首页 > 最新文献

Frontiers in bioinformatics最新文献

英文 中文
A comprehensive multi-omics analysis reveals unique signatures to predict Alzheimer's disease. 全面的多组学分析揭示了预测阿尔茨海默病的独特特征。
IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-06-19 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1390607
Michael Vacher, Rodrigo Canovas, Simon M Laws, James D Doecke

Background: Complex disorders, such as Alzheimer's disease (AD), result from the combined influence of multiple biological and environmental factors. The integration of high-throughput data from multiple omics platforms can provide system overviews, improving our understanding of complex biological processes underlying human disease. In this study, integrated data from four omics platforms were used to characterise biological signatures of AD.

Method: The study cohort consists of 455 participants (Control:148, Cases:307) from the Religious Orders Study and Memory and Aging Project (ROSMAP). Genotype (SNP), methylation (CpG), RNA and proteomics data were collected, quality-controlled and pre-processed (SNP = 130; CpG = 83; RNA = 91; Proteomics = 119). Using a diagnosis of Mild Cognitive Impairment (MCI)/AD combined as the target phenotype, we first used Partial Least Squares Regression as an unsupervised classification framework to assess the prediction capabilities for each omics dataset individually. We then used a variation of the sparse generalized canonical correlation analysis (sGCCA) to assess predictions of the combined datasets and identify multi-omics signatures characterising each group of participants.

Results: Analysing datasets individually we found methylation data provided the best predictions with an accuracy of 0.63 (95%CI = [0.54-0.71]), followed by RNA, 0.61 (95%CI = [0.52-0.69]), SNP, 0.59 (95%CI = [0.51-0.68]) and proteomics, 0.58 (95%CI = [0.51-0.67]). After integration of the four datasets, predictions were dramatically improved with a resulting accuracy of 0.95 (95% CI = [0.89-0.98]).

Conclusion: The integration of data from multiple platforms is a powerful approach to explore biological systems and better characterise the biological signatures of AD. The results suggest that integrative methods can identify biomarker panels with improved predictive performance compared to individual platforms alone. Further validation in independent cohorts is required to validate and refine the results presented in this study.

背景:阿尔茨海默病(AD)等复杂疾病是多种生物和环境因素共同影响的结果。整合来自多个 omics 平台的高通量数据可以提供系统概述,提高我们对人类疾病背后复杂生物过程的理解。在这项研究中,来自四个全息平台的整合数据被用来描述 AD 的生物学特征:研究队列由来自宗教团体研究和记忆与衰老项目(ROSMAP)的 455 名参与者组成(对照组:148 人,病例:307 人)。收集了基因型(SNP)、甲基化(CpG)、RNA和蛋白质组学数据,并进行了质量控制和预处理(SNP = 130;CpG = 83;RNA = 91;蛋白质组学 = 119)。以轻度认知功能障碍(MCI)/AD 合并诊断为目标表型,我们首先使用部分最小二乘法回归作为无监督分类框架,评估每个 omics 数据集的预测能力。然后,我们使用稀疏广义典型相关分析(sGCCA)的一种变体来评估合并数据集的预测结果,并确定每组参与者的多组学特征:对数据集进行单独分析后,我们发现甲基化数据提供了最佳预测,准确率为 0.63(95%CI = [0.54-0.71]),其次是 RNA,准确率为 0.61(95%CI = [0.52-0.69]),SNP,准确率为 0.59(95%CI = [0.51-0.68]),蛋白质组学,准确率为 0.58(95%CI = [0.51-0.67])。整合四个数据集后,预测结果大幅提高,准确率达到 0.95 (95%CI = [0.89-0.98]):结论:整合来自多个平台的数据是探索生物系统和更好地描述 AD 生物特征的有力方法。研究结果表明,与单个平台相比,整合方法能识别出预测性能更高的生物标记物面板。要验证和完善本研究提出的结果,还需要在独立队列中进行进一步验证。
{"title":"A comprehensive multi-omics analysis reveals unique signatures to predict Alzheimer's disease.","authors":"Michael Vacher, Rodrigo Canovas, Simon M Laws, James D Doecke","doi":"10.3389/fbinf.2024.1390607","DOIUrl":"10.3389/fbinf.2024.1390607","url":null,"abstract":"<p><strong>Background: </strong>Complex disorders, such as Alzheimer's disease (AD), result from the combined influence of multiple biological and environmental factors. The integration of high-throughput data from multiple omics platforms can provide system overviews, improving our understanding of complex biological processes underlying human disease. In this study, integrated data from four omics platforms were used to characterise biological signatures of AD.</p><p><strong>Method: </strong>The study cohort consists of 455 participants (Control:148, Cases:307) from the Religious Orders Study and Memory and Aging Project (ROSMAP). Genotype (SNP), methylation (CpG), RNA and proteomics data were collected, quality-controlled and pre-processed (SNP = 130; CpG = 83; RNA = 91; Proteomics = 119). Using a diagnosis of Mild Cognitive Impairment (MCI)/AD combined as the target phenotype, we first used Partial Least Squares Regression as an unsupervised classification framework to assess the prediction capabilities for each omics dataset individually. We then used a variation of the sparse generalized canonical correlation analysis (sGCCA) to assess predictions of the combined datasets and identify multi-omics signatures characterising each group of participants.</p><p><strong>Results: </strong>Analysing datasets individually we found methylation data provided the best predictions with an accuracy of 0.63 (95%CI = [0.54-0.71]), followed by RNA, 0.61 (95%CI = [0.52-0.69]), SNP, 0.59 (95%CI = [0.51-0.68]) and proteomics, 0.58 (95%CI = [0.51-0.67]). After integration of the four datasets, predictions were dramatically improved with a resulting accuracy of 0.95 (95% CI = [0.89-0.98]).</p><p><strong>Conclusion: </strong>The integration of data from multiple platforms is a powerful approach to explore biological systems and better characterise the biological signatures of AD. The results suggest that integrative methods can identify biomarker panels with improved predictive performance compared to individual platforms alone. Further validation in independent cohorts is required to validate and refine the results presented in this study.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1390607"},"PeriodicalIF":2.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219798/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human cytokine and coronavirus nucleocapsid protein interactivity using large-scale virtual screens. 利用大规模虚拟筛选研究人类细胞因子与冠状病毒核壳蛋白的相互作用。
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-24 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1397968
Phillip J Tomezsko, Colby T Ford, Avery E Meyer, Adam M Michaleas, Rafael Jaimes

Understanding the interactions between SARS-CoV-2 and the human immune system is paramount to the characterization of novel variants as the virus co-evolves with the human host. In this study, we employed state-of-the-art molecular docking tools to conduct large-scale virtual screens, predicting the binding affinities between 64 human cytokines against 17 nucleocapsid proteins from six betacoronaviruses. Our comprehensive in silico analyses reveal specific changes in cytokine-nucleocapsid protein interactions, shedding light on potential modulators of the host immune response during infection. These findings offer valuable insights into the molecular mechanisms underlying viral pathogenesis and may guide the future development of targeted interventions. This manuscript serves as insight into the comparison of deep learning based AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for protein-protein docking. We show the two methods are complementary in their predictive capabilities. We also introduce a novel algorithm for rapidly assessing the binding interface of protein-protein docks using graph edit distance: graph-based interface residue assessment function (GIRAF). The high-performance computational framework presented here will not only aid in accelerating the discovery of effective interventions against emerging viral threats, but extend to other applications of high throughput protein-protein screens.

随着病毒与人类宿主的共同进化,了解 SARS-CoV-2 与人类免疫系统之间的相互作用对于鉴定新型变体至关重要。在这项研究中,我们采用最先进的分子对接工具进行了大规模的虚拟筛选,预测了 64 种人类细胞因子与来自 6 种 betacoronaviruses 的 17 种核壳蛋白的结合亲和力。我们的全面硅学分析揭示了细胞因子-核苷酸蛋白相互作用的特定变化,揭示了感染期间宿主免疫反应的潜在调节因子。这些发现为了解病毒致病的分子机制提供了宝贵的视角,并可能为未来开发有针对性的干预措施提供指导。本手稿深入探讨了基于深度学习的 AlphaFold2-Multimer 与基于半物理化学的 HADDOCK 在蛋白质-蛋白质对接方面的比较。我们发现这两种方法在预测能力上具有互补性。我们还介绍了一种利用图编辑距离快速评估蛋白质-蛋白质对接结合界面的新型算法:基于图的界面残基评估函数(GIRAF)。本文介绍的高性能计算框架不仅有助于加快发现有效的干预措施来应对新出现的病毒威胁,还可扩展到高通量蛋白质-蛋白质筛选的其他应用领域。
{"title":"Human cytokine and coronavirus nucleocapsid protein interactivity using large-scale virtual screens.","authors":"Phillip J Tomezsko, Colby T Ford, Avery E Meyer, Adam M Michaleas, Rafael Jaimes","doi":"10.3389/fbinf.2024.1397968","DOIUrl":"10.3389/fbinf.2024.1397968","url":null,"abstract":"<p><p>Understanding the interactions between SARS-CoV-2 and the human immune system is paramount to the characterization of novel variants as the virus co-evolves with the human host. In this study, we employed state-of-the-art molecular docking tools to conduct large-scale virtual screens, predicting the binding affinities between 64 human cytokines against 17 nucleocapsid proteins from six betacoronaviruses. Our comprehensive <i>in silico</i> analyses reveal specific changes in cytokine-nucleocapsid protein interactions, shedding light on potential modulators of the host immune response during infection. These findings offer valuable insights into the molecular mechanisms underlying viral pathogenesis and may guide the future development of targeted interventions. This manuscript serves as insight into the comparison of deep learning based AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for protein-protein docking. We show the two methods are complementary in their predictive capabilities. We also introduce a novel algorithm for rapidly assessing the binding interface of protein-protein docks using graph edit distance: graph-based interface residue assessment function (GIRAF). The high-performance computational framework presented here will not only aid in accelerating the discovery of effective interventions against emerging viral threats, but extend to other applications of high throughput protein-protein screens.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1397968"},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BayesAge: A maximum likelihood algorithm to predict epigenetic age. BayesAge:预测表观遗传年龄的最大似然法算法。
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-04 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1329144
Lajoyce Mboning, Liudmilla Rubbi, Michael Thompson, Louis-S Bouchard, Matteo Pellegrini

Introduction: DNA methylation, specifically the formation of 5-methylcytosine at the C5 position of cytosine, undergoes reproducible changes as organisms age, establishing it as a significant biomarker in aging studies. Epigenetic clocks, which integrate methylation patterns to predict age, often employ linear models based on penalized regression, yet they encounter challenges in handling missing data, count-based bisulfite sequence data, and interpretation. Methods: To address these limitations, we introduce BayesAge, an extension of the scAge methodology originally designed for single-cell DNA methylation analysis. BayesAge employs maximum likelihood estimation (MLE) for age inference, models count data using binomial distributions, and incorporates LOWESS smoothing to capture non-linear methylation-age dynamics. This approach is tailored for bulk bisulfite sequencing datasets. Results: BayesAge demonstrates superior performance compared to scAge. Notably, its age residuals exhibit no age association, offering a less biased representation of epigenetic age variation across populations. Furthermore, BayesAge facilitates the estimation of error bounds on age inference. When applied to down-sampled data, BayesAge achieves a higher coefficient of determination between predicted and actual ages compared to both scAge and penalized regression. Discussion: BayesAge presents a promising advancement in epigenetic age prediction, addressing key challenges encountered by existing models. By integrating robust statistical techniques and tailored methodologies for count-based data, BayesAge offers improved accuracy and interpretability in predicting age from bulk bisulfite sequencing datasets. Its ability to estimate error bounds enhances the reliability of age inference, thereby contributing to a more comprehensive understanding of epigenetic aging processes.

导言:DNA 甲基化,特别是胞嘧啶 C5 位上 5-甲基胞嘧啶的形成,会随着生物体年龄的增长而发生可重复的变化,从而成为衰老研究中的重要生物标志物。表观遗传时钟整合了甲基化模式来预测年龄,通常采用基于惩罚回归的线性模型,但在处理缺失数据、基于计数的亚硫酸氢盐序列数据和解释方面遇到了挑战。方法:为了解决这些局限性,我们引入了贝叶斯年龄(BayesAge),它是最初为单细胞 DNA 甲基化分析而设计的 scAge 方法的扩展。BayesAge 采用最大似然估计(MLE)进行年龄推断,使用二项分布建立计数数据模型,并结合 LOWESS 平滑法捕捉甲基化-年龄的非线性动态变化。这种方法专为大量亚硫酸氢盐测序数据集定制。结果BayesAge 的性能优于 scAge。值得注意的是,它的年龄残差与年龄无关,对不同人群的表观遗传年龄变化的描述偏差较小。此外,BayesAge 还有助于估计年龄推断的误差范围。与 scAge 和惩罚回归相比,BayesAge 在预测年龄和实际年龄之间取得了更高的决定系数。讨论贝叶斯年龄在表观遗传年龄预测方面取得了可喜的进步,解决了现有模型所面临的关键挑战。通过整合稳健的统计技术和为基于计数的数据定制的方法,BayesAge 提高了从大量亚硫酸氢盐测序数据集预测年龄的准确性和可解释性。它估计误差范围的能力增强了年龄推断的可靠性,从而有助于更全面地了解表观遗传衰老过程。
{"title":"BayesAge: A maximum likelihood algorithm to predict epigenetic age.","authors":"Lajoyce Mboning, Liudmilla Rubbi, Michael Thompson, Louis-S Bouchard, Matteo Pellegrini","doi":"10.3389/fbinf.2024.1329144","DOIUrl":"https://doi.org/10.3389/fbinf.2024.1329144","url":null,"abstract":"<p><p><b>Introduction:</b> DNA methylation, specifically the formation of 5-methylcytosine at the C5 position of cytosine, undergoes reproducible changes as organisms age, establishing it as a significant biomarker in aging studies. Epigenetic clocks, which integrate methylation patterns to predict age, often employ linear models based on penalized regression, yet they encounter challenges in handling missing data, count-based bisulfite sequence data, and interpretation. <b>Methods:</b> To address these limitations, we introduce BayesAge, an extension of the scAge methodology originally designed for single-cell DNA methylation analysis. BayesAge employs maximum likelihood estimation (MLE) for age inference, models count data using binomial distributions, and incorporates LOWESS smoothing to capture non-linear methylation-age dynamics. This approach is tailored for bulk bisulfite sequencing datasets. <b>Results:</b> BayesAge demonstrates superior performance compared to scAge. Notably, its age residuals exhibit no age association, offering a less biased representation of epigenetic age variation across populations. Furthermore, BayesAge facilitates the estimation of error bounds on age inference. When applied to down-sampled data, BayesAge achieves a higher coefficient of determination between predicted and actual ages compared to both scAge and penalized regression. <b>Discussion:</b> BayesAge presents a promising advancement in epigenetic age prediction, addressing key challenges encountered by existing models. By integrating robust statistical techniques and tailored methodologies for count-based data, BayesAge offers improved accuracy and interpretability in predicting age from bulk bisulfite sequencing datasets. Its ability to estimate error bounds enhances the reliability of age inference, thereby contributing to a more comprehensive understanding of epigenetic aging processes.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1329144"},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ursaPGx: a new R package to annotate pharmacogenetic star alleles using phased whole-genome sequencing data. ursaPGx:利用分阶段全基因组测序数据注释药物遗传星等位基因的新 R 软件包。
IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-03-12 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1351620
Gennaro Calendo, Dara Kusic, Jozef Madzo, Neda Gharani, Laura Scheinfeldt

Long-read sequencing technologies offer new opportunities to generate high-confidence phased whole-genome sequencing data for robust pharmacogenetic annotation. Here, we describe a new user-friendly R package, ursaPGx, designed to accept multi-sample phased whole-genome sequencing data VCF input files and output star allele annotations for pharmacogenes annotated in PharmVar.

长线程测序技术为生成高置信度的分阶段全基因组测序数据以进行可靠的药物基因注释提供了新的机遇。在此,我们介绍了一个新的用户友好型 R 软件包 ursaPGx,它可接受多样本分阶段全基因组测序数据 VCF 输入文件,并为 PharmVar 中注释的药物基因输出星等位基因注释。
{"title":"ursaPGx: a new R package to annotate pharmacogenetic star alleles using phased whole-genome sequencing data.","authors":"Gennaro Calendo, Dara Kusic, Jozef Madzo, Neda Gharani, Laura Scheinfeldt","doi":"10.3389/fbinf.2024.1351620","DOIUrl":"10.3389/fbinf.2024.1351620","url":null,"abstract":"<p><p>Long-read sequencing technologies offer new opportunities to generate high-confidence phased whole-genome sequencing data for robust pharmacogenetic annotation. Here, we describe a new user-friendly R package, ursaPGx, designed to accept multi-sample phased whole-genome sequencing data VCF input files and output star allele annotations for pharmacogenes annotated in PharmVar.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1351620"},"PeriodicalIF":2.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A network-based method for associating genes with autism spectrum disorder. 基于网络的自闭症谱系障碍基因关联方法。
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-03-08 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1295600
Neta Zadok, Gil Ast, Roded Sharan

Autism spectrum disorder (ASD) is a highly heritable complex disease that affects 1% of the population, yet its underlying molecular mechanisms are largely unknown. Here we study the problem of predicting causal genes for ASD by combining genome-scale data with a network propagation approach. We construct a predictor that integrates multiple omic data sets that assess genomic, transcriptomic, proteomic, and phosphoproteomic associations with ASD. In cross validation our predictor yields mean area under the ROC curve of 0.87 and area under the precision-recall curve of 0.89. We further show that it outperforms previous gene-level predictors of autism association. Finally, we show that we can use the model to predict genes associated with Schizophrenia which is known to share genetic components with ASD.

自闭症谱系障碍(ASD)是一种高度遗传的复杂疾病,影响着1%的人口,但其潜在的分子机制却在很大程度上不为人知。在这里,我们通过将基因组尺度数据与网络传播方法相结合,研究了预测 ASD 致病基因的问题。我们构建了一个预测器,它整合了多个 omic 数据集,这些数据集评估了基因组、转录组、蛋白质组和磷酸蛋白组与 ASD 的关联。在交叉验证中,我们的预测器得出的平均 ROC 曲线下面积为 0.87,精度-召回曲线下面积为 0.89。我们进一步证明,它优于以前的自闭症关联基因水平预测方法。最后,我们还表明,我们可以使用该模型预测与精神分裂症相关的基因,而精神分裂症与自闭症具有相同的遗传成分。
{"title":"A network-based method for associating genes with autism spectrum disorder.","authors":"Neta Zadok, Gil Ast, Roded Sharan","doi":"10.3389/fbinf.2024.1295600","DOIUrl":"10.3389/fbinf.2024.1295600","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a highly heritable complex disease that affects 1% of the population, yet its underlying molecular mechanisms are largely unknown. Here we study the problem of predicting causal genes for ASD by combining genome-scale data with a network propagation approach. We construct a predictor that integrates multiple omic data sets that assess genomic, transcriptomic, proteomic, and phosphoproteomic associations with ASD. In cross validation our predictor yields mean area under the ROC curve of 0.87 and area under the precision-recall curve of 0.89. We further show that it outperforms previous gene-level predictors of autism association. Finally, we show that we can use the model to predict genes associated with Schizophrenia which is known to share genetic components with ASD.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1295600"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140208310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting subtle transcriptomic perturbations induced by lncRNAs knock-down in single-cell CRISPRi screening using a new sparse supervised autoencoder neural network. 在单细胞 CRISPRi 筛选中使用新型稀疏监督自动编码器神经网络检测 lncRNAs 敲除引起的微妙转录组扰动
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1340339
Marin Truchi, Caroline Lacoux, Cyprien Gille, Julien Fassy, Virginie Magnone, Rafael Lopes Goncalves, Cédric Girard-Riboulleau, Iris Manosalva-Pena, Marine Gautier-Isola, Kevin Lebrigand, Pascal Barbry, Salvatore Spicuglia, Georges Vassaux, Roger Rezzonico, Michel Barlaud, Bernard Mari

Single-cell CRISPR-based transcriptome screens are potent genetic tools for concomitantly assessing the expression profiles of cells targeted by a set of guides RNA (gRNA), and inferring target gene functions from the observed perturbations. However, due to various limitations, this approach lacks sensitivity in detecting weak perturbations and is essentially reliable when studying master regulators such as transcription factors. To overcome the challenge of detecting subtle gRNA induced transcriptomic perturbations and classifying the most responsive cells, we developed a new supervised autoencoder neural network method. Our Sparse supervised autoencoder (SSAE) neural network provides selection of both relevant features (genes) and actual perturbed cells. We applied this method on an in-house single-cell CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq) focusing on a subset of long non-coding RNAs (lncRNAs) regulated by hypoxia, a condition that promote tumor aggressiveness and drug resistance, in the context of lung adenocarcinoma (LUAD). The CROP-seq library of validated gRNA against a subset of lncRNAs and, as positive controls, HIF1A and HIF2A, the 2 main transcription factors of the hypoxic response, was transduced in A549 LUAD cells cultured in normoxia or exposed to hypoxic conditions during 3, 6 or 24 h. We first validated the SSAE approach on HIF1A and HIF2 by confirming the specific effect of their knock-down during the temporal switch of the hypoxic response. Next, the SSAE method was able to detect stable short hypoxia-dependent transcriptomic signatures induced by the knock-down of some lncRNAs candidates, outperforming previously published machine learning approaches. This proof of concept demonstrates the relevance of the SSAE approach for deciphering weak perturbations in single-cell transcriptomic data readout as part of CRISPR-based screening.

基于CRISPR技术的单细胞转录组筛选是一种有效的遗传工具,可同时评估以一组引导RNA(gRNA)为靶标的细胞的表达谱,并从观察到的扰动推断靶基因的功能。然而,由于各种局限性,这种方法在检测微弱扰动方面缺乏灵敏度,在研究转录因子等主调节因子时基本不可靠。为了克服检测微妙的 gRNA 诱导的转录组扰动并对反应最灵敏的细胞进行分类这一难题,我们开发了一种新的有监督自动编码器神经网络方法。我们的稀疏监督自动编码器(SSAE)神经网络可同时选择相关特征(基因)和实际受扰动细胞。我们将这种方法应用于基于 CRISPR 干涉(CRISPRi)的内部单细胞转录组筛选(CROP-Seq),重点研究肺腺癌(LUAD)中受缺氧调控的长非编码 RNA(lncRNA)子集。我们首先验证了针对 HIF1A 和 HIF2 的 SSAE 方法,确认了在缺氧反应的时间转换过程中敲除这两种基因的特殊效果。接下来,SSAE方法能够检测到一些lncRNAs候选基因敲除诱导的稳定的短缺氧依赖性转录组特征,优于之前发表的机器学习方法。这一概念验证证明了 SSAE 方法在解读单细胞转录组数据读出的微弱扰动方面的相关性,是基于 CRISPR 的筛选的一部分。
{"title":"Detecting subtle transcriptomic perturbations induced by lncRNAs knock-down in single-cell CRISPRi screening using a new sparse supervised autoencoder neural network.","authors":"Marin Truchi, Caroline Lacoux, Cyprien Gille, Julien Fassy, Virginie Magnone, Rafael Lopes Goncalves, Cédric Girard-Riboulleau, Iris Manosalva-Pena, Marine Gautier-Isola, Kevin Lebrigand, Pascal Barbry, Salvatore Spicuglia, Georges Vassaux, Roger Rezzonico, Michel Barlaud, Bernard Mari","doi":"10.3389/fbinf.2024.1340339","DOIUrl":"10.3389/fbinf.2024.1340339","url":null,"abstract":"<p><p>Single-cell CRISPR-based transcriptome screens are potent genetic tools for concomitantly assessing the expression profiles of cells targeted by a set of guides RNA (gRNA), and inferring target gene functions from the observed perturbations. However, due to various limitations, this approach lacks sensitivity in detecting weak perturbations and is essentially reliable when studying master regulators such as transcription factors. To overcome the challenge of detecting subtle gRNA induced transcriptomic perturbations and classifying the most responsive cells, we developed a new supervised autoencoder neural network method. Our Sparse supervised autoencoder (SSAE) neural network provides selection of both relevant features (genes) and actual perturbed cells. We applied this method on an in-house single-cell CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq) focusing on a subset of long non-coding RNAs (lncRNAs) regulated by hypoxia, a condition that promote tumor aggressiveness and drug resistance, in the context of lung adenocarcinoma (LUAD). The CROP-seq library of validated gRNA against a subset of lncRNAs and, as positive controls, HIF1A and HIF2A, the 2 main transcription factors of the hypoxic response, was transduced in A549 LUAD cells cultured in normoxia or exposed to hypoxic conditions during 3, 6 or 24 h. We first validated the SSAE approach on HIF1A and HIF2 by confirming the specific effect of their knock-down during the temporal switch of the hypoxic response. Next, the SSAE method was able to detect stable short hypoxia-dependent transcriptomic signatures induced by the knock-down of some lncRNAs candidates, outperforming previously published machine learning approaches. This proof of concept demonstrates the relevance of the SSAE approach for deciphering weak perturbations in single-cell transcriptomic data readout as part of CRISPR-based screening.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1340339"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting cell population-specific gene expression from genomic sequence. 从基因组序列预测细胞群特异性基因表达。
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1347276
Lieke Michielsen, Marcel J T Reinders, Ahmed Mahfouz

Most regulatory elements, especially enhancer sequences, are cell population-specific. One could even argue that a distinct set of regulatory elements is what defines a cell population. However, discovering which non-coding regions of the DNA are essential in which context, and as a result, which genes are expressed, is a difficult task. Some computational models tackle this problem by predicting gene expression directly from the genomic sequence. These models are currently limited to predicting bulk measurements and mainly make tissue-specific predictions. Here, we present a model that leverages single-cell RNA-sequencing data to predict gene expression. We show that cell population-specific models outperform tissue-specific models, especially when the expression profile of a cell population and the corresponding tissue are dissimilar. Further, we show that our model can prioritize GWAS variants and learn motifs of transcription factor binding sites. We envision that our model can be useful for delineating cell population-specific regulatory elements.

大多数调控元件,尤其是增强子序列,都具有细胞群体特异性。甚至可以说,一组独特的调控元件就是细胞群体的定义。然而,要发现 DNA 中哪些非编码区域在何种情况下必不可少,从而发现哪些基因会表达,是一项艰巨的任务。一些计算模型通过直接从基因组序列预测基因表达来解决这一问题。这些模型目前仅限于预测批量测量,主要是针对特定组织进行预测。在这里,我们提出了一种利用单细胞 RNA 序列数据预测基因表达的模型。我们的研究表明,细胞群特异性模型优于组织特异性模型,尤其是当细胞群和相应组织的表达谱不同时。此外,我们的研究还表明,我们的模型可以确定 GWAS 变异的优先次序,并学习转录因子结合位点的图案。我们设想,我们的模型可用于划分细胞群特异性调控元件。
{"title":"Predicting cell population-specific gene expression from genomic sequence.","authors":"Lieke Michielsen, Marcel J T Reinders, Ahmed Mahfouz","doi":"10.3389/fbinf.2024.1347276","DOIUrl":"10.3389/fbinf.2024.1347276","url":null,"abstract":"<p><p>Most regulatory elements, especially enhancer sequences, are cell population-specific. One could even argue that a distinct set of regulatory elements is what defines a cell population. However, discovering which non-coding regions of the DNA are essential in which context, and as a result, which genes are expressed, is a difficult task. Some computational models tackle this problem by predicting gene expression directly from the genomic sequence. These models are currently limited to predicting bulk measurements and mainly make tissue-specific predictions. Here, we present a model that leverages single-cell RNA-sequencing data to predict gene expression. We show that cell population-specific models outperform tissue-specific models, especially when the expression profile of a cell population and the corresponding tissue are dissimilar. Further, we show that our model can prioritize GWAS variants and learn motifs of transcription factor binding sites. We envision that our model can be useful for delineating cell population-specific regulatory elements.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1347276"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Where are we in the implementation of tissue-specific epigenetic clocks? 组织特异性表观遗传时钟的实施进展如何?
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1306244
Claudia Sala, Pietro Di Lena, Danielle Fernandes Durso, Italo Faria do Valle, Maria Giulia Bacalini, Daniele Dall'Olio, Claudio Franceschi, Gastone Castellani, Paolo Garagnani, Christine Nardini

Introduction: DNA methylation clocks presents advantageous characteristics with respect to the ambitious goal of identifying very early markers of disease, based on the concept that accelerated ageing is a reliable predictor in this sense. Methods: Such tools, being epigenomic based, are expected to be conditioned by sex and tissue specificities, and this work is about quantifying this dependency as well as that from the regression model and the size of the training set. Results: Our quantitative results indicate that elastic-net penalization is the best performing strategy, and better so when-unsurprisingly-the data set is bigger; sex does not appear to condition clocks performances and tissue specific clocks appear to perform better than generic blood clocks. Finally, when considering all trained clocks, we identified a subset of genes that, to the best of our knowledge, have not been presented yet and might deserve further investigation: CPT1A, MMP15, SHROOM3, SLIT3, and SYNGR. Conclusion: These factual starting points can be useful for the future medical translation of clocks and in particular in the debate between multi-tissue clocks, generally trained on a large majority of blood samples, and tissue-specific clocks.

导言DNA 甲基化时钟在确定疾病早期标志物的宏伟目标方面具有优势,其概念是加速衰老是可靠的预测指标。方法:这种基于表观基因组学的工具预计会受到性别和组织特异性的影响,这项工作就是要量化这种依赖性以及回归模型和训练集大小的影响。结果我们的量化结果表明,弹性网惩罚是性能最好的策略,而且在数据集越大的情况下效果越好,这一点不足为奇;性别似乎并不影响时钟的性能,而组织特异性时钟似乎比一般血液时钟性能更好。最后,在考虑所有训练有素的时钟时,我们发现了一个基因子集,据我们所知,这些基因子集尚未被提出,可能值得进一步研究:CPT1A、MMP15、SHROOM3、SLIT3 和 SYNGR。结论这些事实出发点对时钟未来的医学转化很有帮助,特别是在多组织时钟(通常在大多数血液样本上进行训练)和组织特异性时钟之间的争论中。
{"title":"Where are we in the implementation of tissue-specific epigenetic clocks?","authors":"Claudia Sala, Pietro Di Lena, Danielle Fernandes Durso, Italo Faria do Valle, Maria Giulia Bacalini, Daniele Dall'Olio, Claudio Franceschi, Gastone Castellani, Paolo Garagnani, Christine Nardini","doi":"10.3389/fbinf.2024.1306244","DOIUrl":"10.3389/fbinf.2024.1306244","url":null,"abstract":"<p><p><b>Introduction:</b> DNA methylation clocks presents advantageous characteristics with respect to the ambitious goal of identifying very early markers of disease, based on the concept that accelerated ageing is a reliable predictor in this sense. <b>Methods:</b> Such tools, being epigenomic based, are expected to be conditioned by sex and tissue specificities, and this work is about quantifying this dependency as well as that from the regression model and the size of the training set. <b>Results:</b> Our quantitative results indicate that elastic-net penalization is the best performing strategy, and better so when-unsurprisingly-the data set is bigger; sex does not appear to condition clocks performances and tissue specific clocks appear to perform better than generic blood clocks. Finally, when considering all trained clocks, we identified a subset of genes that, to the best of our knowledge, have not been presented yet and might deserve further investigation: CPT1A, MMP15, SHROOM3, SLIT3, and SYNGR. <b>Conclusion:</b> These factual starting points can be useful for the future medical translation of clocks and in particular in the debate between multi-tissue clocks, generally trained on a large majority of blood samples, and tissue-specific clocks.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1306244"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational identification of antibody-binding epitopes from mimotope datasets. 从拟态数据集计算识别抗体结合表位。
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-02-23 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1295972
Rang Li, Sabrina Wilderotter, Madison Stoddard, Debra Van Egeren, Arijit Chakravarty, Diane Joseph-McCarthy

Introduction: A fundamental challenge in computational vaccinology is that most B-cell epitopes are conformational and therefore hard to predict from sequence alone. Another significant challenge is that a great deal of the amino acid sequence of a viral surface protein might not in fact be antigenic. Thus, identifying the regions of a protein that are most promising for vaccine design based on the degree of surface exposure may not lead to a clinically relevant immune response. Methods: Linear peptides selected by phage display experiments that have high affinity to the monoclonal antibody of interest ("mimotopes") usually have similar physicochemical properties to the antigen epitope corresponding to that antibody. The sequences of these linear peptides can be used to find possible epitopes on the surface of the antigen structure or a homology model of the antigen in the absence of an antigen-antibody complex structure. Results and Discussion: Herein we describe two novel methods for mapping mimotopes to epitopes. The first is a novel algorithm named MimoTree that allows for gaps in the mimotopes and epitopes on the antigen. More specifically, a mimotope may have a gap that does not match to the epitope to allow it to adopt a conformation relevant for binding to an antibody, and residues may similarly be discontinuous in conformational epitopes. MimoTree is a fully automated epitope detection algorithm suitable for the identification of conformational as well as linear epitopes. The second is an ensemble approach, which combines the prediction results from MimoTree and two existing methods.

导言:计算疫苗学的一个基本挑战是,大多数 B 细胞表位都是构象性的,因此很难仅凭序列预测。另一个重大挑战是病毒表面蛋白的大量氨基酸序列实际上可能不具有抗原性。因此,根据表面暴露程度确定最有希望设计疫苗的蛋白质区域可能不会产生临床相关的免疫反应。方法:通过噬菌体展示实验选出的与相关单克隆抗体具有高亲和力的线性肽("拟态")通常与该抗体对应的抗原表位具有相似的理化性质。这些线性肽的序列可用于寻找抗原结构表面的可能表位,或在没有抗原-抗体复合物结构的情况下寻找抗原的同源模型。结果与讨论:在此,我们介绍了两种将拟态映射到表位的新方法。第一种方法是一种名为 MimoTree 的新算法,它允许抗原上的拟态和表位之间存在间隙。更具体地说,拟态位点可能存在与表位不匹配的间隙,使其无法采用与抗体结合相关的构象,而构象表位中的残基也可能存在类似的不连续性。MimoTree 是一种全自动表位检测算法,适用于识别构象表位和线性表位。第二种是集合方法,它结合了 MimoTree 和两种现有方法的预测结果。
{"title":"Computational identification of antibody-binding epitopes from mimotope datasets.","authors":"Rang Li, Sabrina Wilderotter, Madison Stoddard, Debra Van Egeren, Arijit Chakravarty, Diane Joseph-McCarthy","doi":"10.3389/fbinf.2024.1295972","DOIUrl":"10.3389/fbinf.2024.1295972","url":null,"abstract":"<p><p><b>Introduction:</b> A fundamental challenge in computational vaccinology is that most B-cell epitopes are conformational and therefore hard to predict from sequence alone. Another significant challenge is that a great deal of the amino acid sequence of a viral surface protein might not in fact be antigenic. Thus, identifying the regions of a protein that are most promising for vaccine design based on the degree of surface exposure may not lead to a clinically relevant immune response. <b>Methods:</b> Linear peptides selected by phage display experiments that have high affinity to the monoclonal antibody of interest (\"mimotopes\") usually have similar physicochemical properties to the antigen epitope corresponding to that antibody. The sequences of these linear peptides can be used to find possible epitopes on the surface of the antigen structure or a homology model of the antigen in the absence of an antigen-antibody complex structure. <b>Results and Discussion:</b> Herein we describe two novel methods for mapping mimotopes to epitopes. The first is a novel algorithm named MimoTree that allows for gaps in the mimotopes and epitopes on the antigen. More specifically, a mimotope may have a gap that does not match to the epitope to allow it to adopt a conformation relevant for binding to an antibody, and residues may similarly be discontinuous in conformational epitopes. MimoTree is a fully automated epitope detection algorithm suitable for the identification of conformational as well as linear epitopes. The second is an ensemble approach, which combines the prediction results from MimoTree and two existing methods.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1295972"},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limits of experimental evidence in RNA secondary structure prediction. RNA 二级结构预测中实验证据的局限性。
IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-02-22 eCollection Date: 2024-01-01 DOI: 10.3389/fbinf.2024.1346779
Sarah von Löhneysen, Mario Mörl, Peter F Stadler
{"title":"Limits of experimental evidence in RNA secondary structure prediction.","authors":"Sarah von Löhneysen, Mario Mörl, Peter F Stadler","doi":"10.3389/fbinf.2024.1346779","DOIUrl":"10.3389/fbinf.2024.1346779","url":null,"abstract":"","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1346779"},"PeriodicalIF":2.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in bioinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1