The stable operation of supercapacitors at extremely low temperatures is crucial for applications in harsh environments. Unfortunately, conventional inorganic electrodes suffer from sluggish diffusion kinetics and poor cycling stability for proton pseudocapacitors. Here, a redox-active polymer poly (1,5-diaminonaphthalene) is developed and synthesized as an ultrafast, high-mass loading, and durable pseudocapacitive anode. The charge storage of poly (1,5-diaminonaphthalene) depends on the reversible coordination reaction of the C=N group with H+, which enables fast kinetics associated with surface-controlled reactions. The 3D-printed organic electrode delivers a remarkable areal capacitance (8.43 F cm−2 at 30.78 mg cm−2) and thickness-independent rate performance. Furthermore, the 3D-printed proton pseudocapacitor exhibits great low-temperature tolerance and delivers a high energy density of 0.44 mWh cm−2 at −60 °C, as well as operates well even at −80 °C. This work signifies that combining organic material design with 3D hierarchical network electrode construction can provide a promising solution for low-temperature-resistant supercapacitors.
{"title":"3D-printed redox-active polymer electrode with high-mass loading for ultra-low temperature proton pseudocapacitor","authors":"Miaoran Zhang, Tengyu Yao, Tiezhu Xu, Xinji Zhou, Duo Chen, Laifa Shen","doi":"10.1016/j.apmate.2024.100247","DOIUrl":"10.1016/j.apmate.2024.100247","url":null,"abstract":"<div><div>The stable operation of supercapacitors at extremely low temperatures is crucial for applications in harsh environments. Unfortunately, conventional inorganic electrodes suffer from sluggish diffusion kinetics and poor cycling stability for proton pseudocapacitors. Here, a redox-active polymer poly (1,5-diaminonaphthalene) is developed and synthesized as an ultrafast, high-mass loading, and durable pseudocapacitive anode. The charge storage of poly (1,5-diaminonaphthalene) depends on the reversible coordination reaction of the C=N group with H<sup>+</sup>, which enables fast kinetics associated with surface-controlled reactions. The 3D-printed organic electrode delivers a remarkable areal capacitance (8.43 F cm<sup>−2</sup> at 30.78 mg cm<sup>−2</sup>) and thickness-independent rate performance. Furthermore, the 3D-printed proton pseudocapacitor exhibits great low-temperature tolerance and delivers a high energy density of 0.44 mWh cm<sup>−2</sup> at −60 °C, as well as operates well even at −80 °C. This work signifies that combining organic material design with 3D hierarchical network electrode construction can provide a promising solution for low-temperature-resistant supercapacitors.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 1","pages":"Article 100247"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.apmate.2024.100245
Zhenlin Mo, Jincheng Mu, Baojun Liu
The electrocatalytic synthesis of urea (ESU) is a green and sustainable alternative to conventional production methods, and the related research is still in its infancy. Up to now, the field has been explored by several reviews, however, the authors are focusing on some particular problems and could not provide a holistic view of the ESU. Based on these considerations, the novelty of this review lies in its comprehensive and systematic framework, as well as its in-depth analysis and general summary of several key issues. Hence, in this review, we critically evaluated the ESU through in-depth studies of various aspects, including nitrogen sources, catalysts choice, conditions modifications, detection methods, product calculations, and mechanisms evaluation, etc. In addition, after analyzing the reaction routes, reaction kinetics/thermodynamics and techno-economics assessment are also investigated. Finally, the summary and outlook are presented eventually, providing valuable insights for the related research. We believe that we will provide researchers with a comprehensive and clear picture of green synthesized urea, which is of great academic and practical significance.
{"title":"Advances in electrocatalytic urea synthesis: From fundamentals to applications","authors":"Zhenlin Mo, Jincheng Mu, Baojun Liu","doi":"10.1016/j.apmate.2024.100245","DOIUrl":"10.1016/j.apmate.2024.100245","url":null,"abstract":"<div><div>The electrocatalytic synthesis of urea (ESU) is a green and sustainable alternative to conventional production methods, and the related research is still in its infancy. Up to now, the field has been explored by several reviews, however, the authors are focusing on some particular problems and could not provide a holistic view of the ESU. Based on these considerations, the novelty of this review lies in its comprehensive and systematic framework, as well as its in-depth analysis and general summary of several key issues. Hence, in this review, we critically evaluated the ESU through in-depth studies of various aspects, including nitrogen sources, catalysts choice, conditions modifications, detection methods, product calculations, and mechanisms evaluation, etc. In addition, after analyzing the reaction routes, reaction kinetics/thermodynamics and techno-economics assessment are also investigated. Finally, the summary and outlook are presented eventually, providing valuable insights for the related research. We believe that we will provide researchers with a comprehensive and clear picture of green synthesized urea, which is of great academic and practical significance.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100245"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MXenes (inorganic metal carbides, nitrides, and carbonitrides) are currently the rising star of two-dimensional (2D) family. After its discovery in 2011, initial research was concentrated on pristine MXenes only. However, in the last few years, the MXene family has been expanded with the exploration of novel double MXenes, synthesis of non-Ti MXenes, and heteroatom doping of MXenes. The current review article delivers an exclusive overview of the current research trends on the heteroatom doping of MXenes. The recent advances in heteroatom doping of MXenes (majorly Ti-MXenes) for energy storage/conversion applications including secondary batteries (Li-ion, Li–S, Na–S, Na-ion, K-ion, Zn-ion batteries), supercapacitors, electrocatalysis, etc. are summarized. A brief overview of the defects as well as doping in various 2D materials is included in the manuscript. Various doping strategies of MXenes are outlined. Moreover, the impact of artificial intelligence/machine learning on MXene research is also concisely discussed. Additionally, the advantages of doping on MXenes are discussed in detail. Lastly, the existing challenges and future prospects of doped MXenes are addressed. It is expected that the current review will open new prospects for the fabrication of advanced energy devices through heteroatom doping of MXenes.
{"title":"Heteroatom doping in 2D MXenes for energy storage/conversion applications","authors":"Sumanta Sahoo , Rajesh Kumar , Iftikhar Hussain , Kaili Zhang","doi":"10.1016/j.apmate.2024.100246","DOIUrl":"10.1016/j.apmate.2024.100246","url":null,"abstract":"<div><div>MXenes (inorganic metal carbides, nitrides, and carbonitrides) are currently the rising star of two-dimensional (2D) family. After its discovery in 2011, initial research was concentrated on pristine MXenes only. However, in the last few years, the MXene family has been expanded with the exploration of novel double MXenes, synthesis of non-Ti MXenes, and heteroatom doping of MXenes. The current review article delivers an exclusive overview of the current research trends on the heteroatom doping of MXenes. The recent advances in heteroatom doping of MXenes (majorly Ti-MXenes) for energy storage/conversion applications including secondary batteries (Li-ion, Li–S, Na–S, Na-ion, K-ion, Zn-ion batteries), supercapacitors, electrocatalysis, etc. are summarized. A brief overview of the defects as well as doping in various 2D materials is included in the manuscript. Various doping strategies of MXenes are outlined. Moreover, the impact of artificial intelligence/machine learning on MXene research is also concisely discussed. Additionally, the advantages of doping on MXenes are discussed in detail. Lastly, the existing challenges and future prospects of doped MXenes are addressed. It is expected that the current review will open new prospects for the fabrication of advanced energy devices through heteroatom doping of MXenes.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100246"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1016/j.apmate.2024.100244
Yao Wang , Meng Zheng , Yunrui Li , Lidan Zhu , Haoran Li , Qishun Wang , Hui Zhao , Jiawei Zhang , Yuming Dong , Yongfa Zhu
Constructing the desired long-range dual sites to enhance the C–C bond-cleavage and CO-tolerate ability during ethanol oxidation reaction is of importance for further applications. Herein, the concept of holding atomically dispersed NiOx cluster supported on Pt-based high-index facets (NiOx/Pt) is proposed to build O-bridged Pt–Ni dual sites. Strikingly, the obtained NiOx/Pt dual sites show 4.97 times specific activity higher than that of commercial Pt/C (0.35 mA cm−2), as well as outstanding CO-tolerance and durability. The advanced electrochemical in-situ characterizations reveal that the NiOx/Pt can accelerate rapid dehydroxylation and C–C bond-cleavage over the Pt–Ni dual sites. Theoretical calculations disclose that the atomically dispersed NiOx species can lower the adsorption/reaction energy barriers of intermediates. This tactic provides a promising methodology on regulating the surface synergistic sites via engineering atomically dispersed oxide site.
在乙醇氧化反应过程中,构建所需的长程双位点以增强 C-C 键的清除能力和 CO 的溶解能力对进一步的应用具有重要意义。本文提出了在铂基高指数面(NiOx/Pt)上支撑原子分散的 NiOx 簇的概念,以构建 O 桥接的铂镍双位点。引人注目的是,所获得的 NiOx/Pt 双基点的比活度是商用 Pt/C 的 4.97 倍(0.35 mA cm-2),而且具有出色的一氧化碳耐受性和耐久性。先进的电化学原位表征显示,NiOx/Pt 比 Pt-Ni 双位点更能加速脱羟基和 C-C 键的裂解。理论计算表明,原子分散的氧化镍物种可以降低中间产物的吸附/反应能垒。这种方法为通过设计原子分散氧化物位点来调节表面协同位点提供了一种可行的方法。
{"title":"Atomically dispersed NiOx cluster on high-index Pt facets boost ethanol electrooxidation through long-range synergistic sites","authors":"Yao Wang , Meng Zheng , Yunrui Li , Lidan Zhu , Haoran Li , Qishun Wang , Hui Zhao , Jiawei Zhang , Yuming Dong , Yongfa Zhu","doi":"10.1016/j.apmate.2024.100244","DOIUrl":"10.1016/j.apmate.2024.100244","url":null,"abstract":"<div><div>Constructing the desired long-range dual sites to enhance the C–C bond-cleavage and CO-tolerate ability during ethanol oxidation reaction is of importance for further applications. Herein, the concept of holding atomically dispersed NiO<sub><em>x</em></sub> cluster supported on Pt-based high-index facets (NiO<sub><em>x</em></sub>/Pt) is proposed to build O-bridged Pt–Ni dual sites. Strikingly, the obtained NiO<sub><em>x</em></sub>/Pt dual sites show 4.97 times specific activity higher than that of commercial Pt/C (0.35 mA cm<sup>−2</sup>), as well as outstanding CO-tolerance and durability. The advanced electrochemical in-situ characterizations reveal that the NiO<sub><em>x</em></sub>/Pt can accelerate rapid dehydroxylation and C–C bond-cleavage over the Pt–Ni dual sites. Theoretical calculations disclose that the atomically dispersed NiO<sub><em>x</em></sub> species can lower the adsorption/reaction energy barriers of intermediates. This tactic provides a promising methodology on regulating the surface synergistic sites via engineering atomically dispersed oxide site.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100244"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.apmate.2024.100242
Taiyu Huang , Zimo Huang , Xixian Yang , Siyuan Yang , Qiongzhi Gao , Xin Cai , Yingju Liu , Yueping Fang , Shanqing Zhang , Shengsen Zhang
In the realm of photoenergy conversion, the scarcity of efficient light-driven semiconductors poses a significant obstacle to the advancement of photocatalysis, highlighting the critical need for researchers to explore novel semiconductor materials. Herein, we present the inaugural synthesis of a novel semiconductor, CdNCN, under mild conditions, while shedding light on its formation mechanism. By effectively harnessing the [NCN]2⁻ moiety in the thiourea process, we successfully achieve the one-pot synthesis of CdNCN-CdS heterostructure photocatalysts. Notably, the optimal CdNCN-CdS sample demonstrates a hydrogen evolution rate of 14.7 mmol g−1 h−1 under visible light irradiation, establishing itself as the most efficient catalyst among all reported CdS-based composites without any cocatalysts. This outstanding hydrogen evolution performance of CdNCN-CdS primarily arises from two key factors: i) the establishment of an atomic-level N-Cd-S heterostructure at the interface between CdNCN and CdS, which facilitating highly efficient electron transfer; ii) the directed transfer of electrons to the (110) crystal plane of CdNCN, promoting optimal hydrogen adsorption and active participation in the hydrogen evolution reaction. This study provides a new method for synthesizing CdNCN materials and offers insights into the design and preparation of innovative atomic-level composite semiconductor photocatalysts.
{"title":"Green and regulable synthesis of CdNCN on CdS semiconductor: Atomic-level heterostructures for enhanced photocatalytic hydrogen evolution","authors":"Taiyu Huang , Zimo Huang , Xixian Yang , Siyuan Yang , Qiongzhi Gao , Xin Cai , Yingju Liu , Yueping Fang , Shanqing Zhang , Shengsen Zhang","doi":"10.1016/j.apmate.2024.100242","DOIUrl":"10.1016/j.apmate.2024.100242","url":null,"abstract":"<div><div>In the realm of photoenergy conversion, the scarcity of efficient light-driven semiconductors poses a significant obstacle to the advancement of photocatalysis, highlighting the critical need for researchers to explore novel semiconductor materials. Herein, we present the inaugural synthesis of a novel semiconductor, CdNCN, under mild conditions, while shedding light on its formation mechanism. By effectively harnessing the [NCN]<sup>2</sup><sup>⁻</sup> moiety in the thiourea process, we successfully achieve the one-pot synthesis of CdNCN-CdS heterostructure photocatalysts. Notably, the optimal CdNCN-CdS sample demonstrates a hydrogen evolution rate of 14.7 mmol g<sup>−1</sup> h<sup>−1</sup> under visible light irradiation, establishing itself as the most efficient catalyst among all reported CdS-based composites without any cocatalysts. This outstanding hydrogen evolution performance of CdNCN-CdS primarily arises from two key factors: i) the establishment of an atomic-level N-Cd-S heterostructure at the interface between CdNCN and CdS, which facilitating highly efficient electron transfer; ii) the directed transfer of electrons to the (110) crystal plane of CdNCN, promoting optimal hydrogen adsorption and active participation in the hydrogen evolution reaction. This study provides a new method for synthesizing CdNCN materials and offers insights into the design and preparation of innovative atomic-level composite semiconductor photocatalysts.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100242"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.apmate.2024.100243
Huange Liao , Kai Huang , Weidong Hou , Huazhang Guo , Cheng Lian , Jiye Zhang , Zheng Liu , Liang Wang
Carbon nitride (CN)-based heterojunction photocatalysts hold promise for efficient carbon dioxide (CO2) reduction. However, suboptimal production yields and limited selectivity in CO2 conversion pose significant barriers to achieving efficient CO2 conversion. Here, we present the construction of a p-n heterojunction between ultrasmall Te NPs and CN nanosheet using a novel tandem hydrothermal-calcination synthesis strategy. Through ammonia-assisted calcination, ultrasmall Te NPs are grown in-situ on the CN nanosheets’ surface, resulting in the generation of a robust p-n heterojunction. The synthesized heterojunction exhibits increased specific surface area, reinforced visible light absorption, intensive CO2 adsorption capacity, and efficient charge transfer. The optimum Te/CN-NH3 demonstrates superior photocatalytic CO2 reduction activity and durability, with nearly 100 % selectivity for CO and a yield as high as 92.0 μmol g−1 h−1, a fourfold increase compared to pure CN. Experimental and theoretical calculations unravel that the strong built-in electric field of the Te/CN-NH3 p-n heterojunction accelerates the migration of photogenerated electrons from Te NPs to the N site on CN nanosheets, thereby promoting CO2 reduction. This study provides a promising material design approach for the construction of high-performance p-n heterojunction photocatalysts.
基于氮化碳(CN)的异质结光催化剂有望实现二氧化碳(CO2)的高效还原。然而,二氧化碳转化过程中不理想的产量和有限的选择性是实现二氧化碳高效转化的重大障碍。在此,我们采用一种新颖的串联水热-煅烧合成策略,构建了超小 Te NPs 与 CN 纳米片之间的 p-n 异质结。通过氨辅助煅烧,超小 Te NPs 在 CN 纳米片表面原位生长,从而生成了一个坚固的 p-n 异质结。合成的异质结具有更高的比表面积、更强的可见光吸收能力、更强的二氧化碳吸附能力以及高效的电荷转移能力。最佳的 Te/CN-NH3 显示出卓越的光催化二氧化碳还原活性和耐久性,对一氧化碳的选择性接近 100%,产率高达 92.0 μmol g-1 h-1,比纯 CN 提高了四倍。实验和理论计算表明,Te/CN-NH3 p-n 异质结的强内置电场加速了光生电子从 Te NPs 迁移到 CN 纳米片上的 N 位点,从而促进了 CO2 的还原。这项研究为构建高性能 p-n 异质结光催化剂提供了一种很有前景的材料设计方法。
{"title":"Atmosphere engineering of metal-free Te/C3N4 p-n heterojunction for nearly 100% photocatalytic converting CO2 to CO","authors":"Huange Liao , Kai Huang , Weidong Hou , Huazhang Guo , Cheng Lian , Jiye Zhang , Zheng Liu , Liang Wang","doi":"10.1016/j.apmate.2024.100243","DOIUrl":"10.1016/j.apmate.2024.100243","url":null,"abstract":"<div><div>Carbon nitride (CN)-based heterojunction photocatalysts hold promise for efficient carbon dioxide (CO<sub>2</sub>) reduction. However, suboptimal production yields and limited selectivity in CO<sub>2</sub> conversion pose significant barriers to achieving efficient CO<sub>2</sub> conversion. Here, we present the construction of a p-n heterojunction between ultrasmall Te NPs and CN nanosheet using a novel tandem hydrothermal-calcination synthesis strategy. Through ammonia-assisted calcination, ultrasmall Te NPs are grown in-situ on the CN nanosheets’ surface, resulting in the generation of a robust p-n heterojunction. The synthesized heterojunction exhibits increased specific surface area, reinforced visible light absorption, intensive CO<sub>2</sub> adsorption capacity, and efficient charge transfer. The optimum Te/CN-NH<sub>3</sub> demonstrates superior photocatalytic CO<sub>2</sub> reduction activity and durability, with nearly 100 % selectivity for CO and a yield as high as 92.0 μmol g<sup>−1</sup> h<sup>−1</sup>, a fourfold increase compared to pure CN. Experimental and theoretical calculations unravel that the strong built-in electric field of the Te/CN-NH<sub>3</sub> p-n heterojunction accelerates the migration of photogenerated electrons from Te NPs to the N site on CN nanosheets, thereby promoting CO<sub>2</sub> reduction. This study provides a promising material design approach for the construction of high-performance p-n heterojunction photocatalysts.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100243"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.apmate.2024.100234
Xiaofeng Wu , Freddy E. Oropeza , Shixin Chang , Marcus Einert , Qingyang Wu , Clément Maheu , Julia Gallenberger , Chuanmu Tian , Kangle Lv , Jan P. Hofmann
Hole transfer at the semiconductor-electrolyte interface is a key elementary process in (photo)electrochemical (PEC) water oxidation. However, up to now, a detailed understanding of the hole transfer and the influence of surface hole density on PEC water oxidation kinetics is lacking. In this work, we propose a model for the first time in which the surface accumulated hole density in BiVO4 and Mo-doped BiVO4 samples during water oxidation can be acquired via employing illumination-dependent Mott-Schottky measurements. Based on this model, some results are demonstrated as below: (1) Although the surface hole density increases when increasing light intensity and applied potential, the hole transfer rate remains linearly proportional to surface hole density on a log-log scale. (2) Both water oxidation on BiVO4 and Mo-doped BiVO4 follow first-order reaction kinetics at low surface hole densities, which is in good agreement with literature. (3) We find that water oxidation active sites in both BiVO4 and Mo-doped BiVO4 are very likely to be Bi5+, which are produced by photoexcited or/and electro-induced surface holes, rather than VOx species or Mo6+ due to their insufficient redox potential for water oxidation. (4) Introduction of Mo doping brings about higher OER activity of BiVO4, as it suppresses the recombination rate of surface holes and increases formation of Bi5+. This surface hole model offers a general approach for the quantification of surface hole density in the field of semiconductor photoelectrocatalysis.
半导体-电解质界面上的空穴传输是(光)电化学(PEC)水氧化过程中的一个关键基本过程。然而,迄今为止,人们还缺乏对空穴传输以及表面空穴密度对 PEC 水氧化动力学影响的详细了解。在这项工作中,我们首次提出了一个模型,通过利用与光照相关的 Mott-Schottky 测量方法,可以获得水氧化过程中 BiVO4 和掺钼 BiVO4 样品的表面累积空穴密度。根据这一模型,得出了以下结果:(1) 虽然表面空穴密度随光照强度和外加电位的增加而增加,但空穴传输率仍与表面空穴密度成对数线性关系。(2) 水在 BiVO4 和掺 Mo 的 BiVO4 上的氧化反应在低表面空穴密度时都遵循一阶反应动力学,这与文献报道十分吻合。(3) 我们发现,BiVO4 和掺杂 Mo 的 BiVO4 中的水氧化活性位点很可能是由光激发或/和电诱导表面空穴产生的 Bi5+,而不是 VOx 物种或 Mo6+,因为它们的氧化还原电位不足以进行水氧化。(4) Mo 的掺杂抑制了表面空穴的重组速度,增加了 Bi5+ 的形成,从而提高了 BiVO4 的 OER 活性。这种表面空穴模型为量化半导体光电催化领域的表面空穴密度提供了一种通用方法。
{"title":"Promoting effect of interfacial hole accumulation on photoelectrochemical water oxidation in BiVO4 and Mo-doped BiVO4","authors":"Xiaofeng Wu , Freddy E. Oropeza , Shixin Chang , Marcus Einert , Qingyang Wu , Clément Maheu , Julia Gallenberger , Chuanmu Tian , Kangle Lv , Jan P. Hofmann","doi":"10.1016/j.apmate.2024.100234","DOIUrl":"10.1016/j.apmate.2024.100234","url":null,"abstract":"<div><div>Hole transfer at the semiconductor-electrolyte interface is a key elementary process in (photo)electrochemical (PEC) water oxidation. However, up to now, a detailed understanding of the hole transfer and the influence of surface hole density on PEC water oxidation kinetics is lacking. In this work, we propose a model for the first time in which the surface accumulated hole density in BiVO<sub>4</sub> and Mo-doped BiVO<sub>4</sub> samples during water oxidation can be acquired via employing illumination-dependent Mott-Schottky measurements. Based on this model, some results are demonstrated as below: (1) Although the surface hole density increases when increasing light intensity and applied potential, the hole transfer rate remains linearly proportional to surface hole density on a log-log scale. (2) Both water oxidation on BiVO<sub>4</sub> and Mo-doped BiVO<sub>4</sub> follow first-order reaction kinetics at low surface hole densities, which is in good agreement with literature. (3) We find that water oxidation active sites in both BiVO<sub>4</sub> and Mo-doped BiVO<sub>4</sub> are very likely to be Bi<sup>5+</sup>, which are produced by photoexcited or/and electro-induced surface holes, rather than VO<sub><em>x</em></sub> species or Mo<sup>6+</sup> due to their insufficient redox potential for water oxidation. (4) Introduction of Mo doping brings about higher OER activity of BiVO<sub>4</sub>, as it suppresses the recombination rate of surface holes and increases formation of Bi<sup>5+</sup>. This surface hole model offers a general approach for the quantification of surface hole density in the field of semiconductor photoelectrocatalysis.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100234"},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.apmate.2024.100231
Bushra Bibi , Atif Nazar , Bin Zhu , Fan Yang , Muhammad Yousaf , Rizwan Raza , M.A.K. Yousaf Shah , Jung-Sik Kim , Muhammad Afzal , Yongpeng Lei , Yifu Jing , Peter Lund , Sining Yun
Mixed ionic-electronic conductors (MIECs) play a crucial role in the landscape of energy conversion and storage technologies, with a pronounced focus on electrode materials’ application in solid oxide fuel cells (SOFCs) and proton-conducting ceramic fuel cells (PCFCs). In parallel, the emergence of semiconductor ionic materials (SIMs) has introduced a new paradigm in the field of functional materials, particularly for both electrode and electrolyte development for low-temperature, 300–550 °C, SOFCs, and PCFCs. This review article critically delves into the intricate mechanisms underpinning the synergistic relationship between MIECs and SIMs, with a particular emphasis on elucidating the fundamental working principles of semiconductor ionic membrane fuel cells (SIMFCs). By exploring critical facets such as ion-coupled electron transfer/transport, junction effect, energy bands alignment, and theoretical computations, it casts an illuminating spotlight on the transformative potential of MIECs, also involving triple charge conducting oxides (TCOs) in the context of SIMs and advanced fuel cells (FCs). The insights and findings articulated herein contribute substantially to the advancement of SIMs and SIMFCs by tailoring MIECs (TCOs) as promising avenues toward the emergence of high-performance SIMFCs. This scientific quest not only addresses the insistent challenges surrounding efficient charge transfer, ionic transport and power output but also unlocks the profound potential for the widespread commercialization of FC technology.
{"title":"Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells","authors":"Bushra Bibi , Atif Nazar , Bin Zhu , Fan Yang , Muhammad Yousaf , Rizwan Raza , M.A.K. Yousaf Shah , Jung-Sik Kim , Muhammad Afzal , Yongpeng Lei , Yifu Jing , Peter Lund , Sining Yun","doi":"10.1016/j.apmate.2024.100231","DOIUrl":"10.1016/j.apmate.2024.100231","url":null,"abstract":"<div><div>Mixed ionic-electronic conductors (MIECs) play a crucial role in the landscape of energy conversion and storage technologies, with a pronounced focus on electrode materials’ application in solid oxide fuel cells (SOFCs) and proton-conducting ceramic fuel cells (PCFCs). In parallel, the emergence of semiconductor ionic materials (SIMs) has introduced a new paradigm in the field of functional materials, particularly for both electrode and electrolyte development for low-temperature, 300–550 °C, SOFCs, and PCFCs. This review article critically delves into the intricate mechanisms underpinning the synergistic relationship between MIECs and SIMs, with a particular emphasis on elucidating the fundamental working principles of semiconductor ionic membrane fuel cells (SIMFCs). By exploring critical facets such as ion-coupled electron transfer/transport, junction effect, energy bands alignment, and theoretical computations, it casts an illuminating spotlight on the transformative potential of MIECs, also involving triple charge conducting oxides (TCOs) in the context of SIMs and advanced fuel cells (FCs). The insights and findings articulated herein contribute substantially to the advancement of SIMs and SIMFCs by tailoring MIECs (TCOs) as promising avenues toward the emergence of high-performance SIMFCs. This scientific quest not only addresses the insistent challenges surrounding efficient charge transfer, ionic transport and power output but also unlocks the profound potential for the widespread commercialization of FC technology<strong>.</strong></div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100231"},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.apmate.2024.100233
Sahil Thakur , Abhijeet Ojha , Sushil Kumar Kansal , Navneet Kumar Gupta , Hendrik C. Swart , Junghyun Cho , Andrej Kuznetsov , Shuhui Sun , Jai Prakash
Photocatalysis is an advanced oxidation process where light exposure triggers a semiconducting nanomaterial (nano-photocatalyst) to generate electron-hole (e−/h+) pairs and free radicals. This phenomenon is widely used for the photocatalysis-assisted removal of organic and other contaminants using wide range of nano-photocatalysts, offering an efficient approach to environmental remediation. However, the introduction of powdered nano-photocatalysts into water systems often leads to unintended secondary pollution in the form of residual nano-photocatalysts, ion leaching, free radicals, toxic by-products etc. Such practices potentially introduce emerging secondary contaminants into aquatic environments, posing risks to both aquatic life and human health. The resulting chemical by-products and intermediates can effectively induce chronic toxicity, neurological and developmental disorders, cardiovascular defects, and intestinal ailments in humans and aquatic species. Despite having a range of health and environmental consequences, this dark side of nano-photocatalysts has been comparatively less explored and discussed in the literature. In this review, the pros and cons of powder nano-photocatalysts are discussed in view of their advantages as well as disadvantages in wastewater treatment. The discussion encompasses their classification based on composition, dimensions, structure, and activity, as well as recent advancements in improving their photocatalytic efficiency. The article also explores the recent advances on their applications in photocatalytic removal of various water pollutants/contaminants of emerging concern (i.e., organic pollutants, micro/nano plastics, heavy ions, disinfections, etc.) Furthermore, an emphasis on the role of such nano-photocatalysts as emerging (secondary) contaminants in water system, along with a thorough discussion of latest studies related to the health and environmental issues, has been discussed. Additionally, it addresses critical issues in applying powder nano-photocatalysts for wastewater detoxification and explores potential solutions to these challenges followed by future prospects.
{"title":"Advances in powder nano-photocatalysts as pollutant removal and as emerging contaminants in water: Analysis of pros and cons on health and environment","authors":"Sahil Thakur , Abhijeet Ojha , Sushil Kumar Kansal , Navneet Kumar Gupta , Hendrik C. Swart , Junghyun Cho , Andrej Kuznetsov , Shuhui Sun , Jai Prakash","doi":"10.1016/j.apmate.2024.100233","DOIUrl":"10.1016/j.apmate.2024.100233","url":null,"abstract":"<div><div>Photocatalysis is an advanced oxidation process where light exposure triggers a semiconducting nanomaterial (nano-photocatalyst) to generate electron-hole (e<sup>−</sup>/h<sup>+</sup>) pairs and free radicals. This phenomenon is widely used for the photocatalysis-assisted removal of organic and other contaminants using wide range of nano-photocatalysts, offering an efficient approach to environmental remediation. However, the introduction of powdered nano-photocatalysts into water systems often leads to unintended secondary pollution in the form of residual nano-photocatalysts, ion leaching, free radicals, toxic by-products etc. Such practices potentially introduce emerging secondary contaminants into aquatic environments, posing risks to both aquatic life and human health. The resulting chemical by-products and intermediates can effectively induce chronic toxicity, neurological and developmental disorders, cardiovascular defects, and intestinal ailments in humans and aquatic species. Despite having a range of health and environmental consequences, this dark side of nano-photocatalysts has been comparatively less explored and discussed in the literature. In this review, the pros and cons of powder nano-photocatalysts are discussed in view of their advantages as well as disadvantages in wastewater treatment. The discussion encompasses their classification based on composition, dimensions, structure, and activity, as well as recent advancements in improving their photocatalytic efficiency. The article also explores the recent advances on their applications in photocatalytic removal of various water pollutants/contaminants of emerging concern (i.e., organic pollutants, micro/nano plastics, heavy ions, disinfections, etc.) Furthermore, an emphasis on the role of such nano-photocatalysts as emerging (secondary) contaminants in water system, along with a thorough discussion of latest studies related to the health and environmental issues, has been discussed. Additionally, it addresses critical issues in applying powder nano-photocatalysts for wastewater detoxification and explores potential solutions to these challenges followed by future prospects.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 6","pages":"Article 100233"},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.apmate.2024.100228
Xuebao Li , Jiasen Wang , Cheng Han , Kun Zeng , Zhuangzhi Wu , Dezhi Wang
Sulfide all-solid-state lithium batteries (SASSLBs) with a single-crystal nickel-rich layered oxide cathode (LiNixCoyMn1-x-yO2, x ≥ 0.8) are highly desirable for advanced power batteries owing to their excellent energy density and safety. Nevertheless, the cathode material's cracking issue and its severe interfacial problem with sulfide solid electrolytes have hindered the further development. This study proposes to employ surface modification engineering to produce B-NCM cathode materials coated with boride nanostructure stabilizer in situ by utilizing NCM encapsulated with residual lithium. This approach enhances the electrochemical performance of SASSLBs by effectively inhibiting electrochemical-mechanical degradation of the NCM cathode material on cycling and reducing deleterious side reactions with the solid sulfide electrolyte. The B-NCM/LPSCl/Gr SASSLBs demonstrate impressive cycling stability, retaining 84.19 % of its capacity after 500 cycles at 0.2 C, which represents a 30.13 % increase vs. NCM/LPSCl/Gr. It also exhibits a specific capacity of 170.4 mAh/g during its first discharge at 0.1 C. This work demonstrates an effective surface engineering strategy for enhancing capacity and cycle life, providing valuable insights into solving interfacial problems in SASSLBs.
{"title":"Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries","authors":"Xuebao Li , Jiasen Wang , Cheng Han , Kun Zeng , Zhuangzhi Wu , Dezhi Wang","doi":"10.1016/j.apmate.2024.100228","DOIUrl":"10.1016/j.apmate.2024.100228","url":null,"abstract":"<div><p>Sulfide all-solid-state lithium batteries (SASSLBs) with a single-crystal nickel-rich layered oxide cathode (LiNi<sub><em>x</em></sub>Co<sub><em>y</em></sub>Mn<sub>1-<em>x</em>-<em>y</em></sub>O<sub>2</sub>, <em>x</em> ≥ 0.8) are highly desirable for advanced power batteries owing to their excellent energy density and safety. Nevertheless, the cathode material's cracking issue and its severe interfacial problem with sulfide solid electrolytes have hindered the further development. This study proposes to employ surface modification engineering to produce B-NCM cathode materials coated with boride nanostructure stabilizer in situ by utilizing NCM encapsulated with residual lithium. This approach enhances the electrochemical performance of SASSLBs by effectively inhibiting electrochemical-mechanical degradation of the NCM cathode material on cycling and reducing deleterious side reactions with the solid sulfide electrolyte. The B-NCM/LPSCl/Gr SASSLBs demonstrate impressive cycling stability, retaining 84.19 % of its capacity after 500 cycles at 0.2 C, which represents a 30.13 % increase vs. NCM/LPSCl/Gr. It also exhibits a specific capacity of 170.4 mAh/g during its first discharge at 0.1 C. This work demonstrates an effective surface engineering strategy for enhancing capacity and cycle life, providing valuable insights into solving interfacial problems in SASSLBs.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 5","pages":"Article 100228"},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000599/pdfft?md5=d3b60979e51850a599f1440f00d030e5&pid=1-s2.0-S2772834X24000599-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}