 基因(PFN1)突变可导致肌萎缩性脊髓侧索硬化症(ALS),但驱动神经变性的确切机制仍不清楚。虽然最初的研究认为蛋白稳态和肌动蛋白细胞骨架缺陷是主要的病理途径,但后来发现了 PFN1 的多种新功能,这些功能也可能导致 ALS,包括调节核细胞质转运、应激颗粒、线粒体和微管。在此,我们将回顾这些新发现的 PFN1 作用,推测它们对 ALS 的贡献,并讨论肌动蛋白的缺陷如何导致这些过程。通过了解 profilin 1 在渐冻症发病机制中的参与,我们希望能深入了解这种对细胞生理学有重大影响的功能复杂的蛋白质。
{"title":"Using ALS to understand profilin 1's diverse roles in cellular physiology.","authors":"Halli L Lindamood, Tatiana M Liu, Tracy-Ann Read, Eric A Vitriol","doi":"10.1002/cm.21896","DOIUrl":"https://doi.org/10.1002/cm.21896","url":null,"abstract":"<p><p>Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytoskeleton Spotlight: Artem Fokin, PhD. 细胞骨架聚焦:Artem Fokin 博士。
Pub Date : 2024-07-24 DOI: 10.1002/cm.21899
Artem I Fokin
{"title":"Cytoskeleton Spotlight: Artem Fokin, PhD.","authors":"Artem I Fokin","doi":"10.1002/cm.21899","DOIUrl":"https://doi.org/10.1002/cm.21899","url":null,"abstract":"","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cytoskeleton (Hoboken, N.J.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1