Kruyanshi Master, Lamyae El Khalki, Mekki Bayachou, Khalid Sossey-Alaoui
Breast cancer, a prevalent global health concern, has sparked extensive research efforts, particularly focusing on triple negative breast cancer (TNBC), a subtype lacking estrogen receptor (ER), progesterone receptor, and epidermal growth factor receptor. TNBC's aggressive nature and resistance to hormone-based therapies heightens the risk of tumor progression and recurrence. Actin-binding proteins, specifically WAVE3 from the Wiskott-Aldrich syndrome protein (WASP) family, have emerged as major drivers in understanding TNBC biology. This review delves into the intricate molecular makeup of TNBC, shedding light on actin's fundamental role in cellular processes. Actin, a structural element in the cytoskeleton, regulates various cellular pathways essential for homeostasis. Its dynamic nature enables functions such as cell migration, motility, intracellular transport, cell division, and signal transduction. Actin-binding proteins, including WAVE3, play pivotal roles in these processes. WAVE3, a member of the WASP family, remains the focus of this review due to its potential involvement in TNBC progression. While actin-binding proteins are studied for their roles in healthy cellular cycles, their significance in TNBC remains underexplored. This review aims to discuss WAVE3's impact on TNBC, exploring its molecular makeup, functions, and significance in tumor progression. The intricate structure of WAVE3, featuring elements like the verprolin-cofilin-acidic domain and regulatory elements, plays a crucial role in regulating actin dynamics. Dysregulation of WAVE3 in TNBC has been linked to enhanced cell migration, invasion, extracellular matrix remodeling, epithelial-mesenchymal transition, tumor proliferation, and therapeutic resistance. Understanding the role of actin-binding proteins in cancer biology has potential clinical implications, making them potential prognostic biomarkers and promising therapeutic targets. The review emphasizes the need for further research into actin-binding proteins' clinical applications, diagnostic value, and therapeutic interventions. In conclusion, this comprehensive review explores the complex interplay between actin and actin-binding proteins, with special emphasis on WAVE3, in the context of TNBC. By unraveling the molecular intricacies, structural characteristics, and functional significance, the review paves the way for future research directions, clinical applications, and potential therapeutic strategies in the challenging landscape of TNBC.
{"title":"Role of WAVE3 as an of actin binding protein in the pathology of triple negative breast cancer.","authors":"Kruyanshi Master, Lamyae El Khalki, Mekki Bayachou, Khalid Sossey-Alaoui","doi":"10.1002/cm.21898","DOIUrl":"https://doi.org/10.1002/cm.21898","url":null,"abstract":"<p><p>Breast cancer, a prevalent global health concern, has sparked extensive research efforts, particularly focusing on triple negative breast cancer (TNBC), a subtype lacking estrogen receptor (ER), progesterone receptor, and epidermal growth factor receptor. TNBC's aggressive nature and resistance to hormone-based therapies heightens the risk of tumor progression and recurrence. Actin-binding proteins, specifically WAVE3 from the Wiskott-Aldrich syndrome protein (WASP) family, have emerged as major drivers in understanding TNBC biology. This review delves into the intricate molecular makeup of TNBC, shedding light on actin's fundamental role in cellular processes. Actin, a structural element in the cytoskeleton, regulates various cellular pathways essential for homeostasis. Its dynamic nature enables functions such as cell migration, motility, intracellular transport, cell division, and signal transduction. Actin-binding proteins, including WAVE3, play pivotal roles in these processes. WAVE3, a member of the WASP family, remains the focus of this review due to its potential involvement in TNBC progression. While actin-binding proteins are studied for their roles in healthy cellular cycles, their significance in TNBC remains underexplored. This review aims to discuss WAVE3's impact on TNBC, exploring its molecular makeup, functions, and significance in tumor progression. The intricate structure of WAVE3, featuring elements like the verprolin-cofilin-acidic domain and regulatory elements, plays a crucial role in regulating actin dynamics. Dysregulation of WAVE3 in TNBC has been linked to enhanced cell migration, invasion, extracellular matrix remodeling, epithelial-mesenchymal transition, tumor proliferation, and therapeutic resistance. Understanding the role of actin-binding proteins in cancer biology has potential clinical implications, making them potential prognostic biomarkers and promising therapeutic targets. The review emphasizes the need for further research into actin-binding proteins' clinical applications, diagnostic value, and therapeutic interventions. In conclusion, this comprehensive review explores the complex interplay between actin and actin-binding proteins, with special emphasis on WAVE3, in the context of TNBC. By unraveling the molecular intricacies, structural characteristics, and functional significance, the review paves the way for future research directions, clinical applications, and potential therapeutic strategies in the challenging landscape of TNBC.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wan J Gan, Rabina Giri, Jakob Begun, Helen E Abud, Edna C Hardeman, Peter W Gunning, Alpha S Yap, Ivar Noordstra
Tissue tension encompasses the mechanical forces exerted on solid tissues within animal bodies, originating from various sources such as cellular contractility, interactions with neighboring cells and the extracellular matrix. Emerging evidence indicates that an imbalance in such forces can influence structural organization, homeostasis, and potentially contribute to disease. For instance, heightened tissue tension can impede apical cell extrusion, leading to the retention of apoptotic or transformed cells. In this study, we investigate the potential role of adenomatous polyposis coli (APC) in modulating tissue tension. Our findings reveal that expression of an APC truncation mutant elevates epithelial tension via the RhoA/ROCK pathway. This elevation induces morphological alterations and hampers apoptotic cell extrusion in cultured epithelial cells and organoids, both of which could be mitigated by pharmacologically restoring the tissue tension. This raises the possibility that APC mutations may exert pathogenetic effects by altering tissue mechanics.
{"title":"A truncation mutant of adenomatous polyposis coli impairs apical cell extrusion through elevated epithelial tissue tension.","authors":"Wan J Gan, Rabina Giri, Jakob Begun, Helen E Abud, Edna C Hardeman, Peter W Gunning, Alpha S Yap, Ivar Noordstra","doi":"10.1002/cm.21893","DOIUrl":"https://doi.org/10.1002/cm.21893","url":null,"abstract":"<p><p>Tissue tension encompasses the mechanical forces exerted on solid tissues within animal bodies, originating from various sources such as cellular contractility, interactions with neighboring cells and the extracellular matrix. Emerging evidence indicates that an imbalance in such forces can influence structural organization, homeostasis, and potentially contribute to disease. For instance, heightened tissue tension can impede apical cell extrusion, leading to the retention of apoptotic or transformed cells. In this study, we investigate the potential role of adenomatous polyposis coli (APC) in modulating tissue tension. Our findings reveal that expression of an APC truncation mutant elevates epithelial tension via the RhoA/ROCK pathway. This elevation induces morphological alterations and hampers apoptotic cell extrusion in cultured epithelial cells and organoids, both of which could be mitigated by pharmacologically restoring the tissue tension. This raises the possibility that APC mutations may exert pathogenetic effects by altering tissue mechanics.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina Karakosta, Martina Samiotaki, George Panayotou, Dimitrios Papakonstantinou, Marilita M Moschos
Introduction: Actin has been implicated in lens opacification; however, the specific actin-related pathways involved in cataracts remain unelucidated. In this study, actin-related proteome changes and signaling pathways involved in the development of cataracts were evaluated.
Methods: The anterior capsule and phacoemulsification (phaco) cassette contents were collected during cataract surgery from 11 patients with diabetic cataract (DC), 12 patients with age-related cataract (ARC), and seven patients with post-vitrectomy cataract (PVC). Untargeted, global identification and quantification of proteins was performed through liquid chromatography-mass spectrometry with the data-independent acquisition (DIA).
Results: In phaco cassette samples, proteins with significantly lower expression in ARC than in DC and PVC were involved in various pathways, including actin binding, actin cytoskeleton reorganization, actin filament capping, cortical actin cytoskeleton organization, and small GTPase-mediated signal transduction pathways. In anterior capsules, proteins with significantly lower expression in ARC than in DC and PVC were involved in actin binding and actin cytoskeleton reorganization pathways.
Conclusion: Actin cytoskeleton and actin-binding proteins are involved in lens fiber elongation and differentiation. Rho GTPases contribute to actin cytoskeletal reorganization, and their inactivation is linked to abnormal lens fiber migration. These findings link actin binding to lens fiber integrity, lens opacification, and cataracts.
{"title":"Role of actin-binding proteins in cataract formation.","authors":"Christina Karakosta, Martina Samiotaki, George Panayotou, Dimitrios Papakonstantinou, Marilita M Moschos","doi":"10.1002/cm.21889","DOIUrl":"https://doi.org/10.1002/cm.21889","url":null,"abstract":"<p><strong>Introduction: </strong>Actin has been implicated in lens opacification; however, the specific actin-related pathways involved in cataracts remain unelucidated. In this study, actin-related proteome changes and signaling pathways involved in the development of cataracts were evaluated.</p><p><strong>Methods: </strong>The anterior capsule and phacoemulsification (phaco) cassette contents were collected during cataract surgery from 11 patients with diabetic cataract (DC), 12 patients with age-related cataract (ARC), and seven patients with post-vitrectomy cataract (PVC). Untargeted, global identification and quantification of proteins was performed through liquid chromatography-mass spectrometry with the data-independent acquisition (DIA).</p><p><strong>Results: </strong>In phaco cassette samples, proteins with significantly lower expression in ARC than in DC and PVC were involved in various pathways, including actin binding, actin cytoskeleton reorganization, actin filament capping, cortical actin cytoskeleton organization, and small GTPase-mediated signal transduction pathways. In anterior capsules, proteins with significantly lower expression in ARC than in DC and PVC were involved in actin binding and actin cytoskeleton reorganization pathways.</p><p><strong>Conclusion: </strong>Actin cytoskeleton and actin-binding proteins are involved in lens fiber elongation and differentiation. Rho GTPases contribute to actin cytoskeletal reorganization, and their inactivation is linked to abnormal lens fiber migration. These findings link actin binding to lens fiber integrity, lens opacification, and cataracts.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ambra Pratelli, Maria Giovanna Riparbelli, Giuliano Callaini
Wolbachia are obligate intracellular alphaproteobacteria that enhance their spreading by altering the reproductive mechanisms of several invertebrates. Among the reproductive alterations, Wolbachia also causes cytoplasmic incompatibility that leads to embryo death when infected males are crossed with uninfected females, thus selecting infected females. However, the presence of Wolbachia has important fitness costs and infected Drosophila simulans males produce less sperm than their uninfected counterparts. Such sperm suffer, indeed, of some structural alterations that hinder their proper function. We took advantage of the fact that several sperm have abnormal distal regions of the tail, in which the plasma membrane is broken and the axonemal components splayed, making the ultrastructural aspects clearly observable. We found that axoneme reduction in the distal region of the sperm does not follow a unique pattern as observed in other insects, but occurs by losing accessory tubules or peripheral doublets. The axonemal tubules contain distinct coaxial ring-like structures that are still observed after axoneme fragmentation and form large clusters of several units.
{"title":"Axonemal tubules in the distal sperm tail of Wolbachia-infected Drosophila simulans males contain ring-like intraluminal structures that persist after axoneme fragmentation.","authors":"Ambra Pratelli, Maria Giovanna Riparbelli, Giuliano Callaini","doi":"10.1002/cm.21891","DOIUrl":"https://doi.org/10.1002/cm.21891","url":null,"abstract":"<p><p>Wolbachia are obligate intracellular alphaproteobacteria that enhance their spreading by altering the reproductive mechanisms of several invertebrates. Among the reproductive alterations, Wolbachia also causes cytoplasmic incompatibility that leads to embryo death when infected males are crossed with uninfected females, thus selecting infected females. However, the presence of Wolbachia has important fitness costs and infected Drosophila simulans males produce less sperm than their uninfected counterparts. Such sperm suffer, indeed, of some structural alterations that hinder their proper function. We took advantage of the fact that several sperm have abnormal distal regions of the tail, in which the plasma membrane is broken and the axonemal components splayed, making the ultrastructural aspects clearly observable. We found that axoneme reduction in the distal region of the sperm does not follow a unique pattern as observed in other insects, but occurs by losing accessory tubules or peripheral doublets. The axonemal tubules contain distinct coaxial ring-like structures that are still observed after axoneme fragmentation and form large clusters of several units.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Ras-induced ERK pathway (Raf-MEK-ERK signaling cascade) regulates a variety of cellular responses including cell proliferation, survival, and migration. Activating mutations in RAS genes, particularly in the KRAS gene, constitutively activate the ERK pathway, resulting in tumorigenesis, cancer cell invasion, and metastasis. DA-Raf1 (DA-Raf) is a splicing isoform of A-Raf and contains the Ras-binding domain but lacks the kinase domain. Consequently, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative manner and can serve as a tumor suppressor that targets mutant Ras protein-induced tumorigenesis. We show here that MEK inhibitors and DA-Raf interfere with the in vitro collective cell migration and invasion of human KRAS-mutant carcinoma cell lines, the lung adenocarcinoma A549, colorectal carcinoma HCT116, and pancreatic carcinoma MIA PaCa-2 cells. DA-Raf expression was silenced in these cancer cell lines. All these cell lines had high collective migration abilities and invasion properties in Matrigel, compared with nontumor cells. Their migration and invasion abilities were impaired by suppressing the ERK pathway with the MEK inhibitors U0126 and trametinib, an approved anticancer drug. Expression of DA-Raf in MIA PaCa-2 cells reduced the ERK activity and hindered the migration and invasion abilities. Therefore, DA-Raf may function as an invasion suppressor protein in the KRAS-mutant cancer cells by blocking the Ras-ERK pathway when DA-Raf expression is induced in invasive cancer cells.
{"title":"MEK inhibitors and DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, prevent the migration and invasion of KRAS-mutant cancer cells.","authors":"Aoi Matsuda, Ryuichi Masuzawa, Kazuya Takahashi, Kazunori Takano, Takeshi Endo","doi":"10.1002/cm.21881","DOIUrl":"https://doi.org/10.1002/cm.21881","url":null,"abstract":"<p><p>The Ras-induced ERK pathway (Raf-MEK-ERK signaling cascade) regulates a variety of cellular responses including cell proliferation, survival, and migration. Activating mutations in RAS genes, particularly in the KRAS gene, constitutively activate the ERK pathway, resulting in tumorigenesis, cancer cell invasion, and metastasis. DA-Raf1 (DA-Raf) is a splicing isoform of A-Raf and contains the Ras-binding domain but lacks the kinase domain. Consequently, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative manner and can serve as a tumor suppressor that targets mutant Ras protein-induced tumorigenesis. We show here that MEK inhibitors and DA-Raf interfere with the in vitro collective cell migration and invasion of human KRAS-mutant carcinoma cell lines, the lung adenocarcinoma A549, colorectal carcinoma HCT116, and pancreatic carcinoma MIA PaCa-2 cells. DA-Raf expression was silenced in these cancer cell lines. All these cell lines had high collective migration abilities and invasion properties in Matrigel, compared with nontumor cells. Their migration and invasion abilities were impaired by suppressing the ERK pathway with the MEK inhibitors U0126 and trametinib, an approved anticancer drug. Expression of DA-Raf in MIA PaCa-2 cells reduced the ERK activity and hindered the migration and invasion abilities. Therefore, DA-Raf may function as an invasion suppressor protein in the KRAS-mutant cancer cells by blocking the Ras-ERK pathway when DA-Raf expression is induced in invasive cancer cells.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katia Brock, Kyle M Alpha, Grant Brennan, Ebbing P De Jong, Elizabeth Luke, Christopher E Turner
Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.
{"title":"A comparative analysis of paxillin and Hic-5 proximity interactomes.","authors":"Katia Brock, Kyle M Alpha, Grant Brennan, Ebbing P De Jong, Elizabeth Luke, Christopher E Turner","doi":"10.1002/cm.21878","DOIUrl":"10.1002/cm.21878","url":null,"abstract":"<p><p>Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The tissue invasive capacity of cancer cells is determined by their phenotypic plasticity. For instance, mesenchymal to amoeboid transition has been found to facilitate the passage of cancer cells through confined environments. This phenotypic transition is also heavily regulated by the architecture of the actin cytoskeleton, which may increase myosin contractility and the intracellular pressure that is known to drive bleb formation. In this review, we highlight several Diaphanous related formins (DRFs) that have been found to promote or suppress bleb formation in cancer cells, which is a hallmark of amoeboid migration. Based on the work discussed here, the role of the DRFs in cancer(s) is worthy of further scrutiny in animal models, as they may prove to be therapeutic targets.
癌细胞的表型可塑性决定了其组织侵袭能力。例如,研究发现,间质细胞向变形细胞的转变有助于癌细胞通过封闭的环境。这种表型转变还在很大程度上受肌动蛋白细胞骨架结构的调控,肌动蛋白细胞骨架结构可能会增加肌动蛋白的收缩能力和细胞内压力,而细胞内压力是已知的瘤疱形成的驱动力。在这篇综述中,我们重点介绍了几种已被发现能促进或抑制癌细胞蚕泡形成的Diaphanous related formins (DRFs),蚕泡形成是变形虫迁移的一个标志。根据本文讨论的工作,DRFs 在癌症中的作用值得在动物模型中进一步研究,因为它们可能被证明是治疗靶点。
{"title":"Nucleating amoeboid cancer cell motility with Diaphanous related formins.","authors":"Neelakshi Kar, Jeremy S Logue","doi":"10.1002/cm.21880","DOIUrl":"10.1002/cm.21880","url":null,"abstract":"<p><p>The tissue invasive capacity of cancer cells is determined by their phenotypic plasticity. For instance, mesenchymal to amoeboid transition has been found to facilitate the passage of cancer cells through confined environments. This phenotypic transition is also heavily regulated by the architecture of the actin cytoskeleton, which may increase myosin contractility and the intracellular pressure that is known to drive bleb formation. In this review, we highlight several Diaphanous related formins (DRFs) that have been found to promote or suppress bleb formation in cancer cells, which is a hallmark of amoeboid migration. Based on the work discussed here, the role of the DRFs in cancer(s) is worthy of further scrutiny in animal models, as they may prove to be therapeutic targets.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Izra Abbaali, Danny Truong, Dawn M Wetzel, Naomi S Morrissette
Protozoan parasites cause life-threatening infections in both humans and animals, including agriculturally significant livestock. Available treatments are typically narrow spectrum and are complicated by drug toxicity and the development of resistant parasites. Protozoan tubulin is an attractive target for the development of broad-spectrum antimitotic agents. The Medicines for Malaria Pathogen Box compound MMV676477 was previously shown to inhibit replication of kinetoplastid parasites, such as Leishmania amazonensis and Trypanosoma brucei, and the apicomplexan parasite Plasmodium falciparum by selectively stabilizing protozoan microtubules. In this report, we show that MMV676477 inhibits intracellular growth of the human apicomplexan pathogen Toxoplasma gondii with an EC50 value of ~50 nM. MMV676477 does not stabilize vertebrate microtubules or cause other toxic effects in human fibroblasts. The availability of tools for genetic studies makes Toxoplasma a useful model for studies of the cytoskeleton. We conducted a forward genetics screen for MMV676477 resistance, anticipating that missense mutations would delineate the binding site on protozoan tubulin. Unfortunately, we were unable to use genetics to dissect target interactions because no resistant parasites emerged. This outcome suggests that future drugs based on the MMV676477 scaffold would be less likely to be undermined by the emergence of drug resistance.
{"title":"Toxoplasma replication is inhibited by MMV676477 without development of resistance.","authors":"Izra Abbaali, Danny Truong, Dawn M Wetzel, Naomi S Morrissette","doi":"10.1002/cm.21876","DOIUrl":"10.1002/cm.21876","url":null,"abstract":"<p><p>Protozoan parasites cause life-threatening infections in both humans and animals, including agriculturally significant livestock. Available treatments are typically narrow spectrum and are complicated by drug toxicity and the development of resistant parasites. Protozoan tubulin is an attractive target for the development of broad-spectrum antimitotic agents. The Medicines for Malaria Pathogen Box compound MMV676477 was previously shown to inhibit replication of kinetoplastid parasites, such as Leishmania amazonensis and Trypanosoma brucei, and the apicomplexan parasite Plasmodium falciparum by selectively stabilizing protozoan microtubules. In this report, we show that MMV676477 inhibits intracellular growth of the human apicomplexan pathogen Toxoplasma gondii with an EC<sub>50</sub> value of ~50 nM. MMV676477 does not stabilize vertebrate microtubules or cause other toxic effects in human fibroblasts. The availability of tools for genetic studies makes Toxoplasma a useful model for studies of the cytoskeleton. We conducted a forward genetics screen for MMV676477 resistance, anticipating that missense mutations would delineate the binding site on protozoan tubulin. Unfortunately, we were unable to use genetics to dissect target interactions because no resistant parasites emerged. This outcome suggests that future drugs based on the MMV676477 scaffold would be less likely to be undermined by the emergence of drug resistance.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01Epub Date: 2022-07-22DOI: 10.1002/cm.21715
Paul Trevorrow, Peter Gunning
{"title":"An interview with Peter Gunning - School of Medical Sciences, UNSW Sydney, Australia.","authors":"Paul Trevorrow, Peter Gunning","doi":"10.1002/cm.21715","DOIUrl":"https://doi.org/10.1002/cm.21715","url":null,"abstract":"","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":"79 4-5","pages":"24-25"},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40488764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}