Takashi Ito, Jithu Raj, Tianyu Zhang, Soumyabrata Roy and Jingjie Wu
The electrocatalytic reduction of CO2 offers a promising avenue for converting anthropogenic CO2 into valuable chemical and fuel feedstocks. Copper (Cu) catalysts have shown potential in this regard, yet challenges persist in achieving high selectivity for multi-carbon (C2+) products. Pulsed electrolysis, employing alternating anodic and cathodic potentials (Ea/Ec) or two different cathodic potentials (Ec1/Ec2), presents a promising approach to modulate activity and selectivity. In this study, we investigate the influence of catalyst morphology and operational strategies on C2+ product formation using Cu nanoparticles (NPs) and CuO nanowires (NWs) in flow cells. In Ea/Ec mode, commercial Cu NPs show negligible promotion of C2+ selectivity while CuO NWs demonstrate enhanced C2+ selectivity attributed to facile oxidation/redox cycling and grain boundary formation. In contrast, Ec1/Ec2 pulsed electrolysis promotes C2+ yield across various catalyst morphologies by enhancing CO2 accumulation, pH effect, and supplemental CO utilization. We further extend our investigation to membrane electrode assembly cells, highlighting the potential for scalability and commercialization. Our findings underscore the importance of catalyst morphology and operational strategies in optimizing C2+ product formation pulsed electrolysis, laying the groundwork for future advancements in CO2 electroreduction technologies.
二氧化碳的电催化还原为将人为二氧化碳转化为有价值的化学和燃料原料提供了一条前景广阔的途径。铜(Cu)催化剂在这方面已显示出潜力,但在实现多碳(C2+)产品的高选择性方面仍存在挑战。采用交替阳极电位和阴极电位(Ea/Ec)或两种不同的阴极电位(Ec1/Ec2)的脉冲电解是一种很有前景的调节活性和选择性的方法。在本研究中,我们研究了在流动池中使用铜纳米颗粒(NPs)和氧化铜纳米线(NWs)的催化剂形态和操作策略对 C2+ 产物形成的影响。在 Ea/Ec 模式下,商用 Cu NPs 对 C2+ 选择性的促进作用微乎其微,而 CuO NWs 则由于易于氧化/氧化还原循环和晶界形成而提高了 C2+ 选择性。与此相反,Ec1/Ec2 脉冲电解通过增强 CO2 积累、pH 值效应和补充 CO 利用,促进了各种催化剂形态的 C2+ 产率。我们进一步将研究扩展到膜电极组装电池,强调了可扩展性和商业化的潜力。我们的研究结果强调了催化剂形态和操作策略在通过脉冲电解优化 C2+ 产物形成中的重要性,为未来二氧化碳电还原技术的进步奠定了基础。
{"title":"Operational strategies of pulsed electrolysis to enhance multi-carbon product formation in electrocatalytic CO2 reduction†","authors":"Takashi Ito, Jithu Raj, Tianyu Zhang, Soumyabrata Roy and Jingjie Wu","doi":"10.1039/D4EY00039K","DOIUrl":"10.1039/D4EY00039K","url":null,"abstract":"<p >The electrocatalytic reduction of CO<small><sub>2</sub></small> offers a promising avenue for converting anthropogenic CO<small><sub>2</sub></small> into valuable chemical and fuel feedstocks. Copper (Cu) catalysts have shown potential in this regard, yet challenges persist in achieving high selectivity for multi-carbon (C<small><sub>2+</sub></small>) products. Pulsed electrolysis, employing alternating anodic and cathodic potentials (<em>E</em><small><sub>a</sub></small>/<em>E</em><small><sub>c</sub></small>) or two different cathodic potentials (<em>E</em><small><sub>c1</sub></small>/<em>E</em><small><sub>c2</sub></small>), presents a promising approach to modulate activity and selectivity. In this study, we investigate the influence of catalyst morphology and operational strategies on C<small><sub>2+</sub></small> product formation using Cu nanoparticles (NPs) and CuO nanowires (NWs) in flow cells. In <em>E</em><small><sub>a</sub></small>/<em>E</em><small><sub>c</sub></small> mode, commercial Cu NPs show negligible promotion of C<small><sub>2+</sub></small> selectivity while CuO NWs demonstrate enhanced C<small><sub>2+</sub></small> selectivity attributed to facile oxidation/redox cycling and grain boundary formation. In contrast, <em>E</em><small><sub>c1</sub></small>/<em>E</em><small><sub>c2</sub></small> pulsed electrolysis promotes C<small><sub>2+</sub></small> yield across various catalyst morphologies by enhancing CO<small><sub>2</sub></small> accumulation, pH effect, and supplemental CO utilization. We further extend our investigation to membrane electrode assembly cells, highlighting the potential for scalability and commercialization. Our findings underscore the importance of catalyst morphology and operational strategies in optimizing C<small><sub>2+</sub></small> product formation pulsed electrolysis, laying the groundwork for future advancements in CO<small><sub>2</sub></small> electroreduction technologies.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 997-1005"},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00039k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xia Zhong, Yan Zhao, Lei Li, Xin He, Hui Wang, Xiaodong Zhang and Yi Xie
Photocatalytic selective oxidation provides a green and mild way of producing high-value added chemicals, whose conversion and selectivity are limited by complex oxidation pathways mediated by various reactive radical species. Thus, using photogenerated holes as an oxidant to directly drive these oxidation reactions could overcome the above problems, whereas the simultaneously formed electrons would cause the quenching of holes or the formation of other unfavorable reactive oxygen species that would affect the reaction efficiency. Herein, a variable-valence element doping method was proposed to realize hole-mediated photocatalytic selective oxidation. By taking Cu-doped Bi2WO6 as a typical prototype, we show that the doped Cu element with monovalent and divalent character can effectively trap photogenerated electrons, thereby boosting hole accumulation for selective oxidation reactions. As expected, Cu-doped Bi2WO6 exhibited excellent catalytic performances in oxidative coupling of benzylamines. This study provides a perspective on optimizing selective oxidation by hole regulation.
{"title":"Variable-valence element doping mediated photogenerated electron trapping for selective oxidation reactions†","authors":"Xia Zhong, Yan Zhao, Lei Li, Xin He, Hui Wang, Xiaodong Zhang and Yi Xie","doi":"10.1039/D4EY00024B","DOIUrl":"10.1039/D4EY00024B","url":null,"abstract":"<p >Photocatalytic selective oxidation provides a green and mild way of producing high-value added chemicals, whose conversion and selectivity are limited by complex oxidation pathways mediated by various reactive radical species. Thus, using photogenerated holes as an oxidant to directly drive these oxidation reactions could overcome the above problems, whereas the simultaneously formed electrons would cause the quenching of holes or the formation of other unfavorable reactive oxygen species that would affect the reaction efficiency. Herein, a variable-valence element doping method was proposed to realize hole-mediated photocatalytic selective oxidation. By taking Cu-doped Bi<small><sub>2</sub></small>WO<small><sub>6</sub></small> as a typical prototype, we show that the doped Cu element with monovalent and divalent character can effectively trap photogenerated electrons, thereby boosting hole accumulation for selective oxidation reactions. As expected, Cu-doped Bi<small><sub>2</sub></small>WO<small><sub>6</sub></small> exhibited excellent catalytic performances in oxidative coupling of benzylamines. This study provides a perspective on optimizing selective oxidation by hole regulation.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 980-986"},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00024b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María Paula Salinas-Quezada, Jack K. Pedersen, Paula Sebastián-Pascual, Ib Chorkendorff, Krishanu Biswas, Jan Rossmeisl and María Escudero-Escribano
Understanding the catalytic activity of high-entropy alloys (HEAs) toward the conversion of small molecules such as carbon monoxide (CO) can provide insight into their structure–property relations. The identification of specific descriptors that govern the CO oxidation on HEAs is crucial to design new materials with customized compositions and structures. Herein, we have rationally assessed the CO oxidation mechanism on an extended AgAuCuPdPt HEA electrocatalyst under an acidic electrolyte. We compare the HEA performance with respect to platinum (Pt), palladium (Pd), and gold (Au) monometallic surfaces for CO oxidation. We also evaluated the same reaction on a binary AuPd alloy and a quaternary AuCuPdPt polycrystalline alloy with the aim of understanding the surface composition effects of the HEA. To provide insights into the descriptors controlling the CO oxidation mechanism and overpotential of the different alloy chemistry, we have combined cyclic voltammetry, surface-sensitive characterisation techniques and density functional theory (DFT) simulations. We show that silver (Ag) can improve the catalytic oxidation of CO by perturbing the *OH adsorption energy of Pd, leading to a lower onset potential. Additionally, we observed that Au segregates on the surface and that Cu is not stable at high applied potentials after CO oxidation. We highlight that HEA electrocatalysts are a valuable platform for designing more active and selective electrocatalyst surfaces.
了解高熵合金(HEAs)对一氧化碳(CO)等小分子转化的催化活性,有助于深入了解其结构-性能关系。确定支配 HEAs 上 CO 氧化的特定描述符对于设计具有定制成分和结构的新材料至关重要。在此,我们合理地评估了在酸性电解质条件下扩展的 AgAuCuPdPt HEA 电催化剂上的 CO 氧化机理。我们比较了铂 (Pt)、钯 (Pd) 和金 (Au) 单金属表面的 HEA 氧化 CO 的性能。我们还评估了二元 AuPd 合金和四元 AuCuPdPt 多晶合金上的相同反应,目的是了解 HEA 的表面成分效应。为了深入了解控制不同合金化学性质的 CO 氧化机制和过电位的描述因子,我们结合了循环伏安法、表面敏感表征技术和密度泛函理论(DFT)模拟。我们发现,银(Ag)可以通过扰动钯的*OH吸附能来改善 CO 的催化氧化,从而降低起始电位。此外,我们还观察到金会在表面发生偏析,而铜在 CO 氧化后的高电位下并不稳定。我们强调,HEA 电催化剂是设计更具活性和选择性的电催化剂表面的宝贵平台。
{"title":"Toward understanding CO oxidation on high-entropy alloy electrocatalysts†","authors":"María Paula Salinas-Quezada, Jack K. Pedersen, Paula Sebastián-Pascual, Ib Chorkendorff, Krishanu Biswas, Jan Rossmeisl and María Escudero-Escribano","doi":"10.1039/D4EY00023D","DOIUrl":"10.1039/D4EY00023D","url":null,"abstract":"<p >Understanding the catalytic activity of high-entropy alloys (HEAs) toward the conversion of small molecules such as carbon monoxide (CO) can provide insight into their structure–property relations. The identification of specific descriptors that govern the CO oxidation on HEAs is crucial to design new materials with customized compositions and structures. Herein, we have rationally assessed the CO oxidation mechanism on an extended AgAuCuPdPt HEA electrocatalyst under an acidic electrolyte. We compare the HEA performance with respect to platinum (Pt), palladium (Pd), and gold (Au) monometallic surfaces for CO oxidation. We also evaluated the same reaction on a binary AuPd alloy and a quaternary AuCuPdPt polycrystalline alloy with the aim of understanding the surface composition effects of the HEA. To provide insights into the descriptors controlling the CO oxidation mechanism and overpotential of the different alloy chemistry, we have combined cyclic voltammetry, surface-sensitive characterisation techniques and density functional theory (DFT) simulations. We show that silver (Ag) can improve the catalytic oxidation of CO by perturbing the *OH adsorption energy of Pd, leading to a lower onset potential. Additionally, we observed that Au segregates on the surface and that Cu is not stable at high applied potentials after CO oxidation. We highlight that HEA electrocatalysts are a valuable platform for designing more active and selective electrocatalyst surfaces.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 941-952"},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00023d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Wang, Zezhong Shi, Faxing Wang, Jiarui He, Yiren Zhong, Yuan Ma, Zhi Zhu, Xin-Bing Cheng, Kenneth I. Ozoemena and Yuping Wu
Correction for ‘Advanced bifunctional catalyst design for rechargeable zinc–air batteries’ by Tao Wang et al., EES. Catal., 2024, https://doi.org/10.1039/d4ey00014e.
Yasir Arafat, Muhammad Rizwan Azhar, Yijun Zhong, Xiaomin Xu, Moses O. Tadé and Zongping Shao
A durable, high-performing and cost-effective bi-functional catalyst toward oxygen reduction/evolution reactions (ORR/OER) is the key towards the practical application of Zn–air batteries (ZABs). Here, we report a new concept of combining pristine and carbonized MOFs for developing a bifunctional electrocatalyst for ZABs, where the pristine MOF acts as a support for the OER catalysts and the carbonized MOF acts as the ORR catalyst and enhances the electronic conductivity. By electroless NiP-plating over the surface of the Fe-containing 3D MOF (MIL-100), the catalyst shows superior activity for the OER, delivering a current density of 10 mA cm−2 at an overpotential of 295 mV together with a low Tafel slope of 62 mV dec−1. A 3D porous MOF serves as a substrate for growing NiP with maximal exposed active sites and the iron in the MOF interacts with NiP to further boost the intrinsic OER activity. Subsequently, we introduce carbonized ZIF-67 (C-ZIF-67) into NiP-MIL-100 to build a bifunctional catalyst, where C-ZIF-67 not only provides ORR catalytic activity but also creates a synergetic effect with NiP-MIL-100, and to expedite the charge/mass transfer. Using this air electrode for ZABs, an excellent bifunctionality with a small potential gap (0.78 V), a high peak power density (203 mW cm−2) and robust cycling over a period of 500 h were achieved.
{"title":"A bi-functional air electrode developed from a dual-MOF strategy for high-performance zinc–air batteries†","authors":"Yasir Arafat, Muhammad Rizwan Azhar, Yijun Zhong, Xiaomin Xu, Moses O. Tadé and Zongping Shao","doi":"10.1039/D4EY00008K","DOIUrl":"10.1039/D4EY00008K","url":null,"abstract":"<p >A durable, high-performing and cost-effective bi-functional catalyst toward oxygen reduction/evolution reactions (ORR/OER) is the key towards the practical application of Zn–air batteries (ZABs). Here, we report a new concept of combining pristine and carbonized MOFs for developing a bifunctional electrocatalyst for ZABs, where the pristine MOF acts as a support for the OER catalysts and the carbonized MOF acts as the ORR catalyst and enhances the electronic conductivity. By electroless NiP-plating over the surface of the Fe-containing 3D MOF (MIL-100), the catalyst shows superior activity for the OER, delivering a current density of 10 mA cm<small><sup>−2</sup></small> at an overpotential of 295 mV together with a low Tafel slope of 62 mV dec<small><sup>−1</sup></small>. A 3D porous MOF serves as a substrate for growing NiP with maximal exposed active sites and the iron in the MOF interacts with NiP to further boost the intrinsic OER activity. Subsequently, we introduce carbonized ZIF-67 (C-ZIF-67) into NiP-MIL-100 to build a bifunctional catalyst, where C-ZIF-67 not only provides ORR catalytic activity but also creates a synergetic effect with NiP-MIL-100, and to expedite the charge/mass transfer. Using this air electrode for ZABs, an excellent bifunctionality with a small potential gap (0.78 V), a high peak power density (203 mW cm<small><sup>−2</sup></small>) and robust cycling over a period of 500 h were achieved.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 968-979"},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00008k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khaled Mohammed, Reza Vakili, Donato Decarolis, Shaojun Xu, Luke Keenan, Apostolos Kordatos, Nikolay Zhelev, Chris K. Skylaris, Marina Carravetta, Emma K. Gibson, Haresh Manyar, Alexandre Goguet and Peter P. Wells
The need to achieve net zero requires decarbonisation across all areas of our industrialised society, including the production of chemicals. One example is the production of acetonitrile, which currently relies on fossil carbon. Recently, supported Pd nanoparticles have been shown to promote the selective transformation of bio-derived ethanol to acetonitrile. Elsewhere, current research has demonstrated the importance of interstitial structures of Pd in promoting specific transformations. In this study, we demonstrate through a spatially resolved operando energy-dispersive-EXAFS (EDE) technique that selectivity to acetonitrile (up to 99%) is concurrent with the formation of a PdNx phase. This was evidenced from the features observed in the X-ray absorption near edge structure that were validated against PdNx samples made via known synthesis methods. Above 240 °C, the Pd nanoparticles became progressively oxidised which led to the production of unwanted byproducts, primarily CO2. The spatially resolved analysis indicated that the Pd speciation was homogeneous across the catalyst profile throughout the series of studies performed. This work resolved the structural selectivity of Pd nanoparticles that directs ethanol ammoxidation towards acetonitrile, and provides important information on the performance descriptors required to advance this technology.
{"title":"Structural selectivity of supported Pd nanoparticles: selective ethanol ammoxidation to acetonitrile†","authors":"Khaled Mohammed, Reza Vakili, Donato Decarolis, Shaojun Xu, Luke Keenan, Apostolos Kordatos, Nikolay Zhelev, Chris K. Skylaris, Marina Carravetta, Emma K. Gibson, Haresh Manyar, Alexandre Goguet and Peter P. Wells","doi":"10.1039/D4EY00044G","DOIUrl":"10.1039/D4EY00044G","url":null,"abstract":"<p >The need to achieve net zero requires decarbonisation across all areas of our industrialised society, including the production of chemicals. One example is the production of acetonitrile, which currently relies on fossil carbon. Recently, supported Pd nanoparticles have been shown to promote the selective transformation of bio-derived ethanol to acetonitrile. Elsewhere, current research has demonstrated the importance of interstitial structures of Pd in promoting specific transformations. In this study, we demonstrate through a spatially resolved <em>operando</em> energy-dispersive-EXAFS (EDE) technique that selectivity to acetonitrile (up to 99%) is concurrent with the formation of a PdN<small><sub><em>x</em></sub></small> phase. This was evidenced from the features observed in the X-ray absorption near edge structure that were validated against PdN<small><sub><em>x</em></sub></small> samples made <em>via</em> known synthesis methods. Above 240 °C, the Pd nanoparticles became progressively oxidised which led to the production of unwanted byproducts, primarily CO<small><sub>2</sub></small>. The spatially resolved analysis indicated that the Pd speciation was homogeneous across the catalyst profile throughout the series of studies performed. This work resolved the structural selectivity of Pd nanoparticles that directs ethanol ammoxidation towards acetonitrile, and provides important information on the performance descriptors required to advance this technology.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 987-996"},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00044g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140613085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William D. H. Stinson, Robert S. Stinson, Jingjing Jin, Zejie Chen, Mingjie Xu, Fikret Aydin, Yinxian Wang, Marcos F. Calegari Andrade, Xiaoqing Pan, Tuan Anh Pham, Katherine E. Hurst, Tadashi Ogitsu, Shane Ardo and Daniel V. Esposito
Electrocatalysts encapsulated by nanoscopic overlayers can control the rate of redox reactions at the outer surface of the overlayer or at the buried interface between the overlayer and the active catalyst, leading to complex behavior in the presence of two competing electrochemical reactions. This study investigated oxide encapsulated electrocatalysts (OECs) comprised of iridium (Ir) thin films coated with an ultrathin (2–10 nm thick) silicon oxide (SiOx) or titanium oxide (TiOx) overlayer. The performance of SiOx|Ir and TiOx|Ir thin film electrodes towards the oxygen evolution reaction (OER) and Fe(II)/Fe(III) redox reactions were evaluated. An improvement in selectivity towards the OER was observed for all OECs. Overlayer properties, namely ionic and electronic conductivity, were assessed using a combination of electroanalytical methods and molecular dynamics simulations. SiOx and TiOx overlayers were found to be permeable to H2O and O2 such that the OER can occur at the MOx|Ir (M = Ti, Si) buried interface, which was further supported with molecular dynamics simulations of model SiO2 coatings. In contrast, Fe(II)/Fe(III) redox reactions occur to the same degree with TiOx overlayers having thicknesses less than 4 nm as bare electrocatalyst, while SiOx overlayers inhibit redox reactions at all thicknesses. This observation is attributed to differences in electronic transport between the buried interface and outer overlayer surface, as measured with through-plane conductivity measurements of wetted overlayer materials. These findings reveal the influence of oxide overlayer properties on the activity and selectivity of OECs and suggest opportunities to tune these properties for a wide range of electrochemical reactions.
{"title":"Probing the active sites of oxide encapsulated electrocatalysts with controllable oxygen evolution selectivity†","authors":"William D. H. Stinson, Robert S. Stinson, Jingjing Jin, Zejie Chen, Mingjie Xu, Fikret Aydin, Yinxian Wang, Marcos F. Calegari Andrade, Xiaoqing Pan, Tuan Anh Pham, Katherine E. Hurst, Tadashi Ogitsu, Shane Ardo and Daniel V. Esposito","doi":"10.1039/D4EY00074A","DOIUrl":"10.1039/D4EY00074A","url":null,"abstract":"<p >Electrocatalysts encapsulated by nanoscopic overlayers can control the rate of redox reactions at the outer surface of the overlayer or at the buried interface between the overlayer and the active catalyst, leading to complex behavior in the presence of two competing electrochemical reactions. This study investigated oxide encapsulated electrocatalysts (OECs) comprised of iridium (Ir) thin films coated with an ultrathin (2–10 nm thick) silicon oxide (SiO<small><sub><em>x</em></sub></small>) or titanium oxide (TiO<small><sub><em>x</em></sub></small>) overlayer. The performance of SiO<small><sub><em>x</em></sub></small>|Ir and TiO<small><sub><em>x</em></sub></small>|Ir thin film electrodes towards the oxygen evolution reaction (OER) and Fe(<small>II</small>)/Fe(<small>III</small>) redox reactions were evaluated. An improvement in selectivity towards the OER was observed for all OECs. Overlayer properties, namely ionic and electronic conductivity, were assessed using a combination of electroanalytical methods and molecular dynamics simulations. SiO<small><sub><em>x</em></sub></small> and TiO<small><sub><em>x</em></sub></small> overlayers were found to be permeable to H<small><sub>2</sub></small>O and O<small><sub>2</sub></small> such that the OER can occur at the MO<small><sub><em>x</em></sub></small>|Ir (M = Ti, Si) buried interface, which was further supported with molecular dynamics simulations of model SiO<small><sub>2</sub></small> coatings. In contrast, Fe(<small>II</small>)/Fe(<small>III</small>) redox reactions occur to the same degree with TiO<small><sub><em>x</em></sub></small> overlayers having thicknesses less than 4 nm as bare electrocatalyst, while SiO<small><sub><em>x</em></sub></small> overlayers inhibit redox reactions at all thicknesses. This observation is attributed to differences in electronic transport between the buried interface and outer overlayer surface, as measured with through-plane conductivity measurements of wetted overlayer materials. These findings reveal the influence of oxide overlayer properties on the activity and selectivity of OECs and suggest opportunities to tune these properties for a wide range of electrochemical reactions.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 953-967"},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00074a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia Wang, Zelin Zhao, Min Guo, Liang Xiao, Haolin Tang, Jiantao Li, Zongkui Kou and Junsheng Li
Scalable green hydrogen production via electrocatalytic water splitting is largely restricted by the insufficient activity and stability of oxygen evolution reaction (OER) catalysts at the anode. As a class of the most active OER catalysts in alkaline electrolyzers, the application of layered double hydroxides (LDHs) remains a main challenge owing to the unstable lattice oxygen dissolution due to the dominant lattice oxygen-involving OER mechanism during long-term operation. Herein, we found that using an epitaxial hetero-interfacing nickel hydroxide (namely Ni(OH)2) as an electron bridge between an active FeCo LDH and Ni foam support to form an LDH*/NFO catalyst, the electronic storage capacity around the Fermi level (−0.5 to +0.5 eV, e-DFE) sharply increases from 0.93 per cell to 1.51 per cell. Subsequently, we demonstrate that this high e-DFE enables ceaseless and fast power injection into the kinetic process of intermediate species conversion and inhibits lattice oxygen dissolution in the active FeCo LDH. Consequently, it demonstrated a low OER overpotential of 246 mV at a current density of 100 mA cm−2 and ultrahigh stability for up to 3500 hours with an ultraslow overpotential increase rate of 9.4 × 10−3 mV h−1. Therefore, we developed an epitaxial hetero-interfacial electron bridging strategy to synchronize the activity and stability of available catalysts for scalable green hydrogen production via electrocatalytic water splitting.
{"title":"Epitaxial heterointerfacial electron bridge synchronizes oxygen evolution activity and stability on a layered double hydroxide surface†","authors":"Jia Wang, Zelin Zhao, Min Guo, Liang Xiao, Haolin Tang, Jiantao Li, Zongkui Kou and Junsheng Li","doi":"10.1039/D4EY00037D","DOIUrl":"10.1039/D4EY00037D","url":null,"abstract":"<p >Scalable green hydrogen production <em>via</em> electrocatalytic water splitting is largely restricted by the insufficient activity and stability of oxygen evolution reaction (OER) catalysts at the anode. As a class of the most active OER catalysts in alkaline electrolyzers, the application of layered double hydroxides (LDHs) remains a main challenge owing to the unstable lattice oxygen dissolution due to the dominant lattice oxygen-involving OER mechanism during long-term operation. Herein, we found that using an epitaxial hetero-interfacing nickel hydroxide (namely Ni(OH)<small><sub>2</sub></small>) as an electron bridge between an active FeCo LDH and Ni foam support to form an LDH*/NFO catalyst, the electronic storage capacity around the Fermi level (−0.5 to +0.5 eV, e-D<small><sub>FE</sub></small>) sharply increases from 0.93 per cell to 1.51 per cell. Subsequently, we demonstrate that this high e-D<small><sub>FE</sub></small> enables ceaseless and fast power injection into the kinetic process of intermediate species conversion and inhibits lattice oxygen dissolution in the active FeCo LDH. Consequently, it demonstrated a low OER overpotential of 246 mV at a current density of 100 mA cm<small><sup>−2</sup></small> and ultrahigh stability for up to 3500 hours with an ultraslow overpotential increase rate of 9.4 × 10<small><sup>−3</sup></small> mV h<small><sup>−1</sup></small>. Therefore, we developed an epitaxial hetero-interfacial electron bridging strategy to synchronize the activity and stability of available catalysts for scalable green hydrogen production <em>via</em> electrocatalytic water splitting.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 3","pages":" 862-873"},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00037d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The conversion of ethane to ethylene is crucial for deriving platform chemicals from non-petroleum feedstock. However, it currently relies on steam cracking technology, which involves high temperatures and large reactors. The catalytic dehydrogenation of ethane (EDH) could resolve these issues, but its efficiency is often limited due to thermodynamics, leading to low conversion and coke formation. These challenges make it difficult for catalytic EDH to compete economically with steam cracking. Recent studies show that rational design of catalysts, such as fixing metal nanoclusters within zeolite micropores or isolated metal sites on the zeolite framework, can enhance catalytic performances. These designs lower energy barriers for carbon–hydrogen bond activation, hinder deep dehydrogenation to coke, and provide sinter-resistant metal sites for durability. This review discusses the pivotal role of zeolite structures in catalysis and sums up the principles of catalyst design for efficient non-oxidative EDH. It aims to help in the development of more efficient zeolite catalysts and enhance the viability of catalytic EDH for potential industrialization.
{"title":"Zeolite catalysts for non-oxidative ethane dehydrogenation to ethylene","authors":"Lu Liu, Liang Wang and Feng-Shou Xiao","doi":"10.1039/D4EY00031E","DOIUrl":"10.1039/D4EY00031E","url":null,"abstract":"<p >The conversion of ethane to ethylene is crucial for deriving platform chemicals from non-petroleum feedstock. However, it currently relies on steam cracking technology, which involves high temperatures and large reactors. The catalytic dehydrogenation of ethane (EDH) could resolve these issues, but its efficiency is often limited due to thermodynamics, leading to low conversion and coke formation. These challenges make it difficult for catalytic EDH to compete economically with steam cracking. Recent studies show that rational design of catalysts, such as fixing metal nanoclusters within zeolite micropores or isolated metal sites on the zeolite framework, can enhance catalytic performances. These designs lower energy barriers for carbon–hydrogen bond activation, hinder deep dehydrogenation to coke, and provide sinter-resistant metal sites for durability. This review discusses the pivotal role of zeolite structures in catalysis and sums up the principles of catalyst design for efficient non-oxidative EDH. It aims to help in the development of more efficient zeolite catalysts and enhance the viability of catalytic EDH for potential industrialization.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 923-931"},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00031e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140170934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos A. Giron Rodriguez, Nishithan C. Kani, Asger B. Moss, Bjørt Oladottir Joensen, Sahil Garg, Wanyu Deng, Terry Wilson, John R. Varcoe, Ib Chorkendorff and Brian Seger
Renewable-powered CO2 electrolysis (CO2E) is a promising strategy to reduce greenhouse gas emissions by transforming CO2 into valuable feedstocks. While recent studies in this field have focused on developing efficient catalyst materials or electrolyzer engineering, the operating temperature's effect has not been systematically examined for zero-gap electrolyzers. To examine the effects of operating temperature, a systematic investigation was conducted using zero-gap (MEA) Cu-based GDEs across a range from room temperature to 80 °C. Our results indicate that increasing the temperature improves CO2 mass transport, ionic conductivity, and water management, allowing for high catalytic activity toward CO2E. At operating temperatures greater than 50 °C, selectivity shifted substantially towards CO, with surface enhanced infrared absorption spectroscopy (SEIRAS) showing a concomitant decrease in surface CO coverage at and above this temperature. As commercial electrolyzers will operate at elevated temperatures due to ohmic heating, they may produce a significantly different product distribution than the room-temperature electrolysis prevalent in the literature. Experiments at elevated temperatures demonstrated improved results for CO2E with industrially relevant current densities (150 mA cm−2) over an extended operational period (>200 hours). Additionally, we found that the heating method strongly affects product selectivity and the electrolyzer's performance, emphasizing the need to ensure proper heating while working under these reaction systems.
以可再生能源为动力的二氧化碳电解(CO2E)是通过将二氧化碳转化为有价值的原料来减少温室气体排放的一项前景广阔的战略。虽然该领域的近期研究主要集中在开发高效催化剂材料或电解槽工程方面,但尚未对零间隙电解槽的工作温度影响进行系统研究。为了研究工作温度的影响,我们使用零间隙(MEA)铜基 GDE 在室温到 80°C 的范围内进行了系统研究。我们的研究结果表明,温度升高可改善二氧化碳的质量传输、离子传导性和水管理,从而实现对 CO2E 的高催化活性。在工作温度高于 50°C 时,选择性大大转向 CO,表面增强红外吸收光谱(SEIRAS)显示,在该温度及以上,表面 CO 覆盖率随之下降。在高温下进行的实验表明,在延长运行时间(200 小时)的情况下,以工业相关的电流密度(150 mA-cm-2)进行 CO2E 的结果有所改善。此外,我们还发现加热方法对产品的选择性和电解槽的性能有很大影响,这强调了在这些反应系统下工作时确保适当加热的必要性。
{"title":"Insights into zero-gap CO2 electrolysis at elevated temperatures†","authors":"Carlos A. Giron Rodriguez, Nishithan C. Kani, Asger B. Moss, Bjørt Oladottir Joensen, Sahil Garg, Wanyu Deng, Terry Wilson, John R. Varcoe, Ib Chorkendorff and Brian Seger","doi":"10.1039/D3EY00224A","DOIUrl":"10.1039/D3EY00224A","url":null,"abstract":"<p >Renewable-powered CO<small><sub>2</sub></small> electrolysis (CO<small><sub>2</sub></small>E) is a promising strategy to reduce greenhouse gas emissions by transforming CO<small><sub>2</sub></small> into valuable feedstocks. While recent studies in this field have focused on developing efficient catalyst materials or electrolyzer engineering, the operating temperature's effect has not been systematically examined for zero-gap electrolyzers. To examine the effects of operating temperature, a systematic investigation was conducted using zero-gap (MEA) Cu-based GDEs across a range from room temperature to 80 °C. Our results indicate that increasing the temperature improves CO<small><sub>2</sub></small> mass transport, ionic conductivity, and water management, allowing for high catalytic activity toward CO<small><sub>2</sub></small>E. At operating temperatures greater than 50 °C, selectivity shifted substantially towards CO, with surface enhanced infrared absorption spectroscopy (SEIRAS) showing a concomitant decrease in surface CO coverage at and above this temperature. As commercial electrolyzers will operate at elevated temperatures due to ohmic heating, they may produce a significantly different product distribution than the room-temperature electrolysis prevalent in the literature. Experiments at elevated temperatures demonstrated improved results for CO<small><sub>2</sub></small>E with industrially relevant current densities (150 mA cm<small><sup>−2</sup></small>) over an extended operational period (>200 hours). Additionally, we found that the heating method strongly affects product selectivity and the electrolyzer's performance, emphasizing the need to ensure proper heating while working under these reaction systems.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 3","pages":" 850-861"},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00224a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139987633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}