Pub Date : 2024-02-12DOI: 10.3389/frabi.2024.1337261
Sasikaladevi Rathinavelu, Cansu Uluseker, V. Sonkar, Shashidhar Thatikonda, I. Nambi, Jan-Ulrich Kreft
Antimicrobial resistance is a growing public health concern, increasingly recognized as a silent pandemic across the globe. Therefore, it is important to monitor all factors that could contribute to the emergence, maintenance and spread of antimicrobial resistance. Environmental antibiotic pollution is thought to be one of the contributing factors. India is one of the world’s largest consumers and producers of antibiotics. Hence, antibiotics have been detected in different environments across India, sometimes at very high concentrations due to their extensive use in humans and agriculture or due to manufacturing. We summarize the current state of knowledge on the occurrence and transport pathways of antibiotics in Indian water environments, including sewage or wastewater and treatment plants, surface waters such as rivers, lakes, and reservoirs as well as groundwater and drinking water. The factors influencing the distribution of antibiotics in the water environment, such as rainfall, population density and variations in sewage treatment are discussed, followed by existing regulations and policies aimed at the mitigation of environmental antimicrobial resistance in India, which will have global benefits. Then, we recommend directions for future research, development of standardized methods for monitoring antibiotics in water, ecological risk assessment, and exploration of strategies to prevent antibiotics from entering the environment. Finally, we provide an evaluation of how scarce the data is, and how a systematic understanding of the occurrence and concentrations of antibiotics in the water environment in India could be achieved. Overall, we highlight the urgent need for sustainable solutions to monitor and mitigate the impact of antibiotics on environmental, animal, and public health.
{"title":"Mapping the scarcity of data on antibiotics in natural and engineered water environments across India","authors":"Sasikaladevi Rathinavelu, Cansu Uluseker, V. Sonkar, Shashidhar Thatikonda, I. Nambi, Jan-Ulrich Kreft","doi":"10.3389/frabi.2024.1337261","DOIUrl":"https://doi.org/10.3389/frabi.2024.1337261","url":null,"abstract":"Antimicrobial resistance is a growing public health concern, increasingly recognized as a silent pandemic across the globe. Therefore, it is important to monitor all factors that could contribute to the emergence, maintenance and spread of antimicrobial resistance. Environmental antibiotic pollution is thought to be one of the contributing factors. India is one of the world’s largest consumers and producers of antibiotics. Hence, antibiotics have been detected in different environments across India, sometimes at very high concentrations due to their extensive use in humans and agriculture or due to manufacturing. We summarize the current state of knowledge on the occurrence and transport pathways of antibiotics in Indian water environments, including sewage or wastewater and treatment plants, surface waters such as rivers, lakes, and reservoirs as well as groundwater and drinking water. The factors influencing the distribution of antibiotics in the water environment, such as rainfall, population density and variations in sewage treatment are discussed, followed by existing regulations and policies aimed at the mitigation of environmental antimicrobial resistance in India, which will have global benefits. Then, we recommend directions for future research, development of standardized methods for monitoring antibiotics in water, ecological risk assessment, and exploration of strategies to prevent antibiotics from entering the environment. Finally, we provide an evaluation of how scarce the data is, and how a systematic understanding of the occurrence and concentrations of antibiotics in the water environment in India could be achieved. Overall, we highlight the urgent need for sustainable solutions to monitor and mitigate the impact of antibiotics on environmental, animal, and public health.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139843544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.3389/frabi.2024.1351999
Daniel Basiry, R. Kommedal, K. Kaster
Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (blaSHV-1, blaTEM-1, msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC90 values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance.
{"title":"The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects","authors":"Daniel Basiry, R. Kommedal, K. Kaster","doi":"10.3389/frabi.2024.1351999","DOIUrl":"https://doi.org/10.3389/frabi.2024.1351999","url":null,"abstract":"Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (blaSHV-1, blaTEM-1, msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC90 values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"28 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139795263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.3389/frabi.2024.1351999
Daniel Basiry, R. Kommedal, K. Kaster
Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (blaSHV-1, blaTEM-1, msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC90 values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance.
{"title":"The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects","authors":"Daniel Basiry, R. Kommedal, K. Kaster","doi":"10.3389/frabi.2024.1351999","DOIUrl":"https://doi.org/10.3389/frabi.2024.1351999","url":null,"abstract":"Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (blaSHV-1, blaTEM-1, msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC90 values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"7 3-4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139855122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.3389/frabi.2023.1309107
M. Naveed, Muhammad Waseem, Izma Mahkdoom, Nouman Ali, Farrukh Asif, J. Hassan, Hamza Jamil
Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR. Antibiotic resistance is a big issue since some bacteria may withstand almost all antibiotics. These bacteria can cause serious sickness, making them a public health threat. Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Multidrug resistant Mycobacterium tuberculosis (TB), and CRE are gut bacteria that resist antibiotics. Antimicrobial resistance is rising worldwide, increasing clinical and community morbidity and mortality. Superbugs have made antibiotic resistance in some environmental niches even harder to control. This study introduces new medicinal plants, gene-editing methods, nanomaterials, and bacterial vaccines that will fight MDR bacteria in the future.
{"title":"Transient comparison of techniques to counter multi-drug resistant bacteria: prime modules in curation of bacterial infections","authors":"M. Naveed, Muhammad Waseem, Izma Mahkdoom, Nouman Ali, Farrukh Asif, J. Hassan, Hamza Jamil","doi":"10.3389/frabi.2023.1309107","DOIUrl":"https://doi.org/10.3389/frabi.2023.1309107","url":null,"abstract":"Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR. Antibiotic resistance is a big issue since some bacteria may withstand almost all antibiotics. These bacteria can cause serious sickness, making them a public health threat. Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Multidrug resistant Mycobacterium tuberculosis (TB), and CRE are gut bacteria that resist antibiotics. Antimicrobial resistance is rising worldwide, increasing clinical and community morbidity and mortality. Superbugs have made antibiotic resistance in some environmental niches even harder to control. This study introduces new medicinal plants, gene-editing methods, nanomaterials, and bacterial vaccines that will fight MDR bacteria in the future.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"57 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139593968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.3389/frabi.2023.1329081
Alexander Lawandi, S. Kadri, John H. Powers
Antimicrobial resistance (AMR) is a challenge because it is associated with worse patient outcomes. To solve the problem will take development of interventions and policies which improve patient outcomes by prolonging survival, improving patient symptoms, function and quality of life. Logically, we should look to focusing resources in areas that would have the greatest impact on public health. AMR takes the approach of focusing on individual pathogens and “pathogen-focused” development. However, evaluating overall infections and their impact on patient outcomes reveals that 17 of 18 infection deaths are associated with susceptible pathogens. Here we discuss recentering on patients and patient outcomes instead of pathogens, and propose six suggestions on how a patient focus impacts areas and incentives for clinical research.
{"title":"Focusing on antimicrobial resistant infections –are we missing the forest for the trees and the patients for pathogens?","authors":"Alexander Lawandi, S. Kadri, John H. Powers","doi":"10.3389/frabi.2023.1329081","DOIUrl":"https://doi.org/10.3389/frabi.2023.1329081","url":null,"abstract":"Antimicrobial resistance (AMR) is a challenge because it is associated with worse patient outcomes. To solve the problem will take development of interventions and policies which improve patient outcomes by prolonging survival, improving patient symptoms, function and quality of life. Logically, we should look to focusing resources in areas that would have the greatest impact on public health. AMR takes the approach of focusing on individual pathogens and “pathogen-focused” development. However, evaluating overall infections and their impact on patient outcomes reveals that 17 of 18 infection deaths are associated with susceptible pathogens. Here we discuss recentering on patients and patient outcomes instead of pathogens, and propose six suggestions on how a patient focus impacts areas and incentives for clinical research.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.3389/frabi.2023.1291046
Williams Walana, E. K. Vicar, E. Kuugbee, Francis Sakida, I. Yabasin, Eric Faakuu, Solomon Amfoabegyi, J. Ziem
Antimicrobial resistance (AMR) remains a significant health challenge globally and nations have the responsibility to maintain a constant surveillance of AMR, particularly for the emergence of multidrug-resistant (MDR) isolates to existing antibiotics. Against this backdrop, we applied the WHO’s AWaRe (ACCESS, WATCH, and RESERVE) antibiotics classification and the European Centre for Disease Prevention and Control (ECDC)’s multidrug resistance definition for AMR isolates from clinical specimens.This study reviewed bacterial culture and antibiotic sensitivity test outcomes. These results were then grouped according to the AWaRe and ECDC-MDR classifications.In all, the culture and sensitivity results of the 3,178 clinical specimens were investigated, of which 59.5% were from female patients. The pathogens were isolated from 1,187 specimens (37.4%). The WHO’s ACCESS antibiotics, tetracycline, showed a relatively high level of insusceptibility, particularly among Gram-positive (GP) isolates (ranging from 66.7% to 76.7%), along with augmentin (ranging from 44.7% to 81.3%) and cloxacillin (ranging from 50.0% to 78.1%). However, the Gram-negative (GN) isolates showed a relatively high level of susceptibility to amikacin, augmentin, and nitrofurantoin. The WHO’s WATCH antibiotics, cefuroxime, ceftriaxone, cefotaxime, and ciprofloxacin showed a relatively high level of non-responsiveness among the GN isolates, particularly Proteus (ranging from 31.4% to 78.4%), Pseudomonas (ranging from 21.4% to 96.4%), and Enterobacter (ranging from 62.5% to 100%) spp. Among the WHO’s RESERVE antibiotics, resistance to ceftazidime was commonly associated with the GN coliform isolates: Eschericha coli, Klebsiella, and Citrobacter spp. Insusceptibility to meropenem was frequently observed in Staphylococcus spp., E. coli, coliforms, and Proteus spp. Out of the 1,187 isolates, 15.5% (184) were GAT (gentamycin, ampicillin, and tetracycline) MDR, of which 61% (112/184) were from specimens of female patients. The most predominant GAT-MDR isolates were Staphylococcus spp., E. coli, coliforms, and Klebsiella spp.In conclusion, the study revealed a relatively high level and diverse range of AMR. However, MDR in accordance with the ECDC definition was relatively low. There is, therefore, a need to have further research on AMR to inform national criteria for MDR in Ghana.
{"title":"Antimicrobial resistance of clinical bacterial isolates according to the WHO’s AWaRe and the ECDC-MDR classifications: the pattern in Ghana’s Bono East Region","authors":"Williams Walana, E. K. Vicar, E. Kuugbee, Francis Sakida, I. Yabasin, Eric Faakuu, Solomon Amfoabegyi, J. Ziem","doi":"10.3389/frabi.2023.1291046","DOIUrl":"https://doi.org/10.3389/frabi.2023.1291046","url":null,"abstract":"Antimicrobial resistance (AMR) remains a significant health challenge globally and nations have the responsibility to maintain a constant surveillance of AMR, particularly for the emergence of multidrug-resistant (MDR) isolates to existing antibiotics. Against this backdrop, we applied the WHO’s AWaRe (ACCESS, WATCH, and RESERVE) antibiotics classification and the European Centre for Disease Prevention and Control (ECDC)’s multidrug resistance definition for AMR isolates from clinical specimens.This study reviewed bacterial culture and antibiotic sensitivity test outcomes. These results were then grouped according to the AWaRe and ECDC-MDR classifications.In all, the culture and sensitivity results of the 3,178 clinical specimens were investigated, of which 59.5% were from female patients. The pathogens were isolated from 1,187 specimens (37.4%). The WHO’s ACCESS antibiotics, tetracycline, showed a relatively high level of insusceptibility, particularly among Gram-positive (GP) isolates (ranging from 66.7% to 76.7%), along with augmentin (ranging from 44.7% to 81.3%) and cloxacillin (ranging from 50.0% to 78.1%). However, the Gram-negative (GN) isolates showed a relatively high level of susceptibility to amikacin, augmentin, and nitrofurantoin. The WHO’s WATCH antibiotics, cefuroxime, ceftriaxone, cefotaxime, and ciprofloxacin showed a relatively high level of non-responsiveness among the GN isolates, particularly Proteus (ranging from 31.4% to 78.4%), Pseudomonas (ranging from 21.4% to 96.4%), and Enterobacter (ranging from 62.5% to 100%) spp. Among the WHO’s RESERVE antibiotics, resistance to ceftazidime was commonly associated with the GN coliform isolates: Eschericha coli, Klebsiella, and Citrobacter spp. Insusceptibility to meropenem was frequently observed in Staphylococcus spp., E. coli, coliforms, and Proteus spp. Out of the 1,187 isolates, 15.5% (184) were GAT (gentamycin, ampicillin, and tetracycline) MDR, of which 61% (112/184) were from specimens of female patients. The most predominant GAT-MDR isolates were Staphylococcus spp., E. coli, coliforms, and Klebsiella spp.In conclusion, the study revealed a relatively high level and diverse range of AMR. However, MDR in accordance with the ECDC definition was relatively low. There is, therefore, a need to have further research on AMR to inform national criteria for MDR in Ghana.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"52 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138593243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-05DOI: 10.3389/frabi.2023.1276982
Ishrat Jabeen, Sohidul Islam, A. K. M. I. Hassan, Zerin Tasnim, Sabbir R Shuvo
Citrobacter spp. are Gram-negative, non-spore forming, rod-shaped, facultative anaerobic bacteria from the Enterobacteriaceae family often found in soil, sewage, sludge, water, food, and the intestinal tracts of animals and humans. Several members of Citrobacter spp. especially C. freundii, C. koseri, C. braakii are frequently detected in newborn illnesses, urinary tract infections, and patients with severe underlying conditions, including hypertension, diabetes, cancer, and respiratory infections, or those who are immunocompromised. Strains of Citrobacter spp. can spread vertically or horizontally from carriers or other hospital sources and thus cause nosocomial infections in hospital settings. A total of 19 Citrobacter genomospecies have been recognized based on genomics. It has been noted that the Citrobacter genus acquired antimicrobial resistance and virulence, including invasion, colonization, biofilm formation, and toxin production. The recent emergence and spread of antimicrobial resistance to β-lactams, carbapenems, fluoroquinolones, aminoglycosides, and colistin in Citrobacter spp. through chromosomal and plasmid-mediated resistance limits the empiric treatment options. Therefore, combination therapy involving costly and potentially hazardous antibiotics poses significant challenges in treating Citrobacter infections. Here we summarized the nomenclature of Citrobacter spp., clinical manifestations, epidemiology, pathogenesis, antibiotic resistance mechanisms, and treatments from various clinical samples. This review will expand our knowledge of the genomics and epidemiology of Citrobacter spp., enabling improved control of infections and the spread of these organisms.
{"title":"A brief insight into Citrobacter species - a growing threat to public health","authors":"Ishrat Jabeen, Sohidul Islam, A. K. M. I. Hassan, Zerin Tasnim, Sabbir R Shuvo","doi":"10.3389/frabi.2023.1276982","DOIUrl":"https://doi.org/10.3389/frabi.2023.1276982","url":null,"abstract":"Citrobacter spp. are Gram-negative, non-spore forming, rod-shaped, facultative anaerobic bacteria from the Enterobacteriaceae family often found in soil, sewage, sludge, water, food, and the intestinal tracts of animals and humans. Several members of Citrobacter spp. especially C. freundii, C. koseri, C. braakii are frequently detected in newborn illnesses, urinary tract infections, and patients with severe underlying conditions, including hypertension, diabetes, cancer, and respiratory infections, or those who are immunocompromised. Strains of Citrobacter spp. can spread vertically or horizontally from carriers or other hospital sources and thus cause nosocomial infections in hospital settings. A total of 19 Citrobacter genomospecies have been recognized based on genomics. It has been noted that the Citrobacter genus acquired antimicrobial resistance and virulence, including invasion, colonization, biofilm formation, and toxin production. The recent emergence and spread of antimicrobial resistance to β-lactams, carbapenems, fluoroquinolones, aminoglycosides, and colistin in Citrobacter spp. through chromosomal and plasmid-mediated resistance limits the empiric treatment options. Therefore, combination therapy involving costly and potentially hazardous antibiotics poses significant challenges in treating Citrobacter infections. Here we summarized the nomenclature of Citrobacter spp., clinical manifestations, epidemiology, pathogenesis, antibiotic resistance mechanisms, and treatments from various clinical samples. This review will expand our knowledge of the genomics and epidemiology of Citrobacter spp., enabling improved control of infections and the spread of these organisms.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"130 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138599058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-06DOI: 10.3389/frabi.2023.1283336
Santi M. Mandal
{"title":"Editorial: Preventative strategies to stop the spread of antibiotic resistance","authors":"Santi M. Mandal","doi":"10.3389/frabi.2023.1283336","DOIUrl":"https://doi.org/10.3389/frabi.2023.1283336","url":null,"abstract":"","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139322487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-20DOI: 10.3389/frabi.2023.1202256
Patrick Kamalo, Pui-Ying Iroh Tam, Thokozani Noniwa, Chikumbutso Mpanga, Chanizya Mulambia, Ethwako Phiri, Dingase Kumwenda, Ed Phillipo, Samantha Lissauer, David Kulapani, Christina Mwinjiwa
Background Addressing AMR has been most problematic in low- and middle-income countries, which lack infrastructure, diagnostic capacity, and robust data management systems, among other factors. The implementation of locally-led efforts in a low-income country to develop sustainability and build capacity for AMR control within the existing infrastructure has not been well documented. Methods We detail current AMR control initiatives at Queen Elizabeth Central Hospital, a tertiary referral government hospital in Malawi with limited resources, and present the activities accomplished to date, lessons learned, and challenges ahead. Results The key areas of AMR control initiatives that the group focused on included laboratory diagnostics and surveillance, antimicrobial stewardship, infection prevention and control, pharmacy, leadership, education, and funding. Discussion The hospital AMR Control Working Group increased awareness, built capacity, and implemented activities around AMR control throughout the hospital, in spite of the resource limitations in this setting. Our results are based on the substantial leadership provided by the working group and committed stakeholders who have taken ownership of this process. Conclusion Limited resources pose a challenge to the implementation of AMR control activities in low- and middle-income countries. Leadership is central to implementation. Future efforts will need to transition the initiative from an almost fully personal commitment to one with wider engagement to ensure sustainability.
{"title":"Antimicrobial resistance control activities at a tertiary hospital in a low-resource setting: an example of Queen Elizabeth Central Hospital in Malawi","authors":"Patrick Kamalo, Pui-Ying Iroh Tam, Thokozani Noniwa, Chikumbutso Mpanga, Chanizya Mulambia, Ethwako Phiri, Dingase Kumwenda, Ed Phillipo, Samantha Lissauer, David Kulapani, Christina Mwinjiwa","doi":"10.3389/frabi.2023.1202256","DOIUrl":"https://doi.org/10.3389/frabi.2023.1202256","url":null,"abstract":"Background Addressing AMR has been most problematic in low- and middle-income countries, which lack infrastructure, diagnostic capacity, and robust data management systems, among other factors. The implementation of locally-led efforts in a low-income country to develop sustainability and build capacity for AMR control within the existing infrastructure has not been well documented. Methods We detail current AMR control initiatives at Queen Elizabeth Central Hospital, a tertiary referral government hospital in Malawi with limited resources, and present the activities accomplished to date, lessons learned, and challenges ahead. Results The key areas of AMR control initiatives that the group focused on included laboratory diagnostics and surveillance, antimicrobial stewardship, infection prevention and control, pharmacy, leadership, education, and funding. Discussion The hospital AMR Control Working Group increased awareness, built capacity, and implemented activities around AMR control throughout the hospital, in spite of the resource limitations in this setting. Our results are based on the substantial leadership provided by the working group and committed stakeholders who have taken ownership of this process. Conclusion Limited resources pose a challenge to the implementation of AMR control activities in low- and middle-income countries. Leadership is central to implementation. Future efforts will need to transition the initiative from an almost fully personal commitment to one with wider engagement to ensure sustainability.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136313898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-31eCollection Date: 2023-01-01DOI: 10.3389/frabi.2023.1233698
Alice B J E Jacobsen, Jane Ogden, Abel B Ekiri
Animals are considered key contributors to the development and spread of antimicrobial resistance (AMR). However, little is known about the existing AMR interventions in the animal sector. This scoping review examines the existing evidence on AMR interventions aimed at livestock, animal health professionals (AHPs), and farmers, while reviewing their impact, limitations, gaps, and lessons for future use. The scoping review was conducted following guidelines from the PRISMA-ScR checklist. The databases, Web of Science, Scopus, PubMed, and international organisations' websites (WHO, FAO, WOAH) were searched for articles reporting interventions targeting livestock, farmers, and AHPs. Interventions were categorised based on seven pre-defined primary measures including: change in antimicrobial use (AMU) practices; change in the uptake of antimicrobial stewardship (AMS); change in development of AMR; change in knowledge of appropriate AMU practices, AMR, and AMS; change in attitudes and perceptions concerning AMU, AMR, and AMS; and surveillance strategies. In total, ninety three sources were included: 66 studies, 20 reports, and 7 webpages. The reviewed interventions focused mostly on AMU practices (22/90), AMS uptake (8/90), and reduction of bacterial or resistant strains (30/90). Changes in knowledge (14/90) and attitude (1/90) were less frequently assessed and were often implicit. Most interventions were conducted within a select country (83/90) and 7/90 were at a global level. Only 19% (16/83) of interventions were implemented in low- and middle-income countries (LMICs) and most were at herd level with many self-reporting changes. Most of the interventions that focused on surveillance strategies (30/83) were implemented in high-income countries (62/83). Only one study investigated the financial implications of the intervention. The study findings provide an overview of existing AMR interventions and insights into the gaps which can be addressed to guide future interventions and research. A focus on developing, implementing and evaluating interventions in LMICs coupled with the use of objective outcome measures (e.g., measurable outcomes vs. self-reporting) will improve our understanding of the impact of interventions in these settings. Finally, assessing the financial benefits of interventions is necessary to inform feasibility and to encourage uptake of interventions aimed at reducing AMR in the animal health sector.
动物被认为是产生和传播抗菌素耐药性(AMR)的关键因素。然而,人们对动物部门现有的抗菌素耐药性干预措施知之甚少。本范围审查审查了针对牲畜、动物卫生专业人员(ahp)和农民的抗菌素耐药性干预措施的现有证据,同时审查了其影响、局限性、差距和供未来使用的经验教训。范围审查是按照PRISMA-ScR检查表的指导方针进行的。检索了Web of Science、Scopus、PubMed和国际组织的网站(WHO、FAO、WOAH)等数据库,查找报告针对牲畜、农民和ahp的干预措施的文章。干预措施根据七个预先定义的主要措施进行分类,包括:改变抗微生物药物使用(AMU)做法;抗菌药物管理(AMS)吸收的变化;抗菌素耐药性发展的变化;适当的AMU实践、AMR和AMS知识的变化;对AMU、AMR和AMS的态度和认知的改变;以及监控策略。共纳入93个来源:66项研究、20份报告和7个网页。回顾的干预措施主要集中在AMU实践(22/90)、AMS摄取(8/90)和减少细菌或耐药菌株(30/90)。知识(14/90)和态度(1/90)的变化较少被评估,而且往往是隐性的。大多数干预措施是在选定的国家内进行的(83/90),7/90是在全球一级进行的。只有19%(16/83)的干预措施是在低收入和中等收入国家实施的,而且大多数处于群体水平,存在许多自我报告变化。大多数注重监测战略的干预措施(30/83)是在高收入国家实施的(62/83)。只有一项研究调查了干预的经济影响。研究结果概述了现有的抗菌素耐药性干预措施,并深入了解了可以解决的差距,以指导未来的干预措施和研究。将重点放在制定、实施和评估中低收入国家的干预措施上,并结合使用客观的结果衡量指标(例如,可衡量的结果与自我报告),将提高我们对这些环境中干预措施影响的理解。最后,有必要评估干预措施的经济效益,以便为可行性提供信息,并鼓励采取旨在减少动物卫生部门抗菌素耐药性的干预措施。
{"title":"Antimicrobial resistance interventions in the animal sector: scoping review.","authors":"Alice B J E Jacobsen, Jane Ogden, Abel B Ekiri","doi":"10.3389/frabi.2023.1233698","DOIUrl":"10.3389/frabi.2023.1233698","url":null,"abstract":"<p><p>Animals are considered key contributors to the development and spread of antimicrobial resistance (AMR). However, little is known about the existing AMR interventions in the animal sector. This scoping review examines the existing evidence on AMR interventions aimed at livestock, animal health professionals (AHPs), and farmers, while reviewing their impact, limitations, gaps, and lessons for future use. The scoping review was conducted following guidelines from the PRISMA-ScR checklist. The databases, Web of Science, Scopus, PubMed, and international organisations' websites (WHO, FAO, WOAH) were searched for articles reporting interventions targeting livestock, farmers, and AHPs. Interventions were categorised based on seven pre-defined primary measures including: change in antimicrobial use (AMU) practices; change in the uptake of antimicrobial stewardship (AMS); change in development of AMR; change in knowledge of appropriate AMU practices, AMR, and AMS; change in attitudes and perceptions concerning AMU, AMR, and AMS; and surveillance strategies. In total, ninety three sources were included: 66 studies, 20 reports, and 7 webpages. The reviewed interventions focused mostly on AMU practices (22/90), AMS uptake (8/90), and reduction of bacterial or resistant strains (30/90). Changes in knowledge (14/90) and attitude (1/90) were less frequently assessed and were often implicit. Most interventions were conducted within a select country (83/90) and 7/90 were at a global level. Only 19% (16/83) of interventions were implemented in low- and middle-income countries (LMICs) and most were at herd level with many self-reporting changes. Most of the interventions that focused on surveillance strategies (30/83) were implemented in high-income countries (62/83). Only one study investigated the financial implications of the intervention. The study findings provide an overview of existing AMR interventions and insights into the gaps which can be addressed to guide future interventions and research. A focus on developing, implementing and evaluating interventions in LMICs coupled with the use of objective outcome measures (e.g., measurable outcomes vs. self-reporting) will improve our understanding of the impact of interventions in these settings. Finally, assessing the financial benefits of interventions is necessary to inform feasibility and to encourage uptake of interventions aimed at reducing AMR in the animal health sector.</p>","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" ","pages":"1233698"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48891424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}