Pub Date : 2023-03-24DOI: 10.3389/frabi.2023.1126468
Deniz Ece Kaya, Ege Ülgen, Ayşe Sesin Kocagöz, O. U. Sezerman
Streptococcus pneumoniae is one of the major concerns of clinicians and one of the global public health problems. This pathogen is associated with high morbidity and mortality rates and antimicrobial resistance (AMR). In the last few years, reduced genome sequencing costs have made it possible to explore more of the drug resistance of S. pneumoniae, and machine learning (ML) has become a popular tool for understanding, diagnosing, treating, and predicting these phenotypes. Nucleotide k-mers, amino acid k-mers, single nucleotide polymorphisms (SNPs), and combinations of these features have rich genetic information in whole-genome sequencing. This study compares different ML models for predicting AMR phenotype for S. pneumoniae. We compared nucleotide k-mers, amino acid k-mers, SNPs, and their combinations to predict AMR in S. pneumoniae for three antibiotics: Penicillin, Erythromycin, and Tetracycline. 980 pneumococcal strains were downloaded from the European Nucleotide Archive (ENA). Furthermore, we used and compared several machine learning methods to train the models, including random forests, support vector machines, stochastic gradient boosting, and extreme gradient boosting. In this study, we found that key features of the AMR prediction model setup and the choice of machine learning method affected the results. The approach can be applied here to further studies to improve AMR prediction accuracy and efficiency.
{"title":"A comparison of various feature extraction and machine learning methods for antimicrobial resistance prediction in streptococcus pneumoniae","authors":"Deniz Ece Kaya, Ege Ülgen, Ayşe Sesin Kocagöz, O. U. Sezerman","doi":"10.3389/frabi.2023.1126468","DOIUrl":"https://doi.org/10.3389/frabi.2023.1126468","url":null,"abstract":"Streptococcus pneumoniae is one of the major concerns of clinicians and one of the global public health problems. This pathogen is associated with high morbidity and mortality rates and antimicrobial resistance (AMR). In the last few years, reduced genome sequencing costs have made it possible to explore more of the drug resistance of S. pneumoniae, and machine learning (ML) has become a popular tool for understanding, diagnosing, treating, and predicting these phenotypes. Nucleotide k-mers, amino acid k-mers, single nucleotide polymorphisms (SNPs), and combinations of these features have rich genetic information in whole-genome sequencing. This study compares different ML models for predicting AMR phenotype for S. pneumoniae. We compared nucleotide k-mers, amino acid k-mers, SNPs, and their combinations to predict AMR in S. pneumoniae for three antibiotics: Penicillin, Erythromycin, and Tetracycline. 980 pneumococcal strains were downloaded from the European Nucleotide Archive (ENA). Furthermore, we used and compared several machine learning methods to train the models, including random forests, support vector machines, stochastic gradient boosting, and extreme gradient boosting. In this study, we found that key features of the AMR prediction model setup and the choice of machine learning method affected the results. The approach can be applied here to further studies to improve AMR prediction accuracy and efficiency.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43671745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: 10.3389/frabi.2023.1116785
T. P. Neher, M. Soupir, D. Andersen, Maggie L. O’Neill, A. Howe
Antimicrobial resistance (AMR) can develop in deep-pit swine manure storage when bacteria are selectively pressured by unmetabolized antibiotics. Subsequent manure application on row crops is then a source of AMR into soil and downstream runoff water. Therefore, understanding the patterns of diverse antibiotic resistance genes (ARGs) in manure among different farms is important for both interpreting the results of the detection of these genes from previous studies and for the use of these genes as bioindicators of manure borne antibiotic resistance in the environment. Previous studies of manure-associated ARGs are based on limited samples of manures. To better understand the distribution of ARGs between manures, we characterized manures from 48 geographically independent swine farms across Iowa. The objectives of this study were to characterize the distribution of ARGs among these manures and to evaluate what factors in manure management may influence the presence of ARGs in manures. Our analysis included quantification of two commonly found ARGs in swine manure, ermB and tetM. Additionally, we characterized a broader suite of 31 ARGs which allowed for simultaneous assays of the presence or absence of multiple genes. We found the company integrator had a significant effect on both ermB (P=0.0007) and tetM gene concentrations (P=0.0425). Our broad analysis on ARG profiles found that the tet(36) gene was broadly present in swine manures, followed by the detection of tetT, tetM, erm(35), ermF, ermB, str, aadD, and intl3 in samples from 14 farms. Finally, we provide a comparison of methods to detect ARGs in manures, specifically comparing conventional and high-throughput qPCR and discuss their role in ARG environmental monitoring efforts. Results of this study provide insight into commonalities of ARG presence in manure holding pits and provide supporting evidence that company integrator decisions may impact ARG concentrations.
{"title":"Comparison of antibiotic resistance genes in swine manure storage pits of Iowa, USA","authors":"T. P. Neher, M. Soupir, D. Andersen, Maggie L. O’Neill, A. Howe","doi":"10.3389/frabi.2023.1116785","DOIUrl":"https://doi.org/10.3389/frabi.2023.1116785","url":null,"abstract":"Antimicrobial resistance (AMR) can develop in deep-pit swine manure storage when bacteria are selectively pressured by unmetabolized antibiotics. Subsequent manure application on row crops is then a source of AMR into soil and downstream runoff water. Therefore, understanding the patterns of diverse antibiotic resistance genes (ARGs) in manure among different farms is important for both interpreting the results of the detection of these genes from previous studies and for the use of these genes as bioindicators of manure borne antibiotic resistance in the environment. Previous studies of manure-associated ARGs are based on limited samples of manures. To better understand the distribution of ARGs between manures, we characterized manures from 48 geographically independent swine farms across Iowa. The objectives of this study were to characterize the distribution of ARGs among these manures and to evaluate what factors in manure management may influence the presence of ARGs in manures. Our analysis included quantification of two commonly found ARGs in swine manure, ermB and tetM. Additionally, we characterized a broader suite of 31 ARGs which allowed for simultaneous assays of the presence or absence of multiple genes. We found the company integrator had a significant effect on both ermB (P=0.0007) and tetM gene concentrations (P=0.0425). Our broad analysis on ARG profiles found that the tet(36) gene was broadly present in swine manures, followed by the detection of tetT, tetM, erm(35), ermF, ermB, str, aadD, and intl3 in samples from 14 farms. Finally, we provide a comparison of methods to detect ARGs in manures, specifically comparing conventional and high-throughput qPCR and discuss their role in ARG environmental monitoring efforts. Results of this study provide insight into commonalities of ARG presence in manure holding pits and provide supporting evidence that company integrator decisions may impact ARG concentrations.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47695798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.3389/frabi.2023.1101450
Camille André, Cassandra L. Schrank, Ana Victoria Cheng Jaramillo, E. Mylonakis, W. Wuest, M. Gilmore, Wooseong Kim, Paulo J. M. Bispo
Objectives Antimicrobial resistance is global pandemic that poses a major threat to vision health as ocular pathogens, especially staphylococcal species, are becoming increasingly resistant to first-line therapies. Here we evaluated the antimicrobial activity of a new class of synthetic retinoids in comparison to currently used antibiotics against clinically relevant ocular staphylococcal isolates. Methods Antimicrobial susceptibility testing was performed by broth microdilution for 3 novel synthetic retinoids (CD1530, CD437, and a CD437 analogue) and 7 comparator antibiotics, against a collection of 216 clinical isolates. Results CD437 MIC50 and MIC90 were 2 µg/mL for Staphylococcus aureus, and 1 µg/mL and 2 µg/mL respectively, for coagulase-negative staphylococci (CoNS). CD1530 (MIC50 = 2 µg/mL for all species) also displayed good activity with an in vitro potency slightly lower (2-fold) for S. aureus (MIC90 = 4 µg/mL) when compared to CD437. A CD437 analogue also demonstrated good in vitro activity (MIC50 = 2 µg/mL for all species) and potency (MIC90 = 2 µg/mL for MRSA and 4 µg/mL for MSSA and CoNS). In vitro potencies were similar or higher than that of comparator agents, and were not impacted by multidrug resistance phenotypes. Conclusion Our results demonstrate that synthetic retinoids display potent in vitro activity against ocular staphylococcal species, including multidrug-resistant isolates.
{"title":"Antimicrobial activity of a new class of synthetic retinoid antibiotics and comparator agents against ocular staphylococci","authors":"Camille André, Cassandra L. Schrank, Ana Victoria Cheng Jaramillo, E. Mylonakis, W. Wuest, M. Gilmore, Wooseong Kim, Paulo J. M. Bispo","doi":"10.3389/frabi.2023.1101450","DOIUrl":"https://doi.org/10.3389/frabi.2023.1101450","url":null,"abstract":"Objectives Antimicrobial resistance is global pandemic that poses a major threat to vision health as ocular pathogens, especially staphylococcal species, are becoming increasingly resistant to first-line therapies. Here we evaluated the antimicrobial activity of a new class of synthetic retinoids in comparison to currently used antibiotics against clinically relevant ocular staphylococcal isolates. Methods Antimicrobial susceptibility testing was performed by broth microdilution for 3 novel synthetic retinoids (CD1530, CD437, and a CD437 analogue) and 7 comparator antibiotics, against a collection of 216 clinical isolates. Results CD437 MIC50 and MIC90 were 2 µg/mL for Staphylococcus aureus, and 1 µg/mL and 2 µg/mL respectively, for coagulase-negative staphylococci (CoNS). CD1530 (MIC50 = 2 µg/mL for all species) also displayed good activity with an in vitro potency slightly lower (2-fold) for S. aureus (MIC90 = 4 µg/mL) when compared to CD437. A CD437 analogue also demonstrated good in vitro activity (MIC50 = 2 µg/mL for all species) and potency (MIC90 = 2 µg/mL for MRSA and 4 µg/mL for MSSA and CoNS). In vitro potencies were similar or higher than that of comparator agents, and were not impacted by multidrug resistance phenotypes. Conclusion Our results demonstrate that synthetic retinoids display potent in vitro activity against ocular staphylococcal species, including multidrug-resistant isolates.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44899273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-09DOI: 10.3389/frabi.2022.1045081
L. Veerapa-Mangroo, Harena Rasamoelina-Andriamanivo, M. Issack, E. Cardinale
Background This study aims at determining the antibiotic prescribing pattern in admitted patients in the regional public hospitals of Mauritius. Methods A Point Prevalence Survey (PPS) on antibiotic use according to the World Health Organization Methodology for PPS on antibiotic use in hospitals, was carried out in 3 secondary public hospitals. Data was collected in February 2018 for Hospital 1 and in April-May 2019 for Hospital 2 and Hospital 3. Eligible inpatients were those who were hospitalized in the ward at 8.00 a.m. on the day of the survey. Results Among 915 inpatients, 482 (53%) were treated with 753 therapies or prescriptions of antibiotics, averaging 1.6 therapies or prescriptions per patient. Among those treated with antibiotics, an average of 88 patients (55%), 58 patients (36%) and 15 patients (9%) were given 1, 2 and 3 or more antibiotics respectively. The highest proportion of inpatients treated with antibiotics was among those with community acquired infections (n=243, 50%) followed by surgical prophylaxis (n=191, 40%). In the three hospitals, it was observed that third generation cephalosporins (ceftriaxone, cefotaxime), amoxicillin, metronidazole (parenteral) and ciprofloxacin accounted for more than 75% of total prescriptions and sixteen per cent (16%) of patients had an Antibiotic Susceptibility Testing report before prescription of antibiotics. Conclusion This study provides valuable information on antibiotic use in the country. Several misuses have been identified such as the excessive use of antibiotics for surgical prophylaxis, the high use of third generation cephalosporins and of the WATCH category of antibiotics. It also demonstrates a low percentage of Antibiotic Susceptibility Testing prior to prescription of antibiotics. This investigation shows that there is now a pressing need to repeat the Point Prevalence Survey on antibiotic use in hospitals in future whilst extending the survey to the private healthcare system to get a complete picture concerning antibiotic use in Mauritius.
{"title":"Point prevalence survey on antibiotic use in the hospitals of Mauritius","authors":"L. Veerapa-Mangroo, Harena Rasamoelina-Andriamanivo, M. Issack, E. Cardinale","doi":"10.3389/frabi.2022.1045081","DOIUrl":"https://doi.org/10.3389/frabi.2022.1045081","url":null,"abstract":"Background This study aims at determining the antibiotic prescribing pattern in admitted patients in the regional public hospitals of Mauritius. Methods A Point Prevalence Survey (PPS) on antibiotic use according to the World Health Organization Methodology for PPS on antibiotic use in hospitals, was carried out in 3 secondary public hospitals. Data was collected in February 2018 for Hospital 1 and in April-May 2019 for Hospital 2 and Hospital 3. Eligible inpatients were those who were hospitalized in the ward at 8.00 a.m. on the day of the survey. Results Among 915 inpatients, 482 (53%) were treated with 753 therapies or prescriptions of antibiotics, averaging 1.6 therapies or prescriptions per patient. Among those treated with antibiotics, an average of 88 patients (55%), 58 patients (36%) and 15 patients (9%) were given 1, 2 and 3 or more antibiotics respectively. The highest proportion of inpatients treated with antibiotics was among those with community acquired infections (n=243, 50%) followed by surgical prophylaxis (n=191, 40%). In the three hospitals, it was observed that third generation cephalosporins (ceftriaxone, cefotaxime), amoxicillin, metronidazole (parenteral) and ciprofloxacin accounted for more than 75% of total prescriptions and sixteen per cent (16%) of patients had an Antibiotic Susceptibility Testing report before prescription of antibiotics. Conclusion This study provides valuable information on antibiotic use in the country. Several misuses have been identified such as the excessive use of antibiotics for surgical prophylaxis, the high use of third generation cephalosporins and of the WATCH category of antibiotics. It also demonstrates a low percentage of Antibiotic Susceptibility Testing prior to prescription of antibiotics. This investigation shows that there is now a pressing need to repeat the Point Prevalence Survey on antibiotic use in hospitals in future whilst extending the survey to the private healthcare system to get a complete picture concerning antibiotic use in Mauritius.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43744678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-02-08DOI: 10.3389/frabi.2023.1135485
Renee Fleeman
The rise in antimicrobial resistance and the decline in new antibiotics has created a great need for novel approaches to treat drug resistant bacterial infections. Increasing the burden of antimicrobial resistance, bacterial virulence factors allow for survival within the host, where they can evade host killing and antimicrobial therapy within their intracellular niches. Repurposing host directed therapeutics has great potential for adjuvants to allow for more effective bacterial killing by the host and antimicrobials. To this end, phosphoinositide 3-kinase inhibitors are FDA approved for cancer therapy, but also have potential to eliminate intracellular survival of pathogens. This review describes the PI3K pathway and its potential as an adjuvant target to treat bacterial infections more effectively.
{"title":"Repurposing Inhibitors of Phosphoinositide 3-kinase as Adjuvant Therapeutics for Bacterial Infections.","authors":"Renee Fleeman","doi":"10.3389/frabi.2023.1135485","DOIUrl":"10.3389/frabi.2023.1135485","url":null,"abstract":"<p><p>The rise in antimicrobial resistance and the decline in new antibiotics has created a great need for novel approaches to treat drug resistant bacterial infections. Increasing the burden of antimicrobial resistance, bacterial virulence factors allow for survival within the host, where they can evade host killing and antimicrobial therapy within their intracellular niches. Repurposing host directed therapeutics has great potential for adjuvants to allow for more effective bacterial killing by the host and antimicrobials. To this end, phosphoinositide 3-kinase inhibitors are FDA approved for cancer therapy, but also have potential to eliminate intracellular survival of pathogens. This review describes the PI3K pathway and its potential as an adjuvant target to treat bacterial infections more effectively.</p>","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43053351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-01-30DOI: 10.3389/frabi.2023.1093156
Jonathan I Batchelder, Patricia J Hare, Wendy W K Mok
Antibiotic resistance is a major danger to public health that threatens to claim the lives of millions of people per year within the next few decades. Years of necessary administration and excessive application of antibiotics have selected for strains that are resistant to many of our currently available treatments. Due to the high costs and difficulty of developing new antibiotics, the emergence of resistant bacteria is outpacing the introduction of new drugs to fight them. To overcome this problem, many researchers are focusing on developing antibacterial therapeutic strategies that are "resistance-resistant"-regimens that slow or stall resistance development in the targeted pathogens. In this mini review, we outline major examples of novel resistance-resistant therapeutic strategies. We discuss the use of compounds that reduce mutagenesis and thereby decrease the likelihood of resistance emergence. Then, we examine the effectiveness of antibiotic cycling and evolutionary steering, in which a bacterial population is forced by one antibiotic toward susceptibility to another antibiotic. We also consider combination therapies that aim to sabotage defensive mechanisms and eliminate potentially resistant pathogens by combining two antibiotics or combining an antibiotic with other therapeutics, such as antibodies or phages. Finally, we highlight promising future directions in this field, including the potential of applying machine learning and personalized medicine to fight antibiotic resistance emergence and out-maneuver adaptive pathogens.
{"title":"Resistance-resistant antibacterial treatment strategies.","authors":"Jonathan I Batchelder, Patricia J Hare, Wendy W K Mok","doi":"10.3389/frabi.2023.1093156","DOIUrl":"10.3389/frabi.2023.1093156","url":null,"abstract":"<p><p>Antibiotic resistance is a major danger to public health that threatens to claim the lives of millions of people per year within the next few decades. Years of necessary administration and excessive application of antibiotics have selected for strains that are resistant to many of our currently available treatments. Due to the high costs and difficulty of developing new antibiotics, the emergence of resistant bacteria is outpacing the introduction of new drugs to fight them. To overcome this problem, many researchers are focusing on developing antibacterial therapeutic strategies that are \"resistance-resistant\"-regimens that slow or stall resistance development in the targeted pathogens. In this mini review, we outline major examples of novel resistance-resistant therapeutic strategies. We discuss the use of compounds that reduce mutagenesis and thereby decrease the likelihood of resistance emergence. Then, we examine the effectiveness of antibiotic cycling and evolutionary steering, in which a bacterial population is forced by one antibiotic toward susceptibility to another antibiotic. We also consider combination therapies that aim to sabotage defensive mechanisms and eliminate potentially resistant pathogens by combining two antibiotics or combining an antibiotic with other therapeutics, such as antibodies or phages. Finally, we highlight promising future directions in this field, including the potential of applying machine learning and personalized medicine to fight antibiotic resistance emergence and out-maneuver adaptive pathogens.</p>","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9111928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-21DOI: 10.3389/frabi.2022.1055507
R. Magiri, C. Dissanayake, W. Okello
Introduction Globally, the demand for animal protein for human consumption has beenQ7 Q6increasing at a faster rate in the last 5 to 10 decades resulting in increasedantimicrobial consumption in food producing animals. Antimicrobials arefrequently used as part of modern methods of animal production, which mayput more pressure on evolution of antibiotic resistant bacteria. Despite theserious negative effects on animal and human health that could result fromusing antibiotics, there are no assessment of antimicrobials consumed by thelivestock sector in Fiji as well as other Pacific Island Countries. The objective ofthis study was to quantify antimicrobials imported for consumption in foodanimals into Fiji from 2017 to 2021. Methods Data on imported antimicrobials, whichwere finished products, was obtained from Biosecurity Authority Fiji (BAF).Imported antimicrobials were then analyzed by antimicrobial class, andimportance to veterinary and human medicine. Results An average of 92.86 kg peryear (sd = 64.12) of antimicrobials as a net weight was imported into Fiji in the2017-2021 study period. The mean amount of imported active antimicrobialingredients after adjusting for animal biomass was 0.86 mg/kg (sd = 0.59). Fromthe total antimicrobial imports during the years 2017 to 2021, penicillins(69.72%) and tetracycline (15.95%) were the most imported antimicrobialclasses. For animal health 96.48% of the antimicrobial imports wereveterinary critically important antimicrobials. For human healthfluroquinolones, macrolides, aminoglycosides, and penicillins were theimported critically important antimicrobials. Discussion The study concluded that use ofantimicrobials in food producing animals is low but monitoring of antimicrobialconsumption and antimicrobial resistance was critical in Fiji due to overrelianceon critically important antimicrobials.
{"title":"Antimicrobial consumption in food animals in Fiji: Analysis of the 2017 to 2021 import data","authors":"R. Magiri, C. Dissanayake, W. Okello","doi":"10.3389/frabi.2022.1055507","DOIUrl":"https://doi.org/10.3389/frabi.2022.1055507","url":null,"abstract":"Introduction Globally, the demand for animal protein for human consumption has beenQ7 Q6increasing at a faster rate in the last 5 to 10 decades resulting in increasedantimicrobial consumption in food producing animals. Antimicrobials arefrequently used as part of modern methods of animal production, which mayput more pressure on evolution of antibiotic resistant bacteria. Despite theserious negative effects on animal and human health that could result fromusing antibiotics, there are no assessment of antimicrobials consumed by thelivestock sector in Fiji as well as other Pacific Island Countries. The objective ofthis study was to quantify antimicrobials imported for consumption in foodanimals into Fiji from 2017 to 2021. Methods Data on imported antimicrobials, whichwere finished products, was obtained from Biosecurity Authority Fiji (BAF).Imported antimicrobials were then analyzed by antimicrobial class, andimportance to veterinary and human medicine. Results An average of 92.86 kg peryear (sd = 64.12) of antimicrobials as a net weight was imported into Fiji in the2017-2021 study period. The mean amount of imported active antimicrobialingredients after adjusting for animal biomass was 0.86 mg/kg (sd = 0.59). Fromthe total antimicrobial imports during the years 2017 to 2021, penicillins(69.72%) and tetracycline (15.95%) were the most imported antimicrobialclasses. For animal health 96.48% of the antimicrobial imports wereveterinary critically important antimicrobials. For human healthfluroquinolones, macrolides, aminoglycosides, and penicillins were theimported critically important antimicrobials. Discussion The study concluded that use ofantimicrobials in food producing animals is low but monitoring of antimicrobialconsumption and antimicrobial resistance was critical in Fiji due to overrelianceon critically important antimicrobials.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46338177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-02DOI: 10.3389/frabi.2022.1047565
Walter L. Fuller, A. Aboderin, Ali A. Yahaya, A. Adeyemo, L. Gahimbare, O. Kapona, Omotayo T. Hamzat, O. Bassoum
Background Antimicrobial resistance (AMR) has emerged as a leading global health and economic threat of the 21st century, with Africa bearing the greatest burden of mortality from drug-resistant infections. Optimization of the use of antimicrobials is a core strategic element of the response to AMR, addressing misuse and overuse as primary drivers. Effectively, this requires the whole society comprising not only healthcare professionals but also the public, as well as the government, to engage in a bottom-up and a top-down approach. We determined the progress of African national governments in optimizing antimicrobial drug use. Methods From September 2021 to June 2022, all 47 member states of the World Health Organization African region (WHO AFRO) were invited to participate in a survey determining the implementation of strategies to optimize antimicrobial use (AMU). We used the WHO antimicrobial stewardship (AMS) assessment tool, National core elements—A checklist to guide the country in identifying existing national core elements for the implementation of AMS Programs, to obtain information from national AMR focal persons. The tool consists of four sections—national plans and strategies; regulations and guidelines; awareness, training, and education; and supporting technologies and data—with a total of 33 checklist items, each graded from 0 to 4. The responses were aggregated and analyzed using Microsoft Excel 2020®. Results Thirty-one (66%) of the 47 countries returned completed forms. Only eight (25.8%) countries have developed a national AMS implementation policy incorporating defined goals, targets, and operational plans. There are no budget lines for AMS activities in 23 (74.2%) countries. The WHO Access, Watch, Reserve (AWaRe) classification of optimizing AMU has been integrated into the national essential medicines list or formulary in 19 (61.3%) countries, while the incorporation of the AMS principles and WHO AWaRe classification into national clinical guidelines for the management of infections is present in only 12 (38.7%) and 11 (34.5%) countries, respectively. Although regulations on the prescription-only sale/dispensing of antibiotics are present in 68% of countries, their enforcement is poor. Systems identifying pathogens and antibiotic susceptibility for optimal use of antibiotics are lacking in 38% of countries. Conclusion In Africa, wide gaps exist in the governments’ implementation of the core elements of optimizing antimicrobial drug use. Responding to AMR constitutes a long journey, and technical and financial support needs to be deployed to optimize the use of antimicrobials.
{"title":"Gaps in the implementation of national core elements for sustainable antimicrobial use in the WHO-African region","authors":"Walter L. Fuller, A. Aboderin, Ali A. Yahaya, A. Adeyemo, L. Gahimbare, O. Kapona, Omotayo T. Hamzat, O. Bassoum","doi":"10.3389/frabi.2022.1047565","DOIUrl":"https://doi.org/10.3389/frabi.2022.1047565","url":null,"abstract":"Background Antimicrobial resistance (AMR) has emerged as a leading global health and economic threat of the 21st century, with Africa bearing the greatest burden of mortality from drug-resistant infections. Optimization of the use of antimicrobials is a core strategic element of the response to AMR, addressing misuse and overuse as primary drivers. Effectively, this requires the whole society comprising not only healthcare professionals but also the public, as well as the government, to engage in a bottom-up and a top-down approach. We determined the progress of African national governments in optimizing antimicrobial drug use. Methods From September 2021 to June 2022, all 47 member states of the World Health Organization African region (WHO AFRO) were invited to participate in a survey determining the implementation of strategies to optimize antimicrobial use (AMU). We used the WHO antimicrobial stewardship (AMS) assessment tool, National core elements—A checklist to guide the country in identifying existing national core elements for the implementation of AMS Programs, to obtain information from national AMR focal persons. The tool consists of four sections—national plans and strategies; regulations and guidelines; awareness, training, and education; and supporting technologies and data—with a total of 33 checklist items, each graded from 0 to 4. The responses were aggregated and analyzed using Microsoft Excel 2020®. Results Thirty-one (66%) of the 47 countries returned completed forms. Only eight (25.8%) countries have developed a national AMS implementation policy incorporating defined goals, targets, and operational plans. There are no budget lines for AMS activities in 23 (74.2%) countries. The WHO Access, Watch, Reserve (AWaRe) classification of optimizing AMU has been integrated into the national essential medicines list or formulary in 19 (61.3%) countries, while the incorporation of the AMS principles and WHO AWaRe classification into national clinical guidelines for the management of infections is present in only 12 (38.7%) and 11 (34.5%) countries, respectively. Although regulations on the prescription-only sale/dispensing of antibiotics are present in 68% of countries, their enforcement is poor. Systems identifying pathogens and antibiotic susceptibility for optimal use of antibiotics are lacking in 38% of countries. Conclusion In Africa, wide gaps exist in the governments’ implementation of the core elements of optimizing antimicrobial drug use. Responding to AMR constitutes a long journey, and technical and financial support needs to be deployed to optimize the use of antimicrobials.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49617417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-15DOI: 10.3389/frabi.2022.1011929
Rogers Azabo, Janeth George, S. Mshana, M. Matee, S. Kimera
Of all animal derived-food, the demand for poultry meat is the most dynamic. The poultry sector can meet this demand only by introducing intensive production where antimicrobial use is inevitable. Bacterial infection prevention and control is an important factor in intensive livestock production. Antibiotics are an effective and relatively inexpensive means of preventing and controlling infections, thus maintaining animal health and productivity. The aim of this study was to gain insight into the costs and benefits of various scenarios of antimicrobial use reduction at broiler farms in Dar es Salaam, Tanzania. This study focused on the economic impact of an average broiler farm. Costs and benefits for various scenarios of antimicrobial use reduction levels were projected by a partial budget framework using the Mclnerney model. The disease cost of the current situation was US$225. On reduction of antimicrobial use by 20% the avoidable disease cost was US$ 31, by 50% was US$ 83 and by 100% was US$ 147. A reduction in antibiotic use can only be achieved if better alternatives are available to combat disease. In conclusion, the model predicts that reducing antibiotic use increases production costs. Future studies on antimicrobial use reduction’s impact on morbidity and mortality and the efficiency of additional control and other measures of producing poultry meat without high concentrations of antibiotics are necessary.
{"title":"Farm costs and benefits of antimicrobial use reduction on broiler farms in Dar es Salaam, Tanzania","authors":"Rogers Azabo, Janeth George, S. Mshana, M. Matee, S. Kimera","doi":"10.3389/frabi.2022.1011929","DOIUrl":"https://doi.org/10.3389/frabi.2022.1011929","url":null,"abstract":"Of all animal derived-food, the demand for poultry meat is the most dynamic. The poultry sector can meet this demand only by introducing intensive production where antimicrobial use is inevitable. Bacterial infection prevention and control is an important factor in intensive livestock production. Antibiotics are an effective and relatively inexpensive means of preventing and controlling infections, thus maintaining animal health and productivity. The aim of this study was to gain insight into the costs and benefits of various scenarios of antimicrobial use reduction at broiler farms in Dar es Salaam, Tanzania. This study focused on the economic impact of an average broiler farm. Costs and benefits for various scenarios of antimicrobial use reduction levels were projected by a partial budget framework using the Mclnerney model. The disease cost of the current situation was US$225. On reduction of antimicrobial use by 20% the avoidable disease cost was US$ 31, by 50% was US$ 83 and by 100% was US$ 147. A reduction in antibiotic use can only be achieved if better alternatives are available to combat disease. In conclusion, the model predicts that reducing antibiotic use increases production costs. Future studies on antimicrobial use reduction’s impact on morbidity and mortality and the efficiency of additional control and other measures of producing poultry meat without high concentrations of antibiotics are necessary.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45555745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}