Carl Cesar Weber, Salvatore De Angelis, Robin Meinert, Christian Appel, Mirko Holler, Manuel Guizar-Sicairos, Lorenz Gubler and Felix N. Büchi
Minimizing the power-specific iridium loading in polymer electrolyte water electrolysis (PEWE) is essential for the commercialization and upscaling of this technology. However, decreasing the iridium loading can severely affect performance and stability. Microporous layers (MPL) can overcome some of these issues by maximizing catalyst utilization and increasing cell efficiency. In this study, we combined advanced synchrotron and lab-based X-ray imaging techniques and electrochemical characterization to improve the PEWE cell performance at low Ir loadings using novel MPLs. For the first time, the 3D nanostructure of the catalyst layer was characterized under dry and wet conditions using ptychographic X-ray laminography. We prepared catalyst layers (CL) at three iridium loadings between 2.5 and 0.1 mgIrcm−2 in two different configurations: depositing either on the membrane or on the Ti-substrate (MPL). The MPL structure and catalyst distribution at its surface were analyzed using X-ray tomographic microscopy. Moreover, we investigated the effect of introducing a thin protective Pt coating on the MPL. The electrochemical performance was characterized for all cell combinations, and an in-depth kinetic analysis revealed information on CL utilization. The MPLs exhibit significant benefits for reducing iridium loadings, allowing performance to be sustained with only modest voltage losses. The challenges in fabricating anodic CLs with reduced catalyst loadings and the advantages of using an MPL in both configurations are discussed. The findings of this study contribute to accomplishing the required targets in terms of power-specific iridium loadings for future PEWE systems.
在聚合物电解质水电解(PEWE)技术的商业化和升级过程中,最大限度地减少功率特定的铱负载至关重要。然而,降低铱负载会严重影响性能和稳定性。微孔层(MPL)可以最大限度地提高催化剂利用率和电池效率,从而克服其中的一些问题。在这项研究中,我们将先进的同步加速器和实验室 X 射线成像技术与电化学表征相结合,利用新型 MPL 提高了 PEWE 电池在低铱负载条件下的性能。我们首次使用 X 射线层析成像技术表征了催化剂层在干湿条件下的三维纳米结构。我们在 2.5 和 0.1 mgIrcm-2 之间的三种铱负载条件下,以两种不同的配置制备了催化剂层 (CL):沉积在膜上或钛基板上(MPL)。我们使用 X 射线断层显微镜分析了 MPL 结构及其表面的催化剂分布。此外,我们还研究了在 MPL 上引入薄铂保护层的效果。我们对所有电池组合的电化学性能进行了表征,深入的动力学分析揭示了有关 CL 利用的信息。MPL 在减少铱负载方面具有显著优势,只需少量电压损失即可维持性能。本研究还讨论了制造催化剂负载量降低的阳极 CL 所面临的挑战,以及在两种配置中使用 MPL 的优势。本研究的发现有助于实现未来 PEWE 系统在特定功率铱负载方面的要求目标。
{"title":"Microporous transport layers facilitating low iridium loadings in polymer electrolyte water electrolysis†","authors":"Carl Cesar Weber, Salvatore De Angelis, Robin Meinert, Christian Appel, Mirko Holler, Manuel Guizar-Sicairos, Lorenz Gubler and Felix N. Büchi","doi":"10.1039/D3EY00279A","DOIUrl":"10.1039/D3EY00279A","url":null,"abstract":"<p >Minimizing the power-specific iridium loading in polymer electrolyte water electrolysis (PEWE) is essential for the commercialization and upscaling of this technology. However, decreasing the iridium loading can severely affect performance and stability. Microporous layers (MPL) can overcome some of these issues by maximizing catalyst utilization and increasing cell efficiency. In this study, we combined advanced synchrotron and lab-based X-ray imaging techniques and electrochemical characterization to improve the PEWE cell performance at low Ir loadings using novel MPLs. For the first time, the 3D nanostructure of the catalyst layer was characterized under dry and wet conditions using ptychographic X-ray laminography. We prepared catalyst layers (CL) at three iridium loadings between 2.5 and 0.1 mg<small><sub>Ir</sub></small>cm<small><sup>−2</sup></small> in two different configurations: depositing either on the membrane or on the Ti-substrate (MPL). The MPL structure and catalyst distribution at its surface were analyzed using X-ray tomographic microscopy. Moreover, we investigated the effect of introducing a thin protective Pt coating on the MPL. The electrochemical performance was characterized for all cell combinations, and an in-depth kinetic analysis revealed information on CL utilization. The MPLs exhibit significant benefits for reducing iridium loadings, allowing performance to be sustained with only modest voltage losses. The challenges in fabricating anodic CLs with reduced catalyst loadings and the advantages of using an MPL in both configurations are discussed. The findings of this study contribute to accomplishing the required targets in terms of power-specific iridium loadings for future PEWE systems.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 585-602"},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00279a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139670282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lifang Liu, Yejun Xiao, Xiangyang Guo, Wenjun Fan, Nengcong Yang, Chunmei Jia, Shengye Jin and Fuxiang Zhang
One-dimensional (1D) nanostructured inorganic semiconductors have been extensively investigated for efficiently promoting their photocatalytic performances, but it still remains unclear for metal–organic framework (MOF)-based photocatalysis. Herein we present the synthesis 1D Mn-TBAPy MOF nanotubes (denoted as Mn-TBAPy-NT) and give the first demonstration of the marked ability of the 1D nanotube structure to promote charge separation of MOFs relative to that in the Mn-TBAPy single crystal (denoted as Mn-TBAPy-SC), a feature proposed to result from the effect of strain on the nanotubes. As specifically determined using transient absorption (TA) spectroscopy, Mn-TBAPy-NT exhibits a long-lived internal charge-separated (ICS) state (255.6 ns), longer than that for Mn-TBAPy-SC (4.6 ns) and a feature apparently responsible for its over 30-fold promoted hydrogen evolution with a rate of 203.5 μmol h−1 (ca. 10.2 mmol h−1 gcat−1) under visible light and a benchmark apparent quantum efficiency (AQE), of 11.7% at 420 ± 10 nm, among MOF-type photocatalysts. Our results open a new avenue for developing highly efficient MOF-based photocatalysts.
{"title":"One-dimensional nanotube of a metal–organic framework boosts charge separation and photocatalytic hydrogen evolution from water: synthesis and underlying understanding†","authors":"Lifang Liu, Yejun Xiao, Xiangyang Guo, Wenjun Fan, Nengcong Yang, Chunmei Jia, Shengye Jin and Fuxiang Zhang","doi":"10.1039/D4EY00007B","DOIUrl":"10.1039/D4EY00007B","url":null,"abstract":"<p >One-dimensional (1D) nanostructured inorganic semiconductors have been extensively investigated for efficiently promoting their photocatalytic performances, but it still remains unclear for metal–organic framework (MOF)-based photocatalysis. Herein we present the synthesis 1D Mn-TBAPy MOF nanotubes (denoted as Mn-TBAPy-NT) and give the first demonstration of the marked ability of the 1D nanotube structure to promote charge separation of MOFs relative to that in the Mn-TBAPy single crystal (denoted as Mn-TBAPy-SC), a feature proposed to result from the effect of strain on the nanotubes. As specifically determined using transient absorption (TA) spectroscopy, Mn-TBAPy-NT exhibits a long-lived internal charge-separated (ICS) state (255.6 ns), longer than that for Mn-TBAPy-SC (4.6 ns) and a feature apparently responsible for its over 30-fold promoted hydrogen evolution with a rate of 203.5 μmol h<small><sup>−1</sup></small> (<em>ca.</em> 10.2 mmol h<small><sup>−1</sup></small> g<small><sub>cat</sub></small><small><sup>−1</sup></small>) under visible light and a benchmark apparent quantum efficiency (AQE), of 11.7% at 420 ± 10 nm, among MOF-type photocatalysts. Our results open a new avenue for developing highly efficient MOF-based photocatalysts.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 3","pages":" 789-794"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00007b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifei Li, Karin U. D. Calvinho, Mahak Dhiman, Anders B. Laursen, Hengfei Gu, Dominick Santorelli, Zachary Clifford and G. Charles Dismukes
Bioinspired nickel phosphide electrocatalysts can produce more complex multi-carbon products than natural photosynthetic enzymes but controlling C-product selectivity and suppressing H2 evolution remain open challenges. Here, we report a significant shift in the CO2RR product distribution on Ni2P in the presence of boric acid/borate, a soluble Lewis acid/base co-catalyst. Using Ni2P without a co-catalyst, CO2 reduction produces a mixture of methyl glyoxal (C3) > 2,3-furnadiol (C4) and formic acid (C1) with 100% Faradaic efficiency for carbon products. Addition of boric acid/borate shifts product selectivity to ethylene glycol (EG) with an 85% CO2-Faradaic efficiency (at 10 mM, 0 V vs. RHE), with the balance being the aforementioned C1, C3 and C4 products. The mechanism of EG formation is proposed to occur by the co-catalyst activating a reaction between surface *hydride and *glycolaldehyde on Ni2P, while suppressing the aldol C–C coupling reaction that forms the C3 and C4 products. The formation of an intermediate borate-EG-diester, [(OCH2CHO)2B]−, is detected by 11B-NMR, which hydrolyzes to release the EG product. Extended electrolysis of boric acid modifies the surface of Ni2P by forming *BO3–Ni2P, as shown by XPS. CO2 electro-reduction on *BO3–Ni2P in the absence of free boric acid produces exclusively ethylene oxide (EO), which slowly hydrolyzes to EG in the bicarbonate electrolyte. The combined Faradaic efficiencies for CO2RR products EO + EG with free boric acid as the co-catalyst and *BO3–Ni2P as the cathode reaches 88% (at 0 V vs. RHE), a record carbon selectivity. This work illustrates the feasibility of using Lewis acid/base co-catalysts to change the established chemical reaction mechanism of an electrocatalyst to form a new, chemically predictable, more valuable product in high yield.
{"title":"Tunable product selectivity on demand: a mechanism-guided Lewis acid co-catalyst for CO2 electroreduction to ethylene glycol†","authors":"Yifei Li, Karin U. D. Calvinho, Mahak Dhiman, Anders B. Laursen, Hengfei Gu, Dominick Santorelli, Zachary Clifford and G. Charles Dismukes","doi":"10.1039/D3EY00237C","DOIUrl":"10.1039/D3EY00237C","url":null,"abstract":"<p >Bioinspired nickel phosphide electrocatalysts can produce more complex multi-carbon products than natural photosynthetic enzymes but controlling C-product selectivity and suppressing H<small><sub>2</sub></small> evolution remain open challenges. Here, we report a significant shift in the CO<small><sub>2</sub></small>RR product distribution on Ni<small><sub>2</sub></small>P in the presence of boric acid/borate, a soluble Lewis acid/base co-catalyst. Using Ni<small><sub>2</sub></small>P without a co-catalyst, CO<small><sub>2</sub></small> reduction produces a mixture of methyl glyoxal (C<small><sub>3</sub></small>) > 2,3-furnadiol (C<small><sub>4</sub></small>) and formic acid (C<small><sub>1</sub></small>) with 100% Faradaic efficiency for carbon products. Addition of boric acid/borate shifts product selectivity to ethylene glycol (EG) with an 85% CO<small><sub>2</sub></small>-Faradaic efficiency (at 10 mM, 0 V <em>vs.</em> RHE), with the balance being the aforementioned C<small><sub>1</sub></small>, C<small><sub>3</sub></small> and C<small><sub>4</sub></small> products. The mechanism of EG formation is proposed to occur by the co-catalyst activating a reaction between surface *hydride and *glycolaldehyde on Ni<small><sub>2</sub></small>P, while suppressing the aldol C–C coupling reaction that forms the C<small><sub>3</sub></small> and C<small><sub>4</sub></small> products. The formation of an intermediate borate-EG-diester, [(OCH<small><sub>2</sub></small>CHO)<small><sub>2</sub></small>B]<small><sup>−</sup></small>, is detected by <small><sup>11</sup></small>B-NMR, which hydrolyzes to release the EG product. Extended electrolysis of boric acid modifies the surface of Ni<small><sub>2</sub></small>P by forming *BO<small><sub>3</sub></small>–Ni<small><sub>2</sub></small>P, as shown by XPS. CO<small><sub>2</sub></small> electro-reduction on *BO<small><sub>3</sub></small>–Ni<small><sub>2</sub></small>P in the absence of free boric acid produces exclusively ethylene oxide (EO), which slowly hydrolyzes to EG in the bicarbonate electrolyte. The combined Faradaic efficiencies for CO<small><sub>2</sub></small>RR products EO + EG with free boric acid as the co-catalyst and *BO<small><sub>3</sub></small>–Ni<small><sub>2</sub></small>P as the cathode reaches 88% (at 0 V <em>vs</em>. RHE), a record carbon selectivity. This work illustrates the feasibility of using Lewis acid/base co-catalysts to change the established chemical reaction mechanism of an electrocatalyst to form a new, chemically predictable, more valuable product in high yield.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 3","pages":" 823-833"},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00237c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Pt–Mn2O3/CN catalyst formed through synthesis via a solvent-thermal method involves a synergistic combination of polymer CN and Pt nanoparticles loaded on Mn2O3 to catalyze the degradation of toluene. The composition incorporates Mn2O3 as the central element for photothermal conversion, CN as a uniformly dispersed matrix for Pt nanoparticles, and Pt as the catalytically active center, demonstrating significant efficacy. Particularly noteworthy is the discernible enhancement in the photothermal catalytic degradation capability of the Pt–Mn2O3/CN composite catalyst, specifically in the context of toluene. When subjected to light intensity of 300 mW cm−2 and a toluene concentration of 400 ppm, Pt–Mn2O3/CN achieves toluene conversion and CO2 mineralization rates of 99% and 80.9%, respectively. This improvement primarily stems from the Pt nanoparticles inducing a substantial presence of oxygen vacancies within the catalyst structure, thereby increasing the oxygen adsorption capacity and surface mobility. This, in turn, activates adsorbed oxygen species at the catalyst's interface. The adept utilization and conversion of solar irradiance for volatile organic compound (VOC) abatement underscore its potential as an environmentally friendly and renewable energy source.
{"title":"Photothermal catalytic oxidation of toluene over the Pt–Mn2O3/CN nanocomposite catalyst†","authors":"Xiao Yu, Chuang Zhao, Lixia Yang, Jian Zhang and Chunlin Chen","doi":"10.1039/D3EY00298E","DOIUrl":"10.1039/D3EY00298E","url":null,"abstract":"<p >The Pt–Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>/CN catalyst formed through synthesis <em>via</em> a solvent-thermal method involves a synergistic combination of polymer CN and Pt nanoparticles loaded on Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> to catalyze the degradation of toluene. The composition incorporates Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> as the central element for photothermal conversion, CN as a uniformly dispersed matrix for Pt nanoparticles, and Pt as the catalytically active center, demonstrating significant efficacy. Particularly noteworthy is the discernible enhancement in the photothermal catalytic degradation capability of the Pt–Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>/CN composite catalyst, specifically in the context of toluene. When subjected to light intensity of 300 mW cm<small><sup>−2</sup></small> and a toluene concentration of 400 ppm, Pt–Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>/CN achieves toluene conversion and CO<small><sub>2</sub></small> mineralization rates of 99% and 80.9%, respectively. This improvement primarily stems from the Pt nanoparticles inducing a substantial presence of oxygen vacancies within the catalyst structure, thereby increasing the oxygen adsorption capacity and surface mobility. This, in turn, activates adsorbed oxygen species at the catalyst's interface. The adept utilization and conversion of solar irradiance for volatile organic compound (VOC) abatement underscore its potential as an environmentally friendly and renewable energy source.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 3","pages":" 811-822"},"PeriodicalIF":0.0,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00298e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139518493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Direct electrochemical CO2 conversion in carbonate/bicarbonate based CO2 capture media has emerged as a promising technology for integrating carbon capture and CO2 electroreduction processes in recent years, garnering significant attention from researchers owing to its high energy efficiency and carbon efficiency. For a holistic understanding of the development status of this field, this minireview summarizes a series of studies on the mechanism of carbonate/bicarbonate electrolyzers. Detailed mechanisms of the electrochemical conversion of carbonate/bicarbonate, the evolution of electrolyzers, and factors influencing the performance of electrolyzers are introduced. A summary of carbonate/bicarbonate electrolyzers' performance is also provided. Representative systems and materials for regulating the selectivity towards various products (e.g., CO, formate, methane, ethylene, and ethanol) and the cell voltage are highlighted. Furthermore, the challenges and future opportunities in this research area are also discussed.
{"title":"A minireview on electrochemical CO2 conversion based on carbonate/bicarbonate media","authors":"Tiehuai Li and Minhua Shao","doi":"10.1039/D3EY00287J","DOIUrl":"10.1039/D3EY00287J","url":null,"abstract":"<p >Direct electrochemical CO<small><sub>2</sub></small> conversion in carbonate/bicarbonate based CO<small><sub>2</sub></small> capture media has emerged as a promising technology for integrating carbon capture and CO<small><sub>2</sub></small> electroreduction processes in recent years, garnering significant attention from researchers owing to its high energy efficiency and carbon efficiency. For a holistic understanding of the development status of this field, this minireview summarizes a series of studies on the mechanism of carbonate/bicarbonate electrolyzers. Detailed mechanisms of the electrochemical conversion of carbonate/bicarbonate, the evolution of electrolyzers, and factors influencing the performance of electrolyzers are introduced. A summary of carbonate/bicarbonate electrolyzers' performance is also provided. Representative systems and materials for regulating the selectivity towards various products (<em>e.g.</em>, CO, formate, methane, ethylene, and ethanol) and the cell voltage are highlighted. Furthermore, the challenges and future opportunities in this research area are also discussed.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 564-572"},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00287j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139501622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Mark Christian M. Dela Cruz, Ádám Balog, Péter S. Tóth, Gábor Bencsik, Gergely F. Samu and Csaba Janáky
Photoelectrodes with FTO/Au/Sb2Se3/TiO2/Au architecture were studied in photoelectrochemical CO2 reduction reaction (PEC CO2RR). The preparation is based on a simple spin coating technique, where nanorod-like structures were obtained for Sb2Se3, as confirmed by SEM images. A thin conformal layer of TiO2 was coated on the Sb2Se3 nanorods via ALD, which acted as both an electron transfer layer and a protective coating. Au nanoparticles were deposited as co-catalysts via photo-assisted electrodeposition at different applied potentials to control their growth and morphology. The use of such architectures has not been explored in CO2RR yet. The photoelectrochemical performance for CO2RR was investigated with different Au catalyst loadings. A photocurrent density of ∼7.5 mA cm−2 at −0.57 V vs. RHE for syngas generation was achieved, with an average Faradaic efficiency of 25 ± 6% for CO and 63 ± 12% for H2. The presented results point toward the use of Sb2Se3-based photoelectrodes in solar CO2 conversion applications.
{"title":"Au-decorated Sb2Se3 photocathodes for solar-driven CO2 reduction†","authors":"John Mark Christian M. Dela Cruz, Ádám Balog, Péter S. Tóth, Gábor Bencsik, Gergely F. Samu and Csaba Janáky","doi":"10.1039/D3EY00222E","DOIUrl":"10.1039/D3EY00222E","url":null,"abstract":"<p >Photoelectrodes with FTO/Au/Sb<small><sub>2</sub></small>Se<small><sub>3</sub></small>/TiO<small><sub>2</sub></small>/Au architecture were studied in photoelectrochemical CO<small><sub>2</sub></small> reduction reaction (PEC CO<small><sub>2</sub></small>RR). The preparation is based on a simple spin coating technique, where nanorod-like structures were obtained for Sb<small><sub>2</sub></small>Se<small><sub>3</sub></small>, as confirmed by SEM images. A thin conformal layer of TiO<small><sub>2</sub></small> was coated on the Sb<small><sub>2</sub></small>Se<small><sub>3</sub></small> nanorods <em>via</em> ALD, which acted as both an electron transfer layer and a protective coating. Au nanoparticles were deposited as co-catalysts <em>via</em> photo-assisted electrodeposition at different applied potentials to control their growth and morphology. The use of such architectures has not been explored in CO<small><sub>2</sub></small>RR yet. The photoelectrochemical performance for CO<small><sub>2</sub></small>RR was investigated with different Au catalyst loadings. A photocurrent density of ∼7.5 mA cm<small><sup>−2</sup></small> at −0.57 V <em>vs.</em> RHE for syngas generation was achieved, with an average Faradaic efficiency of 25 ± 6% for CO and 63 ± 12% for H<small><sub>2</sub></small>. The presented results point toward the use of Sb<small><sub>2</sub></small>Se<small><sub>3</sub></small>-based photoelectrodes in solar CO<small><sub>2</sub></small> conversion applications.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 664-674"},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00222e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139475432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Converting carbohydrate-rich biomass waste directly to γ-valerolactone (GVL) is highly attractive but challenging owing to the inert nature and high complexity of biomass, necessitating a versatile and selective catalytic system. Herein, we describe the first direct conversion of monosaccharides (glucose, fructose, and xylose) and polysaccharides (cellulose and hemicellulose) in high yields under mild conditions. We also present the first direct conversion of raw lignocellulose, starch, and chitin biomass to GVL. Using the homogeneous catalyst Ru-MACHO-BH in H3PO4(aq) under 30 bar H2 at 125–140 °C for 24–120 hours provides GVL in excellent yields (26–48 mol%).
{"title":"Direct biomass valorisation to γ-valerolactone by Ru-PNP catalysed hydrogenation in acid†","authors":"Sakhitha Koranchalil and Martin Nielsen","doi":"10.1039/D3EY00247K","DOIUrl":"10.1039/D3EY00247K","url":null,"abstract":"<p >Converting carbohydrate-rich biomass waste directly to γ-valerolactone (GVL) is highly attractive but challenging owing to the inert nature and high complexity of biomass, necessitating a versatile and selective catalytic system. Herein, we describe the first direct conversion of monosaccharides (glucose, fructose, and xylose) and polysaccharides (cellulose and hemicellulose) in high yields under mild conditions. We also present the first direct conversion of raw lignocellulose, starch, and chitin biomass to GVL. Using the homogeneous catalyst Ru-MACHO-BH in H<small><sub>3</sub></small>PO<small><sub>4</sub></small>(aq) under 30 bar H<small><sub>2</sub></small> at 125–140 °C for 24–120 hours provides GVL in excellent yields (26–48 mol%).</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 3","pages":" 803-810"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00247k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qinhui Guan, Chengzhe Ni, Tingjiang Yan, Na Li, Lu Wang, Zhe Lu, Weiguang Ran, Yipin Zhang, Wenjuan Li, Lulu Zhang, Dapeng Zhang, Baibiao Huang and Geoffrey A. Ozin
The archetype surface frustrated Lewis pair (SFLP) that facilitates CO2 photocatalytic hydrogenation to methanol and carbon monoxide, is an InOH⋯In site positioned in the surface of a nanoscale indium oxide hydroxide, denoted In2O3−x(OH)y. Proximal Lewis acid In(III) and Lewis base InOH of this genre serve as surface active sites that enable the photochemical heterolytic H2 dissociation and reduction of CO2 to the mentioned products. The conversion rate enabled by light has been found to far exceed that enabled by heat. Efforts to enhance the CO2 photocatalytic performance of the SFLP have involved modifications of the Lewis acidity and basicity through isomorphic substitution of In(III) with Bi(III) and changes in the population of oxygen vacancies through control of oxide non-stoichiometry. Replacement of the Lewis base hydroxide InOH by the stronger Lewis base amine InNH2 heretofore remains unexplored. The strategy described herein to explore this opportunity begins with the synthesis of In2O3−x(EDA)y. This new material is proven to contain an InNH2⋯In SFLP and its CO2 photocatalytic performance is demonstrated to outperform that of its In2O3−x(OH)y progenitor. Tailored Lewis acidity and basicity surfaces bring CO2 photocatalysis another step closer to the vision of solar CO2 refineries.
{"title":"Amine functionalized surface frustrated Lewis pairs boost CO2 photocatalysis†‡","authors":"Qinhui Guan, Chengzhe Ni, Tingjiang Yan, Na Li, Lu Wang, Zhe Lu, Weiguang Ran, Yipin Zhang, Wenjuan Li, Lulu Zhang, Dapeng Zhang, Baibiao Huang and Geoffrey A. Ozin","doi":"10.1039/D3EY00261F","DOIUrl":"10.1039/D3EY00261F","url":null,"abstract":"<p >The archetype surface frustrated Lewis pair (SFLP) that facilitates CO<small><sub>2</sub></small> photocatalytic hydrogenation to methanol and carbon monoxide, is an InOH⋯In site positioned in the surface of a nanoscale indium oxide hydroxide, denoted In<small><sub>2</sub></small>O<small><sub>3−<em>x</em></sub></small>(OH)<small><sub><em>y</em></sub></small>. Proximal Lewis acid In(<small>III</small>) and Lewis base InOH of this genre serve as surface active sites that enable the photochemical heterolytic H<small><sub>2</sub></small> dissociation and reduction of CO<small><sub>2</sub></small> to the mentioned products. The conversion rate enabled by light has been found to far exceed that enabled by heat. Efforts to enhance the CO<small><sub>2</sub></small> photocatalytic performance of the SFLP have involved modifications of the Lewis acidity and basicity through isomorphic substitution of In(<small>III</small>) with Bi(<small>III</small>) and changes in the population of oxygen vacancies through control of oxide non-stoichiometry. Replacement of the Lewis base hydroxide InOH by the stronger Lewis base amine InNH<small><sub>2</sub></small> heretofore remains unexplored. The strategy described herein to explore this opportunity begins with the synthesis of In<small><sub>2</sub></small>O<small><sub>3−<em>x</em></sub></small>(EDA)<small><sub><em>y</em></sub></small>. This new material is proven to contain an InNH<small><sub>2</sub></small>⋯In SFLP and its CO<small><sub>2</sub></small> photocatalytic performance is demonstrated to outperform that of its In<small><sub>2</sub></small>O<small><sub>3−<em>x</em></sub></small>(OH)<small><sub><em>y</em></sub></small> progenitor. Tailored Lewis acidity and basicity surfaces bring CO<small><sub>2</sub></small> photocatalysis another step closer to the vision of solar CO<small><sub>2</sub></small> refineries.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 573-584"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00261f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139397475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongliang Dong, Bowen Li, Yinlong Zhu and Wanlin Guo
CO2 emission has inarguably become one of the greatest challenges ever faced by mankind since industrial revolution. Techniques aiming at capture, storage and utilization of CO2 have attracted tremendous interest from both industry and academia. Thermal, electrical and photo-catalytic conversion of CO2 to value-added chemicals and fuels is the most well-known approach for CO2 utilization. In particular, photocatalytic reduction of CO2 (CO2PR) directly employs solar energy as the driving force to activate CO2, yielding various products including CO, CH4 and C2+ hydrocarbons. CO2PR, which mimics photosynthesis occurring in nature, is also regarded as “artificial photosynthesis” and is believed to be a promising approach toward carbon neutral economy. Recently, metal halide perovskites (MHPs) have emerged as potential photocatalysts for CO2PR, owing to their flexible structures and excellent photoelectronic properties. This review presents a comprehensive overview of state-of-the-art developments in MHP-based catalysts for CO2PR. Firstly, the crystal structures and photoelectric properties of MHPs are reviewed in detail, as they are the key factors determining CO2PR catalytic performance. Secondly, design strategies to promote the catalytic efficiency of CO2PR to CO conversion for both lead-based and lead-free MHPs are discussed, including morphological modifications, co-catalyst modifications, ion doping and crystal plane modifications. Thirdly, this review addresses MHP-based CO2PR to CH4 and C2+ products, with special emphasis on approaches adopted to promote specific product selectivity. Lastly, our perspectives and opinions are given on current research challenges and future directions for CO2PR, which we consider are critical for its industrialization.
{"title":"Metal halide perovskites for CO2 photoreduction: recent advances and future perspectives","authors":"Zhongliang Dong, Bowen Li, Yinlong Zhu and Wanlin Guo","doi":"10.1039/D3EY00187C","DOIUrl":"10.1039/D3EY00187C","url":null,"abstract":"<p >CO<small><sub>2</sub></small> emission has inarguably become one of the greatest challenges ever faced by mankind since industrial revolution. Techniques aiming at capture, storage and utilization of CO<small><sub>2</sub></small> have attracted tremendous interest from both industry and academia. Thermal, electrical and photo-catalytic conversion of CO<small><sub>2</sub></small> to value-added chemicals and fuels is the most well-known approach for CO<small><sub>2</sub></small> utilization. In particular, photocatalytic reduction of CO<small><sub>2</sub></small> (CO<small><sub>2</sub></small>PR) directly employs solar energy as the driving force to activate CO<small><sub>2</sub></small>, yielding various products including CO, CH<small><sub>4</sub></small> and C<small><sub>2+</sub></small> hydrocarbons. CO<small><sub>2</sub></small>PR, which mimics photosynthesis occurring in nature, is also regarded as “artificial photosynthesis” and is believed to be a promising approach toward carbon neutral economy. Recently, metal halide perovskites (MHPs) have emerged as potential photocatalysts for CO<small><sub>2</sub></small>PR, owing to their flexible structures and excellent photoelectronic properties. This review presents a comprehensive overview of state-of-the-art developments in MHP-based catalysts for CO<small><sub>2</sub></small>PR. Firstly, the crystal structures and photoelectric properties of MHPs are reviewed in detail, as they are the key factors determining CO<small><sub>2</sub></small>PR catalytic performance. Secondly, design strategies to promote the catalytic efficiency of CO<small><sub>2</sub></small>PR to CO conversion for both lead-based and lead-free MHPs are discussed, including morphological modifications, co-catalyst modifications, ion doping and crystal plane modifications. Thirdly, this review addresses MHP-based CO<small><sub>2</sub></small>PR to CH<small><sub>4</sub></small> and C<small><sub>2+</sub></small> products, with special emphasis on approaches adopted to promote specific product selectivity. Lastly, our perspectives and opinions are given on current research challenges and future directions for CO<small><sub>2</sub></small>PR, which we consider are critical for its industrialization.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 448-474"},"PeriodicalIF":0.0,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00187c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Han Li, Bei Cheng, Jingsan Xu, Jiaguo Yu and Shaowen Cao
Photocatalysis is considered as an effective approach to address energy and environmental issues. Carbon nitride (CN) is a promising metal-free semiconductor photocatalyst because of its unique properties such as tunable electronic band structure, facile/cheap synthesis and high chemical stability. However, the pristine CN prepared by the traditional thermal polymerization method is usually an amorphous or semi-crystalline conjugated bulk with a high density of structural defects, resulting in its moderate photocatalytic activity. Increasing the crystallinity of CN is an effective strategy to enhance its photocatalytic activity, and a few methods have been proposed, including high-temperature and high-pressure treatment, ionothermal method, solvothermal synthesis and microwave-assisted thermal polymerization. This review summarizes recent advances in the preparation of crystalline carbon nitrides (CCNs) and the design of CCNs-based photocatalysts in terms of nanostructure design, molecular structure engineering and construction of CCNs-based heterojunctions. In addition, their applications in a range of photocatalysis fields such as water splitting, carbon dioxide reduction, degradation of pollutants, organic synthesis and H2O2 production are reviewed. Finally, the concluding remarks are presented as well as challenges and prospects for future development of CCNs-based photocatalysts.
{"title":"Crystalline carbon nitrides for photocatalysis","authors":"Han Li, Bei Cheng, Jingsan Xu, Jiaguo Yu and Shaowen Cao","doi":"10.1039/D3EY00302G","DOIUrl":"10.1039/D3EY00302G","url":null,"abstract":"<p >Photocatalysis is considered as an effective approach to address energy and environmental issues. Carbon nitride (CN) is a promising metal-free semiconductor photocatalyst because of its unique properties such as tunable electronic band structure, facile/cheap synthesis and high chemical stability. However, the pristine CN prepared by the traditional thermal polymerization method is usually an amorphous or semi-crystalline conjugated bulk with a high density of structural defects, resulting in its moderate photocatalytic activity. Increasing the crystallinity of CN is an effective strategy to enhance its photocatalytic activity, and a few methods have been proposed, including high-temperature and high-pressure treatment, ionothermal method, solvothermal synthesis and microwave-assisted thermal polymerization. This review summarizes recent advances in the preparation of crystalline carbon nitrides (CCNs) and the design of CCNs-based photocatalysts in terms of nanostructure design, molecular structure engineering and construction of CCNs-based heterojunctions. In addition, their applications in a range of photocatalysis fields such as water splitting, carbon dioxide reduction, degradation of pollutants, organic synthesis and H<small><sub>2</sub></small>O<small><sub>2</sub></small> production are reviewed. Finally, the concluding remarks are presented as well as challenges and prospects for future development of CCNs-based photocatalysts.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 411-447"},"PeriodicalIF":0.0,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00302g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}