首页 > 最新文献

EES catalysis最新文献

英文 中文
Correction: High photocatalytic yield in the non-oxidative coupling of methane using a Pd–TiO2 nanomembrane gas flow-through reactor 更正:利用 Pd-TiO2 纳米膜气体直流反应器实现甲烷非氧化偶联的高光催化产率。
Pub Date : 2024-10-15 DOI: 10.1039/D4EY90022G
Victor Longo, Luana De Pasquale, Francesco Tavella, Mariam Barawi, Miguel Gomez-Mendoza, Víctor de la Peña O’Shea, Claudio Ampelli, Siglinda Perathoner, Gabriele Centi and Chiara Genovese

Correction for ‘High photocatalytic yield in the non-oxidative coupling of methane using a Pd–TiO2 nanomembrane gas flow-through reactor’ by Victor Longo et al., EES. Catal., 2024, 2, 1164–1175, https://doi.org/10.1039/D4EY00112E.

[此处更正了文章 DOI:10.1039/D4EY00112E]。
{"title":"Correction: High photocatalytic yield in the non-oxidative coupling of methane using a Pd–TiO2 nanomembrane gas flow-through reactor","authors":"Victor Longo, Luana De Pasquale, Francesco Tavella, Mariam Barawi, Miguel Gomez-Mendoza, Víctor de la Peña O’Shea, Claudio Ampelli, Siglinda Perathoner, Gabriele Centi and Chiara Genovese","doi":"10.1039/D4EY90022G","DOIUrl":"10.1039/D4EY90022G","url":null,"abstract":"<p >Correction for ‘High photocatalytic yield in the non-oxidative coupling of methane using a Pd–TiO<small><sub>2</sub></small> nanomembrane gas flow-through reactor’ by Victor Longo <em>et al.</em>, <em>EES. Catal.</em>, 2024, <strong>2</strong>, 1164–1175, https://doi.org/10.1039/D4EY00112E.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1320-1320"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in in situ characterization of electrocatalysis 电催化原位表征的研究进展
Pub Date : 2024-10-14 DOI: 10.1039/D4EY00168K
Wei Shen, Yizhen Ye, Qiujin Xia and Pinxian Xi

With the continuous development and extensive research of electrocatalytic technology, the unclear dynamic catalytic reaction process limits the in-depth study of reaction regulation mechanisms and the targeted design of excellent catalysts. The comprehension of electrochemical reactions through conventional ex situ characterization techniques poses a formidable challenge. Fortunately, in situ characterization technology makes it possible to further clarify the mechanism of electrocatalytic reactions. Here, we will select some highlight studies of in situ characterization techniques during electrochemical reactions to introduce features and difficulties in practical experiments and give some advice and evaluate future development trends for relevant fields. This article will show the advantages as well as challenges in the in situ technology in electrocatalytic reactions, and indicate the development directions.

随着电催化技术的不断发展和广泛研究,不明确的催化反应动态过程限制了对反应调控机理的深入研究和对优良催化剂的针对性设计。通过传统的非原位表征技术来理解电化学反应是一个巨大的挑战。幸运的是,原位表征技术使得进一步阐明电催化反应的机理成为可能。本文将选取电化学反应现场表征技术的一些重点研究,介绍其特点和实际实验中的难点,并对相关领域的未来发展趋势提出建议和评价。本文将介绍电催化原位技术的优点和面临的挑战,并指出其发展方向。
{"title":"Progress in in situ characterization of electrocatalysis","authors":"Wei Shen, Yizhen Ye, Qiujin Xia and Pinxian Xi","doi":"10.1039/D4EY00168K","DOIUrl":"https://doi.org/10.1039/D4EY00168K","url":null,"abstract":"<p >With the continuous development and extensive research of electrocatalytic technology, the unclear dynamic catalytic reaction process limits the in-depth study of reaction regulation mechanisms and the targeted design of excellent catalysts. The comprehension of electrochemical reactions through conventional <em>ex situ</em> characterization techniques poses a formidable challenge. Fortunately, <em>in situ</em> characterization technology makes it possible to further clarify the mechanism of electrocatalytic reactions. Here, we will select some highlight studies of <em>in situ</em> characterization techniques during electrochemical reactions to introduce features and difficulties in practical experiments and give some advice and evaluate future development trends for relevant fields. This article will show the advantages as well as challenges in the <em>in situ</em> technology in electrocatalytic reactions, and indicate the development directions.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 10-31"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00168k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplanar synergy of a copper-based electrocatalyst favors the reduction of CO2 into C2+ products† 铜基电催化剂的面间协同作用有利于将CO2还原为C2+产物†
Pub Date : 2024-10-07 DOI: 10.1039/D4EY00141A
Jiangnan Li, Xinyi Duan, Chao Wu, Yucheng Cao, Zhiyao Duan, Wenjun Fan, Peng Zhang and Fuxiang Zhang

Although electrocatalytic reduction of carbon dioxide (CO2) into chemicals and fuels over Cu-based catalysts has been extensively investigated, the influence of their exposed facets on product selectivity remains elusive. To address this, a series of Cu-based catalysts with different ratios of exposed Cu(100) and Cu(111) facets were synthesized and examined for CO2 electroreduction, based on which a remarkable interplanar synergistic effect on the selectivity of C2+ products was demonstrated. The optimized Cu-based interplanar synergistic catalyst could deliver a faradaic efficiency of 78% with a C2+ partial current density of 663 mA cm−2, which is extremely superior to that of its corresponding Cu counterparts with only the Cu(111) or Cu(100) facet. The interplanar synergistic effect was disclosed using density functional theory calculations to mainly benefit from favorable adsorption and activation of CO2 into *CO on the Cu(111) facet and significantly promoted C–C coupling on the interface of the Cu(111) and Cu(100) facets, as confirmed by observation of the favorable surface coverage of atop-bound and bridge-bound *CO as well as formation of *OC–CHO intermediates during in situ infrared spectroscopy analysis.

虽然电催化将二氧化碳还原为化学物质和燃料的研究已经广泛开展,但铜基催化剂的暴露面对产物选择性的影响仍然难以捉摸。为了解决这一问题,我们合成了一系列不同暴露铜(100)和铜(111)面比的Cu基催化剂,并对其进行了CO2电还原实验,在此基础上证明了对C2+产物选择性的显着的面间协同效应。优化后的Cu基面间协同催化剂在C2+偏电流密度为663 mA cm−2的情况下,具有78%的法拉第效率,大大优于仅具有Cu(111)或Cu(100)面协同催化剂。利用密度泛函理论计算揭示了面间协同效应,主要受益于Cu(111)面对*CO的有利吸附和活化,并显著促进了Cu(111)和Cu(100)面界面上的C-C耦合,通过原位红外光谱分析观察到良好的顶界和桥界*CO的表面覆盖以及* OC-CHO中间体的形成。
{"title":"Interplanar synergy of a copper-based electrocatalyst favors the reduction of CO2 into C2+ products†","authors":"Jiangnan Li, Xinyi Duan, Chao Wu, Yucheng Cao, Zhiyao Duan, Wenjun Fan, Peng Zhang and Fuxiang Zhang","doi":"10.1039/D4EY00141A","DOIUrl":"https://doi.org/10.1039/D4EY00141A","url":null,"abstract":"<p >Although electrocatalytic reduction of carbon dioxide (CO<small><sub>2</sub></small>) into chemicals and fuels over Cu-based catalysts has been extensively investigated, the influence of their exposed facets on product selectivity remains elusive. To address this, a series of Cu-based catalysts with different ratios of exposed Cu(100) and Cu(111) facets were synthesized and examined for CO<small><sub>2</sub></small> electroreduction, based on which a remarkable interplanar synergistic effect on the selectivity of C<small><sub>2+</sub></small> products was demonstrated. The optimized Cu-based interplanar synergistic catalyst could deliver a faradaic efficiency of 78% with a C<small><sub>2+</sub></small> partial current density of 663 mA cm<small><sup>−2</sup></small>, which is extremely superior to that of its corresponding Cu counterparts with only the Cu(111) or Cu(100) facet. The interplanar synergistic effect was disclosed using density functional theory calculations to mainly benefit from favorable adsorption and activation of CO<small><sub>2</sub></small> into *CO on the Cu(111) facet and significantly promoted C–C coupling on the interface of the Cu(111) and Cu(100) facets, as confirmed by observation of the favorable surface coverage of atop-bound and bridge-bound *CO as well as formation of *OC–CHO intermediates during <em>in situ</em> infrared spectroscopy analysis.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 80-86"},"PeriodicalIF":0.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00141a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A supported Au/HZSM-5 catalyst for toluene removal by air plasma catalytic oxidation using the cycled storage-discharge (CSD) mode† 一种负载型Au/HZSM-5空气等离子体催化氧化脱甲苯催化剂,采用循环储放(CSD)模式
Pub Date : 2024-10-03 DOI: 10.1039/D4EY00159A
Amin Zhou, Xiao-Song Li, Jing-Lin Liu, Lan-Bo Di and Ai-Min Zhu

Air plasma catalytic oxidation of toluene (C7H8) with the cycled storage-discharge (CSD) mode is a promising technology for toluene (C7H8) removal. However, the problem of low CO2 selectivity must be solved. In this work, a novel HZSM-5 (HZ) supported Au catalyst (Au/HZ) with ca. 5.7 nm Au nanoparticles was prepared by combining impregnation-ammonia washing and plasma treatment, and adopted for C7H8 removal. Au/HZ displays a large breakthrough capacity and an excellent oxidation ability of C7H8 in dry and wet air plasma. To investigate the mechanism of CO2 selectivity improvement with the Au/HZ catalyst, air plasma catalytic oxidation of gaseous C7H8 and CO, as well as the adsorption of C7H8 and CO on the catalysts were conducted. For plasma-catalytic oxidation of gaseous C7H8 over Au/HZ, the CO2 selectivity is 97.5%, significantly higher than those of HZ (55%) and Ag/HZ (62%). In situ TPD tests indicate that Au/HZ possesses a moderate adsorption strength for CO and C7H8 compared with HZ and Ag/HZ. Meanwhile, plasma oxidation of CO over Au/HZ reaches 100%, which is much higher than those of HZ (15%) and Ag/HZ (24%). Nearly 100% C7H8 conversion and CO2 selectivity of plasma-catalytic oxidation of C7H8 on Au/HZ can be attributed to the moderate adsorption strength of Au/HZ for C7H8 and CO, and very high plasma catalytic activity for CO oxidation.

空气等离子体催化氧化甲苯(C7H8)的循环储放(CSD)模式是一种很有前途的甲苯(C7H8)脱除技术。但是,必须解决低CO2选择性的问题。采用浸渍-氨洗涤和等离子体处理相结合的方法,制备了一种新型的HZSM-5 (HZ)负载型Au催化剂(Au/HZ), Au纳米颗粒约为5.7 nm,并用于C7H8的脱除。Au/HZ在干湿空气等离子体中均表现出较大的突破容量和优异的C7H8氧化能力。为了研究Au/HZ催化剂提高CO2选择性的机理,进行了空气等离子体催化氧化气态C7H8和CO,以及C7H8和CO在催化剂上的吸附。在Au/HZ条件下,等离子体催化氧化气态C7H8的CO2选择性为97.5%,显著高于HZ条件(55%)和Ag/HZ条件(62%)。原位TPD试验表明,与HZ和Ag/HZ相比,Au/HZ对CO和C7H8具有中等的吸附强度。同时,Au/HZ下CO的等离子体氧化率达到100%,远高于HZ(15%)和Ag/HZ(24%)。Au/HZ对C7H8和CO的吸附强度适中,对CO氧化具有很高的等离子体催化活性,因此等离子体催化氧化C7H8在Au/HZ上的C7H8转化率和CO2选择性接近100%。
{"title":"A supported Au/HZSM-5 catalyst for toluene removal by air plasma catalytic oxidation using the cycled storage-discharge (CSD) mode†","authors":"Amin Zhou, Xiao-Song Li, Jing-Lin Liu, Lan-Bo Di and Ai-Min Zhu","doi":"10.1039/D4EY00159A","DOIUrl":"https://doi.org/10.1039/D4EY00159A","url":null,"abstract":"<p >Air plasma catalytic oxidation of toluene (C<small><sub>7</sub></small>H<small><sub>8</sub></small>) with the cycled storage-discharge (CSD) mode is a promising technology for toluene (C<small><sub>7</sub></small>H<small><sub>8</sub></small>) removal. However, the problem of low CO<small><sub>2</sub></small> selectivity must be solved. In this work, a novel HZSM-5 (HZ) supported Au catalyst (Au/HZ) with <em>ca.</em> 5.7 nm Au nanoparticles was prepared by combining impregnation-ammonia washing and plasma treatment, and adopted for C<small><sub>7</sub></small>H<small><sub>8</sub></small> removal. Au/HZ displays a large breakthrough capacity and an excellent oxidation ability of C<small><sub>7</sub></small>H<small><sub>8</sub></small> in dry and wet air plasma. To investigate the mechanism of CO<small><sub>2</sub></small> selectivity improvement with the Au/HZ catalyst, air plasma catalytic oxidation of gaseous C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO, as well as the adsorption of C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO on the catalysts were conducted. For plasma-catalytic oxidation of gaseous C<small><sub>7</sub></small>H<small><sub>8</sub></small> over Au/HZ, the CO<small><sub>2</sub></small> selectivity is 97.5%, significantly higher than those of HZ (55%) and Ag/HZ (62%). <em>In situ</em> TPD tests indicate that Au/HZ possesses a moderate adsorption strength for CO and C<small><sub>7</sub></small>H<small><sub>8</sub></small> compared with HZ and Ag/HZ. Meanwhile, plasma oxidation of CO over Au/HZ reaches 100%, which is much higher than those of HZ (15%) and Ag/HZ (24%). Nearly 100% C<small><sub>7</sub></small>H<small><sub>8</sub></small> conversion and CO<small><sub>2</sub></small> selectivity of plasma-catalytic oxidation of C<small><sub>7</sub></small>H<small><sub>8</sub></small> on Au/HZ can be attributed to the moderate adsorption strength of Au/HZ for C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO, and very high plasma catalytic activity for CO oxidation.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 97-105"},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00159a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embedding the intermetallic Pt5Ce alloy in mesopores through Pt–C coordination layer interactions as a stable electrocatalyst for the oxygen reduction reaction† 通过 Pt-C 配位层相互作用将金属间 Pt5Ce 合金嵌入介孔,作为氧还原反应的稳定电催化剂†。
Pub Date : 2024-10-01 DOI: 10.1039/D4EY00194J
Nannan Jiang, Hao Wang, Huihui Jin, Xuwei Liu and Lunhui Guan

Platinum dissolution is one of the primary factors affecting the stability of Pt-based catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). It is a significant challenge to prevent the dissolution of Pt and enhance the durability of Pt-based catalysts. In this study, we employed a one-step rapid Joule thermal shock method to fabricate a stable ORR catalyst with embedded Pt5Ce alloy (E-Pt5Ce). The strong catalyst-support interactions between the Pt–C layer suppress particle agglomeration and Ostwald ripening, and its steric hindrance effect reduces the electronic density at Pt sites, decreasing the adsorption energy of Pt with oxygen-containing intermediates and preventing Pt dissolution. The Pt–C layer also increases the accessibility of active sites, boosting the ORR activity. In acidic media, E-Pt5Ce shows a mass activity (MA) and specific activity (SA) of 2.86 A mgPt−1 and 2.03 mA cm−2, outperforming the commercial Pt/C by factors of approximately 15 and 5, respectively. When used as a cathode catalyst for a PEMFC, the MA at 0.90 V is almost twice the DOE 2025 target. After stability testing, there is no prominent loss in catalytic activity. Density functional theory calculations confirm that the Pt–C coordination bonds also serve as reactive sites. This work uncovers the mechanism of action of the Pt–C coordination layer, which plays a crucial role in the preparation and performance of ORR catalysts.

铂溶解是影响质子交换膜燃料电池(PEMFC)中氧还原反应(ORR)铂基催化剂稳定性的主要因素之一。如何防止铂溶解并提高铂基催化剂的耐久性是一项重大挑战。在本研究中,我们采用一步快速焦耳热冲击法制备了一种具有嵌入式 Pt5Ce 合金(E-Pt5Ce)的稳定 ORR 催化剂。铂-铈层之间强烈的催化剂-支撑相互作用抑制了颗粒团聚和奥斯特瓦尔德熟化,其立体阻碍效应降低了铂位点的电子密度,降低了铂与含氧中间产物的吸附能,防止了铂的溶解。Pt-C 层还增加了活性位点的可达性,提高了 ORR 活性。在酸性介质中,E-Pt5Ce 的质量活性(MA)和比活性(SA)分别为 2.86 A mgPt-1 和 2.03 mA cm-2,分别比商用 Pt/C 高出约 15 倍和 5 倍。在用作 PEMFC 阴极催化剂时,0.90 V 时的 MA 值几乎是 DOE 2025 目标值的两倍。经过稳定性测试,催化活性没有明显下降。密度泛函理论计算证实,Pt-C 配位键也是反应位点。这项工作揭示了铂-铂配位层的作用机理,这在 ORR 催化剂的制备和性能方面起着至关重要的作用。
{"title":"Embedding the intermetallic Pt5Ce alloy in mesopores through Pt–C coordination layer interactions as a stable electrocatalyst for the oxygen reduction reaction†","authors":"Nannan Jiang, Hao Wang, Huihui Jin, Xuwei Liu and Lunhui Guan","doi":"10.1039/D4EY00194J","DOIUrl":"https://doi.org/10.1039/D4EY00194J","url":null,"abstract":"<p >Platinum dissolution is one of the primary factors affecting the stability of Pt-based catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). It is a significant challenge to prevent the dissolution of Pt and enhance the durability of Pt-based catalysts. In this study, we employed a one-step rapid Joule thermal shock method to fabricate a stable ORR catalyst with embedded Pt<small><sub>5</sub></small>Ce alloy (E-Pt<small><sub>5</sub></small>Ce). The strong catalyst-support interactions between the Pt–C layer suppress particle agglomeration and Ostwald ripening, and its steric hindrance effect reduces the electronic density at Pt sites, decreasing the adsorption energy of Pt with oxygen-containing intermediates and preventing Pt dissolution. The Pt–C layer also increases the accessibility of active sites, boosting the ORR activity. In acidic media, E-Pt<small><sub>5</sub></small>Ce shows a mass activity (MA) and specific activity (SA) of 2.86 A mg<small><sub>Pt</sub></small><small><sup>−1</sup></small> and 2.03 mA cm<small><sup>−2</sup></small>, outperforming the commercial Pt/C by factors of approximately 15 and 5, respectively. When used as a cathode catalyst for a PEMFC, the MA at 0.90 V is almost twice the DOE 2025 target. After stability testing, there is no prominent loss in catalytic activity. Density functional theory calculations confirm that the Pt–C coordination bonds also serve as reactive sites. This work uncovers the mechanism of action of the Pt–C coordination layer, which plays a crucial role in the preparation and performance of ORR catalysts.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1253-1262"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00194j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient CO2-to-CO conversion in dye-sensitized photocatalytic systems enabled by electrostatically-driven catalyst binding† 通过静电驱动催化剂结合实现染料敏化光催化系统中 CO2 到 CO 的高效转化†。
Pub Date : 2024-09-23 DOI: 10.1039/D4EY00156G
Vasilis Nikolaou, Palas Baran Pati, Hélène Terrisse, Marc Robert and Fabrice Odobel

The development of noble metal-free dye-sensitized photocatalytic systems (DSPs) for CO2-to-CO conversion remains limited. Current literature primarily focuses on a single strategy: the simultaneous loading of both the photosensitizer (PS) and the catalyst (CAT) onto titanium dioxide nanoparticles (TiO2 NPs) using anchoring groups. Here, we introduce an innovative method through immobilizing a positively-charged molecular CAT onto negatively-charged PS–TiO2 NPs. Our approach yields promising results, including near-complete CO2-to-CO conversion (∼100% CO) and exceptional stability, achieving 1658 turnover numbers versus the CAT and an apparent quantum yield efficiency (AQY) of 16.9%.

用于将 CO2 转化为 CO 的无贵金属染料敏化光催化系统(DSP)的开发仍然有限。目前的文献主要关注单一策略:利用锚定基团将光敏剂(PS)和催化剂(CAT)同时负载到二氧化钛纳米颗粒(TiO2 NPs)上。在这里,我们介绍了一种创新方法,即把带正电荷的分子 CAT 固定到带负电荷的 PS-TiO2 NPs 上。我们的方法取得了可喜的成果,包括近乎完全的 CO2 到 CO 的转化(CO 转化率达 100%)和卓越的稳定性,CAT 的转化率达 1658,表观量子产率效率(AQY)达 16.9%。
{"title":"Efficient CO2-to-CO conversion in dye-sensitized photocatalytic systems enabled by electrostatically-driven catalyst binding†","authors":"Vasilis Nikolaou, Palas Baran Pati, Hélène Terrisse, Marc Robert and Fabrice Odobel","doi":"10.1039/D4EY00156G","DOIUrl":"https://doi.org/10.1039/D4EY00156G","url":null,"abstract":"<p >The development of noble metal-free dye-sensitized photocatalytic systems (DSPs) for CO<small><sub>2</sub></small>-to-CO conversion remains limited. Current literature primarily focuses on a single strategy: the simultaneous loading of both the photosensitizer (PS) and the catalyst (CAT) onto titanium dioxide nanoparticles (TiO<small><sub>2</sub></small> NPs) using anchoring groups. Here, we introduce an innovative method through immobilizing a positively-charged molecular CAT onto negatively-charged PS–TiO<small><sub>2</sub></small> NPs. Our approach yields promising results, including near-complete CO<small><sub>2</sub></small>-to-CO conversion (∼100% CO) and exceptional stability, achieving 1658 turnover numbers <em>versus</em> the CAT and an apparent quantum yield efficiency (AQY) of 16.9%.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1314-1319"},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00156g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green energy driven methane conversion under mild conditions 温和条件下的绿色能源驱动甲烷转化
Pub Date : 2024-09-11 DOI: 10.1039/D4EY00155A
Jiakang You, Yifan Bao, Yanzhao Zhang, Muxina Konarova, Zhiliang Wang and Lianzhou Wang

Methane is a critical energy resource but also a potent greenhouse gas, significantly contributing to global warming. To mitigate the negative effect of methane, it is meaningful to explore an effective methane conversion process motivated with green energy such as green electricity and sunlight. The selectivity and production rate are the key criteria in methane conversion. This review provides a comprehensive overview of recent efforts and understanding in methane conversion to valuable products, including oxygenates and hydrocarbons, by taking advantage of electrocatalysis and photocatalysis. The review begins with a general understanding of C–H bond activation mechanisms. It then focuses on electrocatalytic methane conversion (EMC) with an emphasis on catalyst design for oxygenate production, and photocatalytic methane conversion (PMC) with a particular focus on hydrocarbon production, especially ethylene (C2H4), due to the differences in oxygen sources between the two systems. An in-depth understanding of EMC and PMC mechanisms is also discussed to provide insights for improved catalyst design aimed at selective product generation. Finally, successful catalyst designs for EMC and PMC are summarized to identify challenges in achieving highly efficient and selective production of value-added chemicals and to offer clear guidance for future research efforts in green methane conversion.

甲烷是全球能源供应的 "珍纳斯",它对大气的加热能力很强,因此会导致全球变暖。为了解决甲烷的负面影响,探索一种以绿色能源(如绿色电力和阳光)为动力的有效甲烷转化工艺非常有意义。选择性和生产率是甲烷转化的关键标准。本综述全面概述了近年来利用电催化和光催化技术将甲烷转化为有价值产品(包括含氧化合物和碳氢化合物)的工作和认识。从对 C-H 键活化机制的一般理解开始,电催化甲烷转化(EMC)将侧重于含氧化合物生产的催化剂设计,而光催化甲烷转化(PMC)则侧重于碳氢化合物,由于这两种系统中氧源的不同,其重点是 C2H4 的生产。对 EMC 和 PMC 机理的深入理解也为更好地设计催化剂以生产选择性产品提供了启示。总之,本综述总结了一些成功的 EMC 和 PMC 催化剂设计,以及高效和选择性增值化学品生产所面临的挑战,为进一步研究绿色甲烷转化的新知识提供了明确的指导。
{"title":"Green energy driven methane conversion under mild conditions","authors":"Jiakang You, Yifan Bao, Yanzhao Zhang, Muxina Konarova, Zhiliang Wang and Lianzhou Wang","doi":"10.1039/D4EY00155A","DOIUrl":"10.1039/D4EY00155A","url":null,"abstract":"<p >Methane is a critical energy resource but also a potent greenhouse gas, significantly contributing to global warming. To mitigate the negative effect of methane, it is meaningful to explore an effective methane conversion process motivated with green energy such as green electricity and sunlight. The selectivity and production rate are the key criteria in methane conversion. This review provides a comprehensive overview of recent efforts and understanding in methane conversion to valuable products, including oxygenates and hydrocarbons, by taking advantage of electrocatalysis and photocatalysis. The review begins with a general understanding of C–H bond activation mechanisms. It then focuses on electrocatalytic methane conversion (EMC) with an emphasis on catalyst design for oxygenate production, and photocatalytic methane conversion (PMC) with a particular focus on hydrocarbon production, especially ethylene (C<small><sub>2</sub></small>H<small><sub>4</sub></small>), due to the differences in oxygen sources between the two systems. An in-depth understanding of EMC and PMC mechanisms is also discussed to provide insights for improved catalyst design aimed at selective product generation. Finally, successful catalyst designs for EMC and PMC are summarized to identify challenges in achieving highly efficient and selective production of value-added chemicals and to offer clear guidance for future research efforts in green methane conversion.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1210-1227"},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00155a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic fast pyrolysis of cellulose to oxygenates: roles of homogeneous and heterogeneous catalysts 催化快速热解纤维素生成含氧化合物:均相催化剂和异相催化剂的作用
Pub Date : 2024-09-06 DOI: 10.1039/D4EY00154K
Yingchuan Zhang, Zijing Li, Tao Zhou and Guangri Jia

Catalytic fast pyrolysis (CFP) of biomass is an efficient approach that can overcome the structural recalcitrance of solid biomass (e.g., crystalline cellulose) to produce sugar monomers and their derivatives within seconds. The composition of the product mixture, which is accumulated in a liquid called bio-oil, is highly tuneable through the use of in situ/ex situ catalysts for the downstream production of sustainable fuels and fine chemicals. This minireview summarises the recent advances in homogeneous and heterogeneous catalysts in the CFP production of versatile oxygenates as fuel precursors or bulk chemicals. First, a brief overview of primary CFP pathways, including cellulose-to-levoglucosan (LGA) conversion and the production of three important derivative anhydrosugars, is provided. Particular attention is paid to the roles of homogeneous and heterogeneous catalysts in promoting secondary reforming of LGA by dehydration and to alternative pathways via C3–C6 cyclisation or benzylic rearrangement over versatile catalysts (e.g., aqueous acids, zeolites, metal oxides) with Brønsted/Lewis acidity to produce a variety of oxygenates in bio-oil. This minireview may provoke more CFP technologies by clarifying the opportunities and challenges in the selective production of different reformed oxygenates, complementing CFP-based production of aromatics from biomass.

生物质催化快速热解(CFP)是一种高效的方法,可以克服固体生物质(如结晶纤维素)的结构不稳定性,在几秒钟内生产出糖单体及其衍生物。产品混合物的成分积聚在一种称为生物油的液体中,可通过使用原位/原位催化剂进行高度调整,用于下游可持续燃料和精细化学品的生产。本微型综述总结了 CFP 生产多功能含氧化合物(作为燃料前体或大宗化学品)的均相和异相催化剂的最新进展。首先,简要概述了初级 CFP 途径,包括纤维素到左旋葡聚糖 (LGA) 的转化和三种重要衍生无水糖的生产。其中特别关注了均相和异相催化剂在促进 LGA 脱水二次转化中的作用,以及在具有布氏/刘易斯酸性的多功能催化剂(如水酸、沸石、金属氧化物)上通过 C3-C6 环化或苄基重排生成生物油中各种含氧化合物的替代途径。通过阐明选择性生产不同重整含氧化合物背后的机遇和挑战,本微型综述可能会催生更多的 CFP 技术,为基于 CFP 的生物质芳烃生产提供补充部分。
{"title":"Catalytic fast pyrolysis of cellulose to oxygenates: roles of homogeneous and heterogeneous catalysts","authors":"Yingchuan Zhang, Zijing Li, Tao Zhou and Guangri Jia","doi":"10.1039/D4EY00154K","DOIUrl":"10.1039/D4EY00154K","url":null,"abstract":"<p >Catalytic fast pyrolysis (CFP) of biomass is an efficient approach that can overcome the structural recalcitrance of solid biomass (<em>e.g.</em>, crystalline cellulose) to produce sugar monomers and their derivatives within seconds. The composition of the product mixture, which is accumulated in a liquid called bio-oil, is highly tuneable through the use of <em>in situ</em>/<em>ex situ</em> catalysts for the downstream production of sustainable fuels and fine chemicals. This minireview summarises the recent advances in homogeneous and heterogeneous catalysts in the CFP production of versatile oxygenates as fuel precursors or bulk chemicals. First, a brief overview of primary CFP pathways, including cellulose-to-levoglucosan (LGA) conversion and the production of three important derivative anhydrosugars, is provided. Particular attention is paid to the roles of homogeneous and heterogeneous catalysts in promoting secondary reforming of LGA by dehydration and to alternative pathways <em>via</em> C3–C6 cyclisation or benzylic rearrangement over versatile catalysts (<em>e.g.</em>, aqueous acids, zeolites, metal oxides) with Brønsted/Lewis acidity to produce a variety of oxygenates in bio-oil. This minireview may provoke more CFP technologies by clarifying the opportunities and challenges in the selective production of different reformed oxygenates, complementing CFP-based production of aromatics from biomass.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1238-1246"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00154k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salt precipitation and water flooding intrinsic to electrocatalytic CO2 reduction in acidic membrane electrode assemblies: fundamentals and remedies 酸性膜电极组件电催化二氧化碳还原过程中固有的盐沉淀和水浸现象:基本原理和补救措施
Pub Date : 2024-09-03 DOI: 10.1039/D4EY00170B
Qianqian Bai, Likun Xiong, Yongjia Zhang, Mutian Ma, Zhenyang Jiao, Fenglei Lyu, Zhao Deng and Yang Peng

Renewable electricity powered electrocatalytic CO2 reduction (eCO2R) is an emerging carbon-negative technology that upgrades CO2 into valuable chemicals and simultaneously stores intermittent renewable energy. eCO2R in anion exchange membrane (AEM)-based membrane electrode assemblies (MEAs) has witnessed high faradaic efficiency (FE). But severe CO2 crossover in AEMs results in low CO2 single-pass conversion (SPCCO2) and burdens the energy-intensive CO2 separation process. Utilizing cation exchange membranes (CEMs) and acidic anolytes, eCO2R in acidic MEAs is capable of addressing the CO2 crossover issue and overcoming the SPCCO2 limits in their AEM counterparts. Alkali metal cations such as K+/Cs+ are always adopted in acidic MEAs to suppress the competing hydrogen evolution reaction (HER) and boost eCO2R kinetics. However, K+/Cs+ accumulates and precipitates in the form of carbonate/bicarbonate salts in the cathode, which accelerates water flooding, deteriorates the gas-electrode–electrolyte interface, and limits the durability of acidic eCO2R MEAs to a few hours. In this mini-review, we discuss the fundamentals of salt precipitation and water flooding and propose potential remedies including inhibiting K+/Cs+ accumulation, decreasing local CO32−/HCO3 concentration, and water management in gas diffusion electrodes (GDEs). We hope that this mini-review will spur more insightful solutions to address the salt precipitation and water flooding issues and push acidic eCO2R MEAs toward industrial implementations.

以可再生电力为动力的电催化二氧化碳还原(eCO2R)是一种新兴的负碳技术,可将二氧化碳转化为有价值的化学品,同时储存间歇性可再生能源。但是,阴离子交换膜中严重的二氧化碳交叉导致二氧化碳单程转化率(SPCCO2)较低,并加重了能源密集型二氧化碳分离过程的负担。利用阳离子交换膜(CEM)和酸性电解质,酸性 MEA 中的 eCO2R 能够解决二氧化碳交叉问题,并克服 AEM 中的 SPCCO2 限制。酸性 MEA 通常采用碱金属阳离子(如 K+/Cs+)来抑制竞争性氢进化反应 (HER) 并提高 eCO2R 动力学。然而,K+/Cs+ 会以碳酸盐/碳酸氢盐的形式在阴极积累沉淀,从而加速水浸,恶化气体-电极-电解质界面,并将酸性 eCO2R MEA 的耐久性限制在几小时内。在这篇微型综述中,我们讨论了盐析出和水淹没的基本原理,并提出了潜在的补救措施,包括抑制 K+/Cs+ 积累、降低局部 CO32-/HCO3- 浓度以及气体扩散电极 (GDE) 中的水管理。我们希望这篇小型综述能促使人们提出更有见地的解决方案来解决盐沉淀和水淹没问题,并推动酸性 eCO2R MEA 走向工业化应用。
{"title":"Salt precipitation and water flooding intrinsic to electrocatalytic CO2 reduction in acidic membrane electrode assemblies: fundamentals and remedies","authors":"Qianqian Bai, Likun Xiong, Yongjia Zhang, Mutian Ma, Zhenyang Jiao, Fenglei Lyu, Zhao Deng and Yang Peng","doi":"10.1039/D4EY00170B","DOIUrl":"10.1039/D4EY00170B","url":null,"abstract":"<p >Renewable electricity powered electrocatalytic CO<small><sub>2</sub></small> reduction (eCO<small><sub>2</sub></small>R) is an emerging carbon-negative technology that upgrades CO<small><sub>2</sub></small> into valuable chemicals and simultaneously stores intermittent renewable energy. eCO<small><sub>2</sub></small>R in anion exchange membrane (AEM)-based membrane electrode assemblies (MEAs) has witnessed high faradaic efficiency (FE). But severe CO<small><sub>2</sub></small> crossover in AEMs results in low CO<small><sub>2</sub></small> single-pass conversion (SPC<small><sub>CO<small><sub>2</sub></small></sub></small>) and burdens the energy-intensive CO<small><sub>2</sub></small> separation process. Utilizing cation exchange membranes (CEMs) and acidic anolytes, eCO<small><sub>2</sub></small>R in acidic MEAs is capable of addressing the CO<small><sub>2</sub></small> crossover issue and overcoming the SPC<small><sub>CO<small><sub>2</sub></small></sub></small> limits in their AEM counterparts. Alkali metal cations such as K<small><sup>+</sup></small>/Cs<small><sup>+</sup></small> are always adopted in acidic MEAs to suppress the competing hydrogen evolution reaction (HER) and boost eCO<small><sub>2</sub></small>R kinetics. However, K<small><sup>+</sup></small>/Cs<small><sup>+</sup></small> accumulates and precipitates in the form of carbonate/bicarbonate salts in the cathode, which accelerates water flooding, deteriorates the gas-electrode–electrolyte interface, and limits the durability of acidic eCO<small><sub>2</sub></small>R MEAs to a few hours. In this mini-review, we discuss the fundamentals of salt precipitation and water flooding and propose potential remedies including inhibiting K<small><sup>+</sup></small>/Cs<small><sup>+</sup></small> accumulation, decreasing local CO<small><sub>3</sub></small><small><sup>2−</sup></small>/HCO<small><sub>3</sub></small><small><sup>−</sup></small> concentration, and water management in gas diffusion electrodes (GDEs). We hope that this mini-review will spur more insightful solutions to address the salt precipitation and water flooding issues and push acidic eCO<small><sub>2</sub></small>R MEAs toward industrial implementations.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1228-1237"},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00170b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly selective formate formation via bicarbonate conversions† 通过碳酸氢盐转化高选择性地形成甲酸盐
Pub Date : 2024-08-30 DOI: 10.1039/D4EY00122B
Kohta Nomoto, Takuya Okazaki, Kosuke Beppu, Tetsuya Shishido and Fumiaki Amano

Electrocatalytic conversion of liquid bicarbonate feedstock to formate is a promising reactive CO2 capture technology. However, bicarbonate-fed electrolyzers have shown insufficient faradaic efficiencies (FEs) for formate production due to competing hydrogen evolution reactions. In this study, we developed a bicarbonate electrolyzer incorporating a porous membrane between a proton exchange membrane (PEM) and a hydrophilic bismuth cathode. By employing the intermediate membrane to enhance in situ CO2 generation from 3.0 M KHCO3, we achieved a formate FE of 84.6% even at a high current density of 300 mA cm−2. This electrolyzer also achieved high CO2 utilization efficiency (89%) and low full-cell voltage (3.1 V) at 100 mA cm−2 owing to the rational designs of membrane electrode assemblies. Bicarbonate conversion to formate is accelerated through in situ CO2 generation and selective CO2 reduction reaction at a gas–liquid–catalyst triple-phase boundary. Additionally, the bicarbonate electrolyzer demonstrates high CO2 utilization efficiency, long-term stability, and production of pure formate salt.

将液态碳酸氢盐原料电催化转化为甲酸盐是一种前景广阔的反应性二氧化碳捕集技术。然而,由于氢进化反应的竞争,以碳酸氢盐为原料的电解槽生产甲酸盐的法拉第效率(FE)不足。在本研究中,我们开发了一种在质子交换膜(PEM)和亲水铋阴极之间加入多孔膜的碳酸氢盐电解槽。通过使用中间膜来提高 3.0 M KHCO3 中 CO2 的原位生成,即使在 300 mA cm-2 的高电流密度下,我们也实现了 84.6% 的甲酸酯 FE。由于合理设计了膜电极组件,该电解槽还实现了较高的二氧化碳利用效率(89%)和较低的全电池电压(3.1 V)(100 mA cm-2)。通过在气-液-催化剂三相边界原位生成二氧化碳和选择性二氧化碳还原反应,加速了碳酸氢盐向甲酸盐的转化。此外,该碳酸氢盐电解槽还具有较高的二氧化碳利用效率、长期稳定性和纯甲酸盐产量。
{"title":"Highly selective formate formation via bicarbonate conversions†","authors":"Kohta Nomoto, Takuya Okazaki, Kosuke Beppu, Tetsuya Shishido and Fumiaki Amano","doi":"10.1039/D4EY00122B","DOIUrl":"10.1039/D4EY00122B","url":null,"abstract":"<p >Electrocatalytic conversion of liquid bicarbonate feedstock to formate is a promising reactive CO<small><sub>2</sub></small> capture technology. However, bicarbonate-fed electrolyzers have shown insufficient faradaic efficiencies (FEs) for formate production due to competing hydrogen evolution reactions. In this study, we developed a bicarbonate electrolyzer incorporating a porous membrane between a proton exchange membrane (PEM) and a hydrophilic bismuth cathode. By employing the intermediate membrane to enhance <em>in situ</em> CO<small><sub>2</sub></small> generation from 3.0 M KHCO<small><sub>3</sub></small>, we achieved a formate FE of 84.6% even at a high current density of 300 mA cm<small><sup>−2</sup></small>. This electrolyzer also achieved high CO<small><sub>2</sub></small> utilization efficiency (89%) and low full-cell voltage (3.1 V) at 100 mA cm<small><sup>−2</sup></small> owing to the rational designs of membrane electrode assemblies. Bicarbonate conversion to formate is accelerated through <em>in situ</em> CO<small><sub>2</sub></small> generation and selective CO<small><sub>2</sub></small> reduction reaction at a gas–liquid–catalyst triple-phase boundary. Additionally, the bicarbonate electrolyzer demonstrates high CO<small><sub>2</sub></small> utilization efficiency, long-term stability, and production of pure formate salt.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 6","pages":" 1277-1284"},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00122b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EES catalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1