Yuchen Wang, Zixuan Zhou, Bin Qin, Qingyu Chang, Shanshan Dang, Yiqin Hu, Kun Li, Yuanjie Bao, Jianing Mao, Haiyan Yang, Yang Liu, Jiong Li, Shenggang Li, David A. Dixon, Yuhan Sun and Peng Gao
Methanol (CH3OH) synthesis from carbon dioxide (CO2) hydrogenation is an industrially viable approach to CO2 utilization. For the recently developed indium oxide (In2O3) catalyst, higher performance may be achieved by introducing transition metal promoters, although recent studies suggest that single atom sites favour CO formation. Here, by density functional theory-based microkinetic simulations, bulk-doped Pt/In2O3 single atom catalysts (SACs) with much higher CO2 reactivity than the In2O3 catalyst while maintaining CH3OH selectivity were designed. Several Pt/In2O3 SACs were synthesized to confirm our theoretical predictions. The synthesized Pt/In2O3 SAC in the predominantly bulk-doped form exhibits much higher CO2 reactivity than the In2O3 catalyst with high stability and similar CH3OH selectivity, yielding a CH3OH productivity of 1.25 g gcat−1 h−1. This study demonstrates the power of computational methods in designing oxide-based catalysts for industrial reactions and reveals a bulk-doped SAC with high performance.
由二氧化碳(CO2)加氢合成甲醇(CH3OH)是一种工业上可行的利用二氧化碳的方法。对于最近开发的氧化铟(In2O3)催化剂,通过引入过渡金属促进剂可以获得更高的性能,尽管最近的研究表明单原子位置有利于CO的形成。本文通过基于密度泛函理论的微动力学模拟,设计了体积掺杂Pt/In2O3单原子催化剂(SACs),该催化剂在保持CH3OH选择性的同时具有比In2O3催化剂更高的CO2反应活性。合成了几种Pt/In2O3 SACs来证实我们的理论预测。以大块掺杂形式合成的Pt/In2O3 SAC表现出比In2O3催化剂更高的CO2反应活性,具有高稳定性和相似的CH3OH选择性,CH3OH产率为1.25 g gcat−1 h−1。本研究证明了计算方法在设计工业反应中基于氧化物的催化剂方面的力量,并揭示了具有高性能的块体掺杂SAC。
{"title":"Computer-aided design of Pt/In2O3 single-atom catalysts for CO2 hydrogenation to methanol†","authors":"Yuchen Wang, Zixuan Zhou, Bin Qin, Qingyu Chang, Shanshan Dang, Yiqin Hu, Kun Li, Yuanjie Bao, Jianing Mao, Haiyan Yang, Yang Liu, Jiong Li, Shenggang Li, David A. Dixon, Yuhan Sun and Peng Gao","doi":"10.1039/D4EY00218K","DOIUrl":"https://doi.org/10.1039/D4EY00218K","url":null,"abstract":"<p >Methanol (CH<small><sub>3</sub></small>OH) synthesis from carbon dioxide (CO<small><sub>2</sub></small>) hydrogenation is an industrially viable approach to CO<small><sub>2</sub></small> utilization. For the recently developed indium oxide (In<small><sub>2</sub></small>O<small><sub>3</sub></small>) catalyst, higher performance may be achieved by introducing transition metal promoters, although recent studies suggest that single atom sites favour CO formation. Here, by density functional theory-based microkinetic simulations, bulk-doped Pt/In<small><sub>2</sub></small>O<small><sub>3</sub></small> single atom catalysts (SACs) with much higher CO<small><sub>2</sub></small> reactivity than the In<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst while maintaining CH<small><sub>3</sub></small>OH selectivity were designed. Several Pt/In<small><sub>2</sub></small>O<small><sub>3</sub></small> SACs were synthesized to confirm our theoretical predictions. The synthesized Pt/In<small><sub>2</sub></small>O<small><sub>3</sub></small> SAC in the predominantly bulk-doped form exhibits much higher CO<small><sub>2</sub></small> reactivity than the In<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst with high stability and similar CH<small><sub>3</sub></small>OH selectivity, yielding a CH<small><sub>3</sub></small>OH productivity of 1.25 g g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>. This study demonstrates the power of computational methods in designing oxide-based catalysts for industrial reactions and reveals a bulk-doped SAC with high performance.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 106-118"},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00218k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Luo, Mianle Xu, Sihang Liu, Giulia Tarantino, Hanzhi Ye, Hossein Yadegari, Alain Y. Li, Ceri Hammond, Georg Kastlunger, Ifan E. L. Stephens and Maria-Magdalena Titirici
Phasing out petrochemical-based thermoplastics with bio-plastics produced in an energy efficient and environmentally friendly way is of paramount interest. Among them, polylactic acid (PLA) is the flagship with its production accounting for 19% of the entire bioplastics industry. Glycerol electrolysis for producing the monomer lactic acid, while co-generating green H2, represents a promising approach to boost the production of PLA, yet the reaction selectivity has been a bottleneck. Here, we report a combined electrochemical and chemical route using a tandem Pt/C-γ-Al2O3 multicomponent catalyst which can achieve a glycerol-to-lactic acid selectivity of 61.3 ± 1.2%, among the highest performance reported so far. Combining an experimental and computational mechanistic analysis, we suggest that tuning the acidic sites on the catalyst surface is crucial for shifting the reaction towards the dehydration pathway, occurring via dihydroxyacetone intermediate. Within the tandem effect, Pt is the active site to electrochemically catalyze glycerol to dihydroxyacetone and glyceraldehyde, while the γ-Al2O3 provides the required acidic sites for catalyzing dihydroxyacetone to the pyruvaldehyde intermediate, which will then go through Cannizzaro rearrangement, catalyzed by the OH− ions to form lactic acid. This catalytic synergy improves the selectivity towards lactic acid by nearly two-fold. A selectivity descriptor (ΔGGLAD* − ΔGDHA*) from density functional theory calculations was identified, which could be used to screen other materials in further research. Our findings highlight the promise of tandem electrolysis in the development of strategies for selective electrochemical production of high-value commodity chemicals from low value (waste) precursors.
{"title":"Selective glycerol to lactic acid conversion via a tandem effect between platinum and metal oxides with abundant acid groups†","authors":"Hui Luo, Mianle Xu, Sihang Liu, Giulia Tarantino, Hanzhi Ye, Hossein Yadegari, Alain Y. Li, Ceri Hammond, Georg Kastlunger, Ifan E. L. Stephens and Maria-Magdalena Titirici","doi":"10.1039/D4EY00236A","DOIUrl":"https://doi.org/10.1039/D4EY00236A","url":null,"abstract":"<p >Phasing out petrochemical-based thermoplastics with bio-plastics produced in an energy efficient and environmentally friendly way is of paramount interest. Among them, polylactic acid (PLA) is the flagship with its production accounting for 19% of the entire bioplastics industry. Glycerol electrolysis for producing the monomer lactic acid, while co-generating green H<small><sub>2</sub></small>, represents a promising approach to boost the production of PLA, yet the reaction selectivity has been a bottleneck. Here, we report a combined electrochemical and chemical route using a tandem Pt/C-γ-Al<small><sub>2</sub></small>O<small><sub>3</sub></small> multicomponent catalyst which can achieve a glycerol-to-lactic acid selectivity of 61.3 ± 1.2%, among the highest performance reported so far. Combining an experimental and computational mechanistic analysis, we suggest that tuning the acidic sites on the catalyst surface is crucial for shifting the reaction towards the dehydration pathway, occurring <em>via</em> dihydroxyacetone intermediate. Within the tandem effect, Pt is the active site to electrochemically catalyze glycerol to dihydroxyacetone and glyceraldehyde, while the γ-Al<small><sub>2</sub></small>O<small><sub>3</sub></small> provides the required acidic sites for catalyzing dihydroxyacetone to the pyruvaldehyde intermediate, which will then go through Cannizzaro rearrangement, catalyzed by the OH<small><sup>−</sup></small> ions to form lactic acid. This catalytic synergy improves the selectivity towards lactic acid by nearly two-fold. A selectivity descriptor (Δ<em>G</em><small><sub>GLAD*</sub></small> − Δ<em>G</em><small><sub>DHA*</sub></small>) from density functional theory calculations was identified, which could be used to screen other materials in further research. Our findings highlight the promise of tandem electrolysis in the development of strategies for selective electrochemical production of high-value commodity chemicals from low value (waste) precursors.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 87-96"},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00236a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor Longo, Luana De Pasquale, Francesco Tavella, Mariam Barawi, Miguel Gomez-Mendoza, Víctor de la Peña O’Shea, Claudio Ampelli, Siglinda Perathoner, Gabriele Centi and Chiara Genovese
Correction for ‘High photocatalytic yield in the non-oxidative coupling of methane using a Pd–TiO2 nanomembrane gas flow-through reactor’ by Victor Longo et al., EES. Catal., 2024, 2, 1164–1175, https://doi.org/10.1039/D4EY00112E.
[此处更正了文章 DOI:10.1039/D4EY00112E]。
{"title":"Correction: High photocatalytic yield in the non-oxidative coupling of methane using a Pd–TiO2 nanomembrane gas flow-through reactor","authors":"Victor Longo, Luana De Pasquale, Francesco Tavella, Mariam Barawi, Miguel Gomez-Mendoza, Víctor de la Peña O’Shea, Claudio Ampelli, Siglinda Perathoner, Gabriele Centi and Chiara Genovese","doi":"10.1039/D4EY90022G","DOIUrl":"10.1039/D4EY90022G","url":null,"abstract":"<p >Correction for ‘High photocatalytic yield in the non-oxidative coupling of methane using a Pd–TiO<small><sub>2</sub></small> nanomembrane gas flow-through reactor’ by Victor Longo <em>et al.</em>, <em>EES. Catal.</em>, 2024, <strong>2</strong>, 1164–1175, https://doi.org/10.1039/D4EY00112E.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1320-1320"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the continuous development and extensive research of electrocatalytic technology, the unclear dynamic catalytic reaction process limits the in-depth study of reaction regulation mechanisms and the targeted design of excellent catalysts. The comprehension of electrochemical reactions through conventional ex situ characterization techniques poses a formidable challenge. Fortunately, in situ characterization technology makes it possible to further clarify the mechanism of electrocatalytic reactions. Here, we will select some highlight studies of in situ characterization techniques during electrochemical reactions to introduce features and difficulties in practical experiments and give some advice and evaluate future development trends for relevant fields. This article will show the advantages as well as challenges in the in situ technology in electrocatalytic reactions, and indicate the development directions.
{"title":"Progress in in situ characterization of electrocatalysis","authors":"Wei Shen, Yizhen Ye, Qiujin Xia and Pinxian Xi","doi":"10.1039/D4EY00168K","DOIUrl":"https://doi.org/10.1039/D4EY00168K","url":null,"abstract":"<p >With the continuous development and extensive research of electrocatalytic technology, the unclear dynamic catalytic reaction process limits the in-depth study of reaction regulation mechanisms and the targeted design of excellent catalysts. The comprehension of electrochemical reactions through conventional <em>ex situ</em> characterization techniques poses a formidable challenge. Fortunately, <em>in situ</em> characterization technology makes it possible to further clarify the mechanism of electrocatalytic reactions. Here, we will select some highlight studies of <em>in situ</em> characterization techniques during electrochemical reactions to introduce features and difficulties in practical experiments and give some advice and evaluate future development trends for relevant fields. This article will show the advantages as well as challenges in the <em>in situ</em> technology in electrocatalytic reactions, and indicate the development directions.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 10-31"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00168k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although electrocatalytic reduction of carbon dioxide (CO2) into chemicals and fuels over Cu-based catalysts has been extensively investigated, the influence of their exposed facets on product selectivity remains elusive. To address this, a series of Cu-based catalysts with different ratios of exposed Cu(100) and Cu(111) facets were synthesized and examined for CO2 electroreduction, based on which a remarkable interplanar synergistic effect on the selectivity of C2+ products was demonstrated. The optimized Cu-based interplanar synergistic catalyst could deliver a faradaic efficiency of 78% with a C2+ partial current density of 663 mA cm−2, which is extremely superior to that of its corresponding Cu counterparts with only the Cu(111) or Cu(100) facet. The interplanar synergistic effect was disclosed using density functional theory calculations to mainly benefit from favorable adsorption and activation of CO2 into *CO on the Cu(111) facet and significantly promoted C–C coupling on the interface of the Cu(111) and Cu(100) facets, as confirmed by observation of the favorable surface coverage of atop-bound and bridge-bound *CO as well as formation of *OC–CHO intermediates during in situ infrared spectroscopy analysis.
虽然电催化将二氧化碳还原为化学物质和燃料的研究已经广泛开展,但铜基催化剂的暴露面对产物选择性的影响仍然难以捉摸。为了解决这一问题,我们合成了一系列不同暴露铜(100)和铜(111)面比的Cu基催化剂,并对其进行了CO2电还原实验,在此基础上证明了对C2+产物选择性的显着的面间协同效应。优化后的Cu基面间协同催化剂在C2+偏电流密度为663 mA cm−2的情况下,具有78%的法拉第效率,大大优于仅具有Cu(111)或Cu(100)面协同催化剂。利用密度泛函理论计算揭示了面间协同效应,主要受益于Cu(111)面对*CO的有利吸附和活化,并显著促进了Cu(111)和Cu(100)面界面上的C-C耦合,通过原位红外光谱分析观察到良好的顶界和桥界*CO的表面覆盖以及* OC-CHO中间体的形成。
{"title":"Interplanar synergy of a copper-based electrocatalyst favors the reduction of CO2 into C2+ products†","authors":"Jiangnan Li, Xinyi Duan, Chao Wu, Yucheng Cao, Zhiyao Duan, Wenjun Fan, Peng Zhang and Fuxiang Zhang","doi":"10.1039/D4EY00141A","DOIUrl":"https://doi.org/10.1039/D4EY00141A","url":null,"abstract":"<p >Although electrocatalytic reduction of carbon dioxide (CO<small><sub>2</sub></small>) into chemicals and fuels over Cu-based catalysts has been extensively investigated, the influence of their exposed facets on product selectivity remains elusive. To address this, a series of Cu-based catalysts with different ratios of exposed Cu(100) and Cu(111) facets were synthesized and examined for CO<small><sub>2</sub></small> electroreduction, based on which a remarkable interplanar synergistic effect on the selectivity of C<small><sub>2+</sub></small> products was demonstrated. The optimized Cu-based interplanar synergistic catalyst could deliver a faradaic efficiency of 78% with a C<small><sub>2+</sub></small> partial current density of 663 mA cm<small><sup>−2</sup></small>, which is extremely superior to that of its corresponding Cu counterparts with only the Cu(111) or Cu(100) facet. The interplanar synergistic effect was disclosed using density functional theory calculations to mainly benefit from favorable adsorption and activation of CO<small><sub>2</sub></small> into *CO on the Cu(111) facet and significantly promoted C–C coupling on the interface of the Cu(111) and Cu(100) facets, as confirmed by observation of the favorable surface coverage of atop-bound and bridge-bound *CO as well as formation of *OC–CHO intermediates during <em>in situ</em> infrared spectroscopy analysis.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 80-86"},"PeriodicalIF":0.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00141a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amin Zhou, Xiao-Song Li, Jing-Lin Liu, Lan-Bo Di and Ai-Min Zhu
Air plasma catalytic oxidation of toluene (C7H8) with the cycled storage-discharge (CSD) mode is a promising technology for toluene (C7H8) removal. However, the problem of low CO2 selectivity must be solved. In this work, a novel HZSM-5 (HZ) supported Au catalyst (Au/HZ) with ca. 5.7 nm Au nanoparticles was prepared by combining impregnation-ammonia washing and plasma treatment, and adopted for C7H8 removal. Au/HZ displays a large breakthrough capacity and an excellent oxidation ability of C7H8 in dry and wet air plasma. To investigate the mechanism of CO2 selectivity improvement with the Au/HZ catalyst, air plasma catalytic oxidation of gaseous C7H8 and CO, as well as the adsorption of C7H8 and CO on the catalysts were conducted. For plasma-catalytic oxidation of gaseous C7H8 over Au/HZ, the CO2 selectivity is 97.5%, significantly higher than those of HZ (55%) and Ag/HZ (62%). In situ TPD tests indicate that Au/HZ possesses a moderate adsorption strength for CO and C7H8 compared with HZ and Ag/HZ. Meanwhile, plasma oxidation of CO over Au/HZ reaches 100%, which is much higher than those of HZ (15%) and Ag/HZ (24%). Nearly 100% C7H8 conversion and CO2 selectivity of plasma-catalytic oxidation of C7H8 on Au/HZ can be attributed to the moderate adsorption strength of Au/HZ for C7H8 and CO, and very high plasma catalytic activity for CO oxidation.
{"title":"A supported Au/HZSM-5 catalyst for toluene removal by air plasma catalytic oxidation using the cycled storage-discharge (CSD) mode†","authors":"Amin Zhou, Xiao-Song Li, Jing-Lin Liu, Lan-Bo Di and Ai-Min Zhu","doi":"10.1039/D4EY00159A","DOIUrl":"https://doi.org/10.1039/D4EY00159A","url":null,"abstract":"<p >Air plasma catalytic oxidation of toluene (C<small><sub>7</sub></small>H<small><sub>8</sub></small>) with the cycled storage-discharge (CSD) mode is a promising technology for toluene (C<small><sub>7</sub></small>H<small><sub>8</sub></small>) removal. However, the problem of low CO<small><sub>2</sub></small> selectivity must be solved. In this work, a novel HZSM-5 (HZ) supported Au catalyst (Au/HZ) with <em>ca.</em> 5.7 nm Au nanoparticles was prepared by combining impregnation-ammonia washing and plasma treatment, and adopted for C<small><sub>7</sub></small>H<small><sub>8</sub></small> removal. Au/HZ displays a large breakthrough capacity and an excellent oxidation ability of C<small><sub>7</sub></small>H<small><sub>8</sub></small> in dry and wet air plasma. To investigate the mechanism of CO<small><sub>2</sub></small> selectivity improvement with the Au/HZ catalyst, air plasma catalytic oxidation of gaseous C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO, as well as the adsorption of C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO on the catalysts were conducted. For plasma-catalytic oxidation of gaseous C<small><sub>7</sub></small>H<small><sub>8</sub></small> over Au/HZ, the CO<small><sub>2</sub></small> selectivity is 97.5%, significantly higher than those of HZ (55%) and Ag/HZ (62%). <em>In situ</em> TPD tests indicate that Au/HZ possesses a moderate adsorption strength for CO and C<small><sub>7</sub></small>H<small><sub>8</sub></small> compared with HZ and Ag/HZ. Meanwhile, plasma oxidation of CO over Au/HZ reaches 100%, which is much higher than those of HZ (15%) and Ag/HZ (24%). Nearly 100% C<small><sub>7</sub></small>H<small><sub>8</sub></small> conversion and CO<small><sub>2</sub></small> selectivity of plasma-catalytic oxidation of C<small><sub>7</sub></small>H<small><sub>8</sub></small> on Au/HZ can be attributed to the moderate adsorption strength of Au/HZ for C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO, and very high plasma catalytic activity for CO oxidation.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 97-105"},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00159a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nannan Jiang, Hao Wang, Huihui Jin, Xuwei Liu and Lunhui Guan
Platinum dissolution is one of the primary factors affecting the stability of Pt-based catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). It is a significant challenge to prevent the dissolution of Pt and enhance the durability of Pt-based catalysts. In this study, we employed a one-step rapid Joule thermal shock method to fabricate a stable ORR catalyst with embedded Pt5Ce alloy (E-Pt5Ce). The strong catalyst-support interactions between the Pt–C layer suppress particle agglomeration and Ostwald ripening, and its steric hindrance effect reduces the electronic density at Pt sites, decreasing the adsorption energy of Pt with oxygen-containing intermediates and preventing Pt dissolution. The Pt–C layer also increases the accessibility of active sites, boosting the ORR activity. In acidic media, E-Pt5Ce shows a mass activity (MA) and specific activity (SA) of 2.86 A mgPt−1 and 2.03 mA cm−2, outperforming the commercial Pt/C by factors of approximately 15 and 5, respectively. When used as a cathode catalyst for a PEMFC, the MA at 0.90 V is almost twice the DOE 2025 target. After stability testing, there is no prominent loss in catalytic activity. Density functional theory calculations confirm that the Pt–C coordination bonds also serve as reactive sites. This work uncovers the mechanism of action of the Pt–C coordination layer, which plays a crucial role in the preparation and performance of ORR catalysts.
铂溶解是影响质子交换膜燃料电池(PEMFC)中氧还原反应(ORR)铂基催化剂稳定性的主要因素之一。如何防止铂溶解并提高铂基催化剂的耐久性是一项重大挑战。在本研究中,我们采用一步快速焦耳热冲击法制备了一种具有嵌入式 Pt5Ce 合金(E-Pt5Ce)的稳定 ORR 催化剂。铂-铈层之间强烈的催化剂-支撑相互作用抑制了颗粒团聚和奥斯特瓦尔德熟化,其立体阻碍效应降低了铂位点的电子密度,降低了铂与含氧中间产物的吸附能,防止了铂的溶解。Pt-C 层还增加了活性位点的可达性,提高了 ORR 活性。在酸性介质中,E-Pt5Ce 的质量活性(MA)和比活性(SA)分别为 2.86 A mgPt-1 和 2.03 mA cm-2,分别比商用 Pt/C 高出约 15 倍和 5 倍。在用作 PEMFC 阴极催化剂时,0.90 V 时的 MA 值几乎是 DOE 2025 目标值的两倍。经过稳定性测试,催化活性没有明显下降。密度泛函理论计算证实,Pt-C 配位键也是反应位点。这项工作揭示了铂-铂配位层的作用机理,这在 ORR 催化剂的制备和性能方面起着至关重要的作用。
{"title":"Embedding the intermetallic Pt5Ce alloy in mesopores through Pt–C coordination layer interactions as a stable electrocatalyst for the oxygen reduction reaction†","authors":"Nannan Jiang, Hao Wang, Huihui Jin, Xuwei Liu and Lunhui Guan","doi":"10.1039/D4EY00194J","DOIUrl":"https://doi.org/10.1039/D4EY00194J","url":null,"abstract":"<p >Platinum dissolution is one of the primary factors affecting the stability of Pt-based catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). It is a significant challenge to prevent the dissolution of Pt and enhance the durability of Pt-based catalysts. In this study, we employed a one-step rapid Joule thermal shock method to fabricate a stable ORR catalyst with embedded Pt<small><sub>5</sub></small>Ce alloy (E-Pt<small><sub>5</sub></small>Ce). The strong catalyst-support interactions between the Pt–C layer suppress particle agglomeration and Ostwald ripening, and its steric hindrance effect reduces the electronic density at Pt sites, decreasing the adsorption energy of Pt with oxygen-containing intermediates and preventing Pt dissolution. The Pt–C layer also increases the accessibility of active sites, boosting the ORR activity. In acidic media, E-Pt<small><sub>5</sub></small>Ce shows a mass activity (MA) and specific activity (SA) of 2.86 A mg<small><sub>Pt</sub></small><small><sup>−1</sup></small> and 2.03 mA cm<small><sup>−2</sup></small>, outperforming the commercial Pt/C by factors of approximately 15 and 5, respectively. When used as a cathode catalyst for a PEMFC, the MA at 0.90 V is almost twice the DOE 2025 target. After stability testing, there is no prominent loss in catalytic activity. Density functional theory calculations confirm that the Pt–C coordination bonds also serve as reactive sites. This work uncovers the mechanism of action of the Pt–C coordination layer, which plays a crucial role in the preparation and performance of ORR catalysts.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1253-1262"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00194j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vasilis Nikolaou, Palas Baran Pati, Hélène Terrisse, Marc Robert and Fabrice Odobel
The development of noble metal-free dye-sensitized photocatalytic systems (DSPs) for CO2-to-CO conversion remains limited. Current literature primarily focuses on a single strategy: the simultaneous loading of both the photosensitizer (PS) and the catalyst (CAT) onto titanium dioxide nanoparticles (TiO2 NPs) using anchoring groups. Here, we introduce an innovative method through immobilizing a positively-charged molecular CAT onto negatively-charged PS–TiO2 NPs. Our approach yields promising results, including near-complete CO2-to-CO conversion (∼100% CO) and exceptional stability, achieving 1658 turnover numbers versus the CAT and an apparent quantum yield efficiency (AQY) of 16.9%.
用于将 CO2 转化为 CO 的无贵金属染料敏化光催化系统(DSP)的开发仍然有限。目前的文献主要关注单一策略:利用锚定基团将光敏剂(PS)和催化剂(CAT)同时负载到二氧化钛纳米颗粒(TiO2 NPs)上。在这里,我们介绍了一种创新方法,即把带正电荷的分子 CAT 固定到带负电荷的 PS-TiO2 NPs 上。我们的方法取得了可喜的成果,包括近乎完全的 CO2 到 CO 的转化(CO 转化率达 100%)和卓越的稳定性,CAT 的转化率达 1658,表观量子产率效率(AQY)达 16.9%。
{"title":"Efficient CO2-to-CO conversion in dye-sensitized photocatalytic systems enabled by electrostatically-driven catalyst binding†","authors":"Vasilis Nikolaou, Palas Baran Pati, Hélène Terrisse, Marc Robert and Fabrice Odobel","doi":"10.1039/D4EY00156G","DOIUrl":"https://doi.org/10.1039/D4EY00156G","url":null,"abstract":"<p >The development of noble metal-free dye-sensitized photocatalytic systems (DSPs) for CO<small><sub>2</sub></small>-to-CO conversion remains limited. Current literature primarily focuses on a single strategy: the simultaneous loading of both the photosensitizer (PS) and the catalyst (CAT) onto titanium dioxide nanoparticles (TiO<small><sub>2</sub></small> NPs) using anchoring groups. Here, we introduce an innovative method through immobilizing a positively-charged molecular CAT onto negatively-charged PS–TiO<small><sub>2</sub></small> NPs. Our approach yields promising results, including near-complete CO<small><sub>2</sub></small>-to-CO conversion (∼100% CO) and exceptional stability, achieving 1658 turnover numbers <em>versus</em> the CAT and an apparent quantum yield efficiency (AQY) of 16.9%.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1314-1319"},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00156g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiakang You, Yifan Bao, Yanzhao Zhang, Muxina Konarova, Zhiliang Wang and Lianzhou Wang
Methane is a critical energy resource but also a potent greenhouse gas, significantly contributing to global warming. To mitigate the negative effect of methane, it is meaningful to explore an effective methane conversion process motivated with green energy such as green electricity and sunlight. The selectivity and production rate are the key criteria in methane conversion. This review provides a comprehensive overview of recent efforts and understanding in methane conversion to valuable products, including oxygenates and hydrocarbons, by taking advantage of electrocatalysis and photocatalysis. The review begins with a general understanding of C–H bond activation mechanisms. It then focuses on electrocatalytic methane conversion (EMC) with an emphasis on catalyst design for oxygenate production, and photocatalytic methane conversion (PMC) with a particular focus on hydrocarbon production, especially ethylene (C2H4), due to the differences in oxygen sources between the two systems. An in-depth understanding of EMC and PMC mechanisms is also discussed to provide insights for improved catalyst design aimed at selective product generation. Finally, successful catalyst designs for EMC and PMC are summarized to identify challenges in achieving highly efficient and selective production of value-added chemicals and to offer clear guidance for future research efforts in green methane conversion.
{"title":"Green energy driven methane conversion under mild conditions","authors":"Jiakang You, Yifan Bao, Yanzhao Zhang, Muxina Konarova, Zhiliang Wang and Lianzhou Wang","doi":"10.1039/D4EY00155A","DOIUrl":"10.1039/D4EY00155A","url":null,"abstract":"<p >Methane is a critical energy resource but also a potent greenhouse gas, significantly contributing to global warming. To mitigate the negative effect of methane, it is meaningful to explore an effective methane conversion process motivated with green energy such as green electricity and sunlight. The selectivity and production rate are the key criteria in methane conversion. This review provides a comprehensive overview of recent efforts and understanding in methane conversion to valuable products, including oxygenates and hydrocarbons, by taking advantage of electrocatalysis and photocatalysis. The review begins with a general understanding of C–H bond activation mechanisms. It then focuses on electrocatalytic methane conversion (EMC) with an emphasis on catalyst design for oxygenate production, and photocatalytic methane conversion (PMC) with a particular focus on hydrocarbon production, especially ethylene (C<small><sub>2</sub></small>H<small><sub>4</sub></small>), due to the differences in oxygen sources between the two systems. An in-depth understanding of EMC and PMC mechanisms is also discussed to provide insights for improved catalyst design aimed at selective product generation. Finally, successful catalyst designs for EMC and PMC are summarized to identify challenges in achieving highly efficient and selective production of value-added chemicals and to offer clear guidance for future research efforts in green methane conversion.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1210-1227"},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00155a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingchuan Zhang, Zijing Li, Tao Zhou and Guangri Jia
Catalytic fast pyrolysis (CFP) of biomass is an efficient approach that can overcome the structural recalcitrance of solid biomass (e.g., crystalline cellulose) to produce sugar monomers and their derivatives within seconds. The composition of the product mixture, which is accumulated in a liquid called bio-oil, is highly tuneable through the use of in situ/ex situ catalysts for the downstream production of sustainable fuels and fine chemicals. This minireview summarises the recent advances in homogeneous and heterogeneous catalysts in the CFP production of versatile oxygenates as fuel precursors or bulk chemicals. First, a brief overview of primary CFP pathways, including cellulose-to-levoglucosan (LGA) conversion and the production of three important derivative anhydrosugars, is provided. Particular attention is paid to the roles of homogeneous and heterogeneous catalysts in promoting secondary reforming of LGA by dehydration and to alternative pathways via C3–C6 cyclisation or benzylic rearrangement over versatile catalysts (e.g., aqueous acids, zeolites, metal oxides) with Brønsted/Lewis acidity to produce a variety of oxygenates in bio-oil. This minireview may provoke more CFP technologies by clarifying the opportunities and challenges in the selective production of different reformed oxygenates, complementing CFP-based production of aromatics from biomass.
{"title":"Catalytic fast pyrolysis of cellulose to oxygenates: roles of homogeneous and heterogeneous catalysts","authors":"Yingchuan Zhang, Zijing Li, Tao Zhou and Guangri Jia","doi":"10.1039/D4EY00154K","DOIUrl":"10.1039/D4EY00154K","url":null,"abstract":"<p >Catalytic fast pyrolysis (CFP) of biomass is an efficient approach that can overcome the structural recalcitrance of solid biomass (<em>e.g.</em>, crystalline cellulose) to produce sugar monomers and their derivatives within seconds. The composition of the product mixture, which is accumulated in a liquid called bio-oil, is highly tuneable through the use of <em>in situ</em>/<em>ex situ</em> catalysts for the downstream production of sustainable fuels and fine chemicals. This minireview summarises the recent advances in homogeneous and heterogeneous catalysts in the CFP production of versatile oxygenates as fuel precursors or bulk chemicals. First, a brief overview of primary CFP pathways, including cellulose-to-levoglucosan (LGA) conversion and the production of three important derivative anhydrosugars, is provided. Particular attention is paid to the roles of homogeneous and heterogeneous catalysts in promoting secondary reforming of LGA by dehydration and to alternative pathways <em>via</em> C3–C6 cyclisation or benzylic rearrangement over versatile catalysts (<em>e.g.</em>, aqueous acids, zeolites, metal oxides) with Brønsted/Lewis acidity to produce a variety of oxygenates in bio-oil. This minireview may provoke more CFP technologies by clarifying the opportunities and challenges in the selective production of different reformed oxygenates, complementing CFP-based production of aromatics from biomass.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1238-1246"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00154k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}