Pei-Ju Liu, Kazi Sayeeda, Cindy Zhuang, Mira Krendel
Mammalian kidneys are responsible for removing metabolic waste and maintaining fluid and electrolyte homeostasis via selective filtration. One of the proteins closely linked to selective renal filtration is myosin 1e (Myo1e), an actin-dependent molecular motor found in the specialized kidney epithelial cells involved in the assembly and maintenance of the renal filter. Point mutations in the gene encoding Myo1e, MYO1E, have been linked to familial kidney disease, and Myo1e knockout in mice leads to the disruption of selective filtration. In this review, we discuss the role of the actin cytoskeleton in renal filtration, the known and hypothesized functions of Myo1e, and the possible explanations for the impact of MYO1E mutations on renal function.
哺乳动物的肾脏负责清除代谢废物,并通过选择性过滤维持体液和电解质的平衡。肌球蛋白 1e(Myo1e)是与选择性肾过滤密切相关的蛋白质之一,肌球蛋白 1e 是一种依赖肌动蛋白的分子马达,存在于特化的肾上皮细胞中,参与肾过滤器的组装和维护。编码 Myo1e(MYO1E)基因的点突变与家族性肾病有关,小鼠 Myo1e 基因敲除会导致选择性滤过功能紊乱。在这篇综述中,我们将讨论肌动蛋白细胞骨架在肾过滤中的作用、Myo1e 的已知和假设功能以及 MYO1E 基因突变对肾功能影响的可能解释。
{"title":"Roles of myosin 1e and the actin cytoskeleton in kidney functions and familial kidney disease.","authors":"Pei-Ju Liu, Kazi Sayeeda, Cindy Zhuang, Mira Krendel","doi":"10.1002/cm.21861","DOIUrl":"10.1002/cm.21861","url":null,"abstract":"<p><p>Mammalian kidneys are responsible for removing metabolic waste and maintaining fluid and electrolyte homeostasis via selective filtration. One of the proteins closely linked to selective renal filtration is myosin 1e (Myo1e), an actin-dependent molecular motor found in the specialized kidney epithelial cells involved in the assembly and maintenance of the renal filter. Point mutations in the gene encoding Myo1e, MYO1E, have been linked to familial kidney disease, and Myo1e knockout in mice leads to the disruption of selective filtration. In this review, we discuss the role of the actin cytoskeleton in renal filtration, the known and hypothesized functions of Myo1e, and the possible explanations for the impact of MYO1E mutations on renal function.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brooke E Waechtler, Rajan Jayasankar, Emma P Morin, Douglas N Robinson
The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.
细胞改变形状的能力是细胞分裂、运动、迁移和组织形成等许多细胞过程的核心特征。细胞在细胞膜下构建了一个收缩蛋白网络,形成皮层,这些成分的重组直接促成了细胞形状的改变。人们越来越希望模仿这些细胞形状变化来帮助创建合成细胞。因此,基于膜的重组实验蓬勃发展,进一步加深了我们对细胞在这些过程中使用的最小成分的了解。虽然生化方法增加了我们对肌动蛋白、肌球蛋白 II 和肌动蛋白相关蛋白的了解,但由于可以分析膜-皮层的相互作用,使用基于膜的重组系统进一步扩大了我们对肌动蛋白结构和功能的了解。在本综述中,我们将重点介绍基于膜的重组技术的最新发展。我们研究了目前关于再现不同肌动蛋白结构和功能所需的最小成分的研究结果,以及它们与皮层对细胞机械特性的影响之间的关系。我们还探讨了计算模型与湿实验室实验的协同处理如何增强我们对这些特性的理解。最后,我们强调了基于膜的重组实验所固有的优势和挑战,从精确控制系统的优势到将这些发现整合到复杂的细胞环境中的困难。
{"title":"Benefits and challenges of reconstituting the actin cortex.","authors":"Brooke E Waechtler, Rajan Jayasankar, Emma P Morin, Douglas N Robinson","doi":"10.1002/cm.21855","DOIUrl":"10.1002/cm.21855","url":null,"abstract":"<p><p>The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140195233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sadia T Islam, Sepideh Cheheltani, Catherine Cheng, Velia M Fowler
The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells. The meridional row cells further differentiate and elongate into newly formed fiber cells that maintain hexagonal cell shape and ordered packing. In other tissues, actomyosin contractility regulates cell hexagonal packing geometry during epithelial tissue morphogenesis. Here, we use the mouse lens as a model to study the effect of two human disease-related non-muscle myosin IIA (NMIIA) mutations on lens cellular organization during fiber cell morphogenesis and differentiation. We studied genetic knock-in heterozygous mice with NMIIA-R702C motor domain or NMIIA-D1424N rod domain mutations. We observed that while one allele of NMIIA-R702C has no impact on lens meridional row epithelial cell shape and packing, one allele of the NMIIA-D1424N mutation can cause localized defects in cell hexagonal packing. Similarly, one allele of NMIIA-R702C motor domain mutation does not affect lens fiber cell organization while the NMIIA-D1424N mutant proteins disrupt fiber cell organization and packing. Our work demonstrates that disease-related NMIIA rod domain mutations (D1424N or E1841K) disrupt mouse lens fiber cell morphogenesis and differentiation.
{"title":"Disease-related non-muscle myosin IIA D1424N rod domain mutation, but not R702C motor domain mutation, disrupts mouse ocular lens fiber cell alignment and hexagonal packing.","authors":"Sadia T Islam, Sepideh Cheheltani, Catherine Cheng, Velia M Fowler","doi":"10.1002/cm.21853","DOIUrl":"10.1002/cm.21853","url":null,"abstract":"<p><p>The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells. The meridional row cells further differentiate and elongate into newly formed fiber cells that maintain hexagonal cell shape and ordered packing. In other tissues, actomyosin contractility regulates cell hexagonal packing geometry during epithelial tissue morphogenesis. Here, we use the mouse lens as a model to study the effect of two human disease-related non-muscle myosin IIA (NMIIA) mutations on lens cellular organization during fiber cell morphogenesis and differentiation. We studied genetic knock-in heterozygous mice with NMIIA-R702C motor domain or NMIIA-D1424N rod domain mutations. We observed that while one allele of NMIIA-R702C has no impact on lens meridional row epithelial cell shape and packing, one allele of the NMIIA-D1424N mutation can cause localized defects in cell hexagonal packing. Similarly, one allele of NMIIA-R702C motor domain mutation does not affect lens fiber cell organization while the NMIIA-D1424N mutant proteins disrupt fiber cell organization and packing. Our work demonstrates that disease-related NMIIA rod domain mutations (D1424N or E1841K) disrupt mouse lens fiber cell morphogenesis and differentiation.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigated the impact of the phosphomimetic (Ser15 → Asp15) myosin regulatory light chain (S15D-RLC) on the Super-Relaxed (SRX) state of myosin using previously characterized transgenic (Tg) S15D-D166V rescue mice, comparing them to the Hypertrophic Cardiomyopathy (HCM) Tg-D166V model and wild-type (WT) RLC mice. In the Tg-D166V model, we observed a disruption of the SRX state, resulting in a transition from SRX to DRX (Disordered Relaxed) state, which explains the hypercontractility of D166V-mutated myosin motors. The presence of the S15D moiety in Tg-S15D-D166V mice restored the SRX/DRX balance to levels comparable to Tg-WT, thus mitigating the hypercontractile behavior associated with the HCM-D166V mutation. Additionally, we investigated the impact of delivering the S15D-RLC molecule to the hearts of Tg-D166V mice via adeno-associated virus (AAV9) and compared their condition to AAV9-empty vector-injected or non-injected Tg-D166V animals. Tg-D166V mice injected with AAV9 S15D-RLC exhibited a significantly higher proportion of myosin heads in the SRX state compared to those injected with AAV9 empty vector or left non-injected. No significant effect was observed in Tg-WT hearts treated similarly. These findings suggest that AAV9-delivered phosphomimetic S15D-RLC modality mitigates the abnormal Tg-D166V phenotype without impacting the normal function of Tg-WT hearts. Global longitudinal strain analysis supported these observations, indicating that the S15D moiety can alleviate the HCM-D166V phenotype by restoring SRX stability and the SRX ↔ DRX equilibrium.
{"title":"Mechanistic basis for rescuing hypertrophic cardiomyopathy with myosin regulatory light chain phosphorylation.","authors":"Jingsheng Liang, Katarzyna Kazmierczak, Melanie Veerasammy, Sunil Yadav, Lauro Takeuchi, Rosemeire Kanashiro-Takeuchi, Danuta Szczesna-Cordary","doi":"10.1002/cm.21854","DOIUrl":"10.1002/cm.21854","url":null,"abstract":"<p><p>We investigated the impact of the phosphomimetic (Ser15 → Asp15) myosin regulatory light chain (S15D-RLC) on the Super-Relaxed (SRX) state of myosin using previously characterized transgenic (Tg) S15D-D166V rescue mice, comparing them to the Hypertrophic Cardiomyopathy (HCM) Tg-D166V model and wild-type (WT) RLC mice. In the Tg-D166V model, we observed a disruption of the SRX state, resulting in a transition from SRX to DRX (Disordered Relaxed) state, which explains the hypercontractility of D166V-mutated myosin motors. The presence of the S15D moiety in Tg-S15D-D166V mice restored the SRX/DRX balance to levels comparable to Tg-WT, thus mitigating the hypercontractile behavior associated with the HCM-D166V mutation. Additionally, we investigated the impact of delivering the S15D-RLC molecule to the hearts of Tg-D166V mice via adeno-associated virus (AAV9) and compared their condition to AAV9-empty vector-injected or non-injected Tg-D166V animals. Tg-D166V mice injected with AAV9 S15D-RLC exhibited a significantly higher proportion of myosin heads in the SRX state compared to those injected with AAV9 empty vector or left non-injected. No significant effect was observed in Tg-WT hearts treated similarly. These findings suggest that AAV9-delivered phosphomimetic S15D-RLC modality mitigates the abnormal Tg-D166V phenotype without impacting the normal function of Tg-WT hearts. Global longitudinal strain analysis supported these observations, indicating that the S15D moiety can alleviate the HCM-D166V phenotype by restoring SRX stability and the SRX ↔ DRX equilibrium.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johannes N Greve, Frederic V Schwäbe, Manuel H Taft, Dietmar J Manstein
Familial hypertrophic cardiomyopathy (HCM) affects .2% of the world's population and is inherited in an autosomal dominant manner. Mutations in cardiac α-actin are the cause in 1%-5% of all observed cases. Here, we describe the recombinant production, purification, and characterization of the HCM-linked cardiac α-actin variants p.A21V and p.D26N. Mass spectrometric analysis of the initially purified recombinant cardiac α-actin variants and wild-type protein revealed improper N-terminal processing in the Spodoptera frugiperda (Sf-9) insect cell system, compromising the labeling of the protein with fluorescent probes for biochemical studies. Therefore, we produced N-terminal deletion mutants lacking the N-terminal cysteine (ΔC2). The ΔC2 wild-type construct behaved similar to porcine cardiac α-actin purified from native Sus scrofa heart tissue and all ΔC2 constructs showed improved fluorescent labeling. Further analysis of untruncated and ΔC2 constructs showed that while neither the A21V nor the D26N mutation affects nucleotide binding, they cause a similar slowing of the rate of filament formation as well as a reduction in the thermal stability of monomeric and filamentous cardiac α-actin. In vitro motility assays and transient-kinetic studies probing the interaction of the actin variants with cardiac β-myosin revealed perturbed actomyosin interactions and a reduced motile activity for the p.D26N variant. Addition of the small molecule effector EMD 57033, which targets cardiac β-myosin, rescued the approximately 40% drop in velocity observed with the p.D26N constructs and activated the motile activity of wild-type and p.D26N to the same level of 1100 nm s-1 .
{"title":"Biochemical characterization of cardiac α-actin mutations A21V and D26N implicated in hypertrophic cardiomyopathy.","authors":"Johannes N Greve, Frederic V Schwäbe, Manuel H Taft, Dietmar J Manstein","doi":"10.1002/cm.21852","DOIUrl":"https://doi.org/10.1002/cm.21852","url":null,"abstract":"<p><p>Familial hypertrophic cardiomyopathy (HCM) affects .2% of the world's population and is inherited in an autosomal dominant manner. Mutations in cardiac α-actin are the cause in 1%-5% of all observed cases. Here, we describe the recombinant production, purification, and characterization of the HCM-linked cardiac α-actin variants p.A21V and p.D26N. Mass spectrometric analysis of the initially purified recombinant cardiac α-actin variants and wild-type protein revealed improper N-terminal processing in the Spodoptera frugiperda (Sf-9) insect cell system, compromising the labeling of the protein with fluorescent probes for biochemical studies. Therefore, we produced N-terminal deletion mutants lacking the N-terminal cysteine (ΔC2). The ΔC2 wild-type construct behaved similar to porcine cardiac α-actin purified from native Sus scrofa heart tissue and all ΔC2 constructs showed improved fluorescent labeling. Further analysis of untruncated and ΔC2 constructs showed that while neither the A21V nor the D26N mutation affects nucleotide binding, they cause a similar slowing of the rate of filament formation as well as a reduction in the thermal stability of monomeric and filamentous cardiac α-actin. In vitro motility assays and transient-kinetic studies probing the interaction of the actin variants with cardiac β-myosin revealed perturbed actomyosin interactions and a reduced motile activity for the p.D26N variant. Addition of the small molecule effector EMD 57033, which targets cardiac β-myosin, rescued the approximately 40% drop in velocity observed with the p.D26N constructs and activated the motile activity of wild-type and p.D26N to the same level of 1100 nm s<sup>-1</sup> .</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah A Almuhanna, Humayra Z Oishi, Kar Men Lee, Pamela E Hoppe
The M-line of striated muscle is a complex structure that anchors myosin-containing thick filaments and also participates in signaling and proteostasis. While the physical associations among many M-line components have been defined, the mechanism of thick filament attachment is not completely understood. In Caenorhabditis elegans, myosin A is essential for viability and forms the site of M-line attachment at the center of the filament, whereas myosin B forms the filament arms. Using a mutant myosin A that forms ectopic filaments, we examined interactions between myosin A and M-line proteins in intact muscle cells. Ectopic myosin A recruits the giant kinase UNC-89/obscurin, a presumed scaffolding protein, in an interaction that requires the zinc-finger protein UNC-98, but not UNC-82/NUAK, UNC-97/PINCH, or UNC-96. In myosin A mutants, UNC-89/obscurin patterning is highly defective in embryos and adults. A chimeric myosin containing 169 residues of the myosin A C-terminal rod, coincident with the UNC-98/ZnF binding site, is sufficient for colocalization of UNC-89/obscurin and UNC-98/ZnF in M-line structures whereas a myosin chimera lacking these residues colocalizes with UNC-89/obscurin in M-lines that lack UNC-98. Thus, at least two myosin A rod regions contribute independently to M-line organization. We hypothesize that these M-line-organizing functions correspond to the essential "filament initiation function" performed by this isoform.
横纹肌的 M 线是一种复杂的结构,它锚定了含肌球蛋白的粗丝,同时还参与信号传递和蛋白稳态。虽然许多 M 线成分之间的物理联系已经确定,但粗丝附着的机制还不完全清楚。在秀丽隐杆线虫中,肌球蛋白 A 对存活至关重要,它在粗丝中心形成 M 线附着点,而肌球蛋白 B 则形成粗丝臂。利用能形成异位丝的突变体肌球蛋白 A,我们研究了完整肌肉细胞中肌球蛋白 A 和 M 线蛋白之间的相互作用。异位肌球蛋白A招募巨激酶UNC-89/obscurin(一种假定的支架蛋白),这种相互作用需要锌指蛋白UNC-98,但不需要UNC-82/NUAK、UNC-97/PINCH或UNC-96。在肌球蛋白 A 突变体中,胚胎和成体中的 UNC-89/obscurin 模式高度缺陷。含有 169 个肌球蛋白 A C 端杆残基(与 UNC-98/ZnF 结合位点重合)的嵌合肌球蛋白足以在 M 线结构中实现 UNC-89/obscurin 和 UNC-98/ZnF 的共定位,而缺乏这些残基的肌球蛋白嵌合体则在缺乏 UNC-98 的 M 线中与 UNC-89/obscurin 共定位。因此,至少有两个肌球蛋白 A 杆部区域对 M 线组织做出了独立贡献。我们推测,这些 M 线组织功能与该同工酶的基本 "丝启动功能 "相对应。
{"title":"Sequences in the myosin A rod interact with UNC-89/obscurin and the zinc-finger protein UNC-98 during thick filament assembly and M-line formation in C. elegans striated muscle.","authors":"Sarah A Almuhanna, Humayra Z Oishi, Kar Men Lee, Pamela E Hoppe","doi":"10.1002/cm.21846","DOIUrl":"https://doi.org/10.1002/cm.21846","url":null,"abstract":"<p><p>The M-line of striated muscle is a complex structure that anchors myosin-containing thick filaments and also participates in signaling and proteostasis. While the physical associations among many M-line components have been defined, the mechanism of thick filament attachment is not completely understood. In Caenorhabditis elegans, myosin A is essential for viability and forms the site of M-line attachment at the center of the filament, whereas myosin B forms the filament arms. Using a mutant myosin A that forms ectopic filaments, we examined interactions between myosin A and M-line proteins in intact muscle cells. Ectopic myosin A recruits the giant kinase UNC-89/obscurin, a presumed scaffolding protein, in an interaction that requires the zinc-finger protein UNC-98, but not UNC-82/NUAK, UNC-97/PINCH, or UNC-96. In myosin A mutants, UNC-89/obscurin patterning is highly defective in embryos and adults. A chimeric myosin containing 169 residues of the myosin A C-terminal rod, coincident with the UNC-98/ZnF binding site, is sufficient for colocalization of UNC-89/obscurin and UNC-98/ZnF in M-line structures whereas a myosin chimera lacking these residues colocalizes with UNC-89/obscurin in M-lines that lack UNC-98. Thus, at least two myosin A rod regions contribute independently to M-line organization. We hypothesize that these M-line-organizing functions correspond to the essential \"filament initiation function\" performed by this isoform.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael E Garone, Sharon E Chase, Chunling Zhang, Mira Krendel
Metastasis of breast cancer cells to distant tissue sites is responsible for the majority of deaths associated with breast cancer. Previously we have examined the role of class I myosin motor protein, myosin 1e (myo1e), in cancer metastasis using the Mouse Mammary Tumor Virus-Polyoma Middle T Antigen (MMTV-PyMT) mouse model. Mice deficient in myo1e formed tumors with a more differentiated phenotype relative to the wild-type mice and formed no detectable lung metastases. In the current study, we investigated how the absence of myo1e affects cell migration and invasion in vitro, using the highly invasive and migratory breast cancer cell line, 4T1. 4T1 cells deficient in myo1e exhibited an altered morphology and slower rates of migration in the wound-healing and transwell migration assays compared to the WT 4T1 cells. While integrin trafficking and Golgi reorientation did not appear to be altered upon myo1e loss, we observed lower rates of focal adhesion disassembly in myo1e-deficient cells, which could help explain the cell migration defect.
乳腺癌细胞向远处组织转移是造成乳腺癌相关死亡的主要原因。此前,我们利用小鼠乳腺肿瘤病毒-多瘤中间 T 抗原(MMTV-PyMT)小鼠模型研究了 I 类肌球蛋白运动蛋白肌球蛋白 1e(myo1e)在癌症转移中的作用。与野生型小鼠相比,缺失 myo1e 的小鼠形成的肿瘤表型分化程度更高,而且不会形成可检测到的肺转移灶。在目前的研究中,我们利用高侵袭性和高迁移性乳腺癌细胞系 4T1 研究了 myo1e 的缺失如何影响体外细胞迁移和侵袭。与 WT 4T1 细胞相比,缺失 myo1e 的 4T1 细胞在伤口愈合和跨孔迁移试验中表现出形态改变和迁移速度减慢。虽然整合素的贩运和高尔基体的重新定向在myo1e缺失后似乎没有发生改变,但我们观察到myo1e缺失的细胞中局灶粘附的解体率较低,这可能有助于解释细胞迁移缺陷。
{"title":"Myosin 1e deficiency affects migration of 4T1 breast cancer cells.","authors":"Michael E Garone, Sharon E Chase, Chunling Zhang, Mira Krendel","doi":"10.1002/cm.21819","DOIUrl":"10.1002/cm.21819","url":null,"abstract":"<p><p>Metastasis of breast cancer cells to distant tissue sites is responsible for the majority of deaths associated with breast cancer. Previously we have examined the role of class I myosin motor protein, myosin 1e (myo1e), in cancer metastasis using the Mouse Mammary Tumor Virus-Polyoma Middle T Antigen (MMTV-PyMT) mouse model. Mice deficient in myo1e formed tumors with a more differentiated phenotype relative to the wild-type mice and formed no detectable lung metastases. In the current study, we investigated how the absence of myo1e affects cell migration and invasion in vitro, using the highly invasive and migratory breast cancer cell line, 4T1. 4T1 cells deficient in myo1e exhibited an altered morphology and slower rates of migration in the wound-healing and transwell migration assays compared to the WT 4T1 cells. While integrin trafficking and Golgi reorientation did not appear to be altered upon myo1e loss, we observed lower rates of focal adhesion disassembly in myo1e-deficient cells, which could help explain the cell migration defect.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138886786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NaTasha R Schiller, Sarah A Almuhanna, Pamela E Hoppe
The mechanisms that ensure proper assembly, activity, and turnover of myosin II filaments are fundamental to a diverse range of cellular processes. In Caenorhabditis elegans striated muscle, thick filaments contain two myosins that are functionally distinct and spatially segregated. Using transgenic double mutants, we demonstrate that the ability of increased myosin A expression to restore muscle structure and movement in myosin B mutants requires UNC-82/NUAK kinase activity. Myosin B function appears unaffected in the kinase-impaired unc-82(e1220) mutant: the recessive antimorphic effects on early assembly of paramyosin and myosin A in this mutant are counteracted by increased myosin B expression and exacerbated by loss of myosin B. Using chimeric myosins and motility assays, we mapped the region of myosin A that requires UNC-82 activity to a 531-amino-acid region of the coiled-coil rod. This region includes the 264-amino-acid Region 1, which is sufficient in chimeric myosins to rescue the essential filament-initiation function of myosin A, as well as two sites that interact with myosin head domains in the Interacting Heads Motif. A specific physical interaction between myosin A and UNC-82::GFP is supported by GFP labeling of ectopic myosin A filaments but not thin filaments. We hypothesize that UNC-82 regulates assembly competence of myosin A during parallel assembly in the filament arms.
{"title":"UNC-82/NUAK kinase is required by myosin A, but not myosin B, to assemble and function in the thick filament arms of C. elegans striated muscle.","authors":"NaTasha R Schiller, Sarah A Almuhanna, Pamela E Hoppe","doi":"10.1002/cm.21807","DOIUrl":"10.1002/cm.21807","url":null,"abstract":"<p><p>The mechanisms that ensure proper assembly, activity, and turnover of myosin II filaments are fundamental to a diverse range of cellular processes. In Caenorhabditis elegans striated muscle, thick filaments contain two myosins that are functionally distinct and spatially segregated. Using transgenic double mutants, we demonstrate that the ability of increased myosin A expression to restore muscle structure and movement in myosin B mutants requires UNC-82/NUAK kinase activity. Myosin B function appears unaffected in the kinase-impaired unc-82(e1220) mutant: the recessive antimorphic effects on early assembly of paramyosin and myosin A in this mutant are counteracted by increased myosin B expression and exacerbated by loss of myosin B. Using chimeric myosins and motility assays, we mapped the region of myosin A that requires UNC-82 activity to a 531-amino-acid region of the coiled-coil rod. This region includes the 264-amino-acid Region 1, which is sufficient in chimeric myosins to rescue the essential filament-initiation function of myosin A, as well as two sites that interact with myosin head domains in the Interacting Heads Motif. A specific physical interaction between myosin A and UNC-82::GFP is supported by GFP labeling of ectopic myosin A filaments but not thin filaments. We hypothesize that UNC-82 regulates assembly competence of myosin A during parallel assembly in the filament arms.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138178175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Actomyosin contractility originating from interactions between F-actin and myosin motors in the actin cytoskeleton generates mechanical forces and drives a wide range of cellular processes including cell migration and cytokinesis. To probe the interactions between F-actin and myosin motors, the myosin motility assay has been popularly employed, which consists of myosin heads attached to a glass surface and F-actins gliding on the surface via interactions with the heads. Several experiments have shown that F-actins move in a collective fashion due to volume-exclusion effects between neighboring F-actins. Furthermore, Computational models have shown how changes in key parameters lead to diverse pattern formation in motility assay. However, in most of the computational models, myosin motors were implicitly considered by applying a constant propulsion force to filaments to reduce computational cost. This simplification limits the physiological relevance of the insights provided by the models and potentially leads to artifacts. In this study, we employed an agent-based computational model for the motility assay with explicit immobile motors interacting with filaments. We rigorously account for the kinetics of myosin motors including the force-velocity relationship for walking and the binding and unbinding behaviors. We probed the effects of the length, rigidity, and concentration of filaments and repulsive strength on collective movements and pattern formation. It was found that four distinct types of structures-homogeneous networks, flocks, bands, and rings-emerged as a result of collisions between gliding filaments. We further analyzed the frequency and morphology of these structures and the curvature, alignment, and rotational motions of filaments. Our study provides better insights into the origin and properties of patterns formed by gliding filaments beyond what was shown before.
{"title":"Emergence of diverse patterns driven by molecular motors in the motility assay.","authors":"Brandon Slater, Wonyeong Jung, Taeyoon Kim","doi":"10.1002/cm.21808","DOIUrl":"10.1002/cm.21808","url":null,"abstract":"<p><p>Actomyosin contractility originating from interactions between F-actin and myosin motors in the actin cytoskeleton generates mechanical forces and drives a wide range of cellular processes including cell migration and cytokinesis. To probe the interactions between F-actin and myosin motors, the myosin motility assay has been popularly employed, which consists of myosin heads attached to a glass surface and F-actins gliding on the surface via interactions with the heads. Several experiments have shown that F-actins move in a collective fashion due to volume-exclusion effects between neighboring F-actins. Furthermore, Computational models have shown how changes in key parameters lead to diverse pattern formation in motility assay. However, in most of the computational models, myosin motors were implicitly considered by applying a constant propulsion force to filaments to reduce computational cost. This simplification limits the physiological relevance of the insights provided by the models and potentially leads to artifacts. In this study, we employed an agent-based computational model for the motility assay with explicit immobile motors interacting with filaments. We rigorously account for the kinetics of myosin motors including the force-velocity relationship for walking and the binding and unbinding behaviors. We probed the effects of the length, rigidity, and concentration of filaments and repulsive strength on collective movements and pattern formation. It was found that four distinct types of structures-homogeneous networks, flocks, bands, and rings-emerged as a result of collisions between gliding filaments. We further analyzed the frequency and morphology of these structures and the curvature, alignment, and rotational motions of filaments. Our study provides better insights into the origin and properties of patterns formed by gliding filaments beyond what was shown before.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72016333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01Epub Date: 2022-07-22DOI: 10.1002/cm.21715
Paul Trevorrow, Peter Gunning
{"title":"An interview with Peter Gunning - School of Medical Sciences, UNSW Sydney, Australia.","authors":"Paul Trevorrow, Peter Gunning","doi":"10.1002/cm.21715","DOIUrl":"https://doi.org/10.1002/cm.21715","url":null,"abstract":"","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":"79 4-5","pages":"24-25"},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40488764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}