Pub Date : 2024-02-22eCollection Date: 2023-01-01DOI: 10.3389/fbinf.2023.1285828
Yanlin Zhang, Christopher J F Cameron, Mathieu Blanchette
Hi-C is one of the most widely used approaches to study three-dimensional genome conformations. Contacts captured by a Hi-C experiment are represented in a contact frequency matrix. Due to the limited sequencing depth and other factors, Hi-C contact frequency matrices are only approximations of the true interaction frequencies and are further reported without any quantification of uncertainty. Hence, downstream analyses based on Hi-C contact maps (e.g., TAD and loop annotation) are themselves point estimations. Here, we present the Hi-C interaction frequency sampler (HiCSampler) that reliably infers the posterior distribution of the interaction frequency for a given Hi-C contact map by exploiting dependencies between neighboring loci. Posterior predictive checks demonstrate that HiCSampler can infer highly predictive chromosomal interaction frequency. Summary statistics calculated by HiCSampler provide a measurement of the uncertainty for Hi-C experiments, and samples inferred by HiCSampler are ready for use by most downstream analysis tools off the shelf and permit uncertainty measurements in these analyses without modifications.
{"title":"Posterior inference of Hi-C contact frequency through sampling.","authors":"Yanlin Zhang, Christopher J F Cameron, Mathieu Blanchette","doi":"10.3389/fbinf.2023.1285828","DOIUrl":"10.3389/fbinf.2023.1285828","url":null,"abstract":"<p><p>Hi-C is one of the most widely used approaches to study three-dimensional genome conformations. Contacts captured by a Hi-C experiment are represented in a contact frequency matrix. Due to the limited sequencing depth and other factors, Hi-C contact frequency matrices are only approximations of the true interaction frequencies and are further reported without any quantification of uncertainty. Hence, downstream analyses based on Hi-C contact maps (e.g., TAD and loop annotation) are themselves point estimations. Here, we present the Hi-C interaction frequency sampler (HiCSampler) that reliably infers the posterior distribution of the interaction frequency for a given Hi-C contact map by exploiting dependencies between neighboring loci. Posterior predictive checks demonstrate that HiCSampler can infer highly predictive chromosomal interaction frequency. Summary statistics calculated by HiCSampler provide a measurement of the uncertainty for Hi-C experiments, and samples inferred by HiCSampler are ready for use by most downstream analysis tools off the shelf and permit uncertainty measurements in these analyses without modifications.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"3 ","pages":"1285828"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31eCollection Date: 2024-01-01DOI: 10.3389/fbinf.2024.1347168
A L Swan, A Broadbent, P Singh Gaur, A Mishra, K Gurwitz, A Mithani, S L Morgan, G Malhotra, C Brooksbank
EMBL-EBI provides a broad range of training in data-driven life sciences. To improve awareness and access to training course listings and to make digital learning materials findable and simple to use, the EMBL-EBI Training website, www.ebi.ac.uk/training, was redesigned and restructured. To provide a framework for the redesign of the website, the FAIR (findable, accessible, interoperable, reusable) principles were applied to both the listings of live training courses and the presentation of on-demand training content. Each of the FAIR principles guided decisions on the choice of technology used to develop the website, including the details provided about training and the way in which training was presented. Since its release the openly accessible website has been accessed by an average of 58,492 users a month. There have also been over 12,000 unique users creating accounts since the functionality was added in March 2022, allowing these users to track their learning and record completion of training. Development of the website was completed using the Agile Scrum project management methodology and a focus on user experience. This framework continues to be used now that the website is live for the maintenance and improvement of the website, as feedback continues to be collected and further ways to make training FAIR are identified. Here, we describe the process of making EMBL-EBI's training FAIR through the development of a new website and our experience of implementing Agile Scrum.
{"title":"Making bioinformatics training FAIR: the EMBL-EBI training portal.","authors":"A L Swan, A Broadbent, P Singh Gaur, A Mishra, K Gurwitz, A Mithani, S L Morgan, G Malhotra, C Brooksbank","doi":"10.3389/fbinf.2024.1347168","DOIUrl":"10.3389/fbinf.2024.1347168","url":null,"abstract":"<p><p>EMBL-EBI provides a broad range of training in data-driven life sciences. To improve awareness and access to training course listings and to make digital learning materials findable and simple to use, the EMBL-EBI Training website, www.ebi.ac.uk/training, was redesigned and restructured. To provide a framework for the redesign of the website, the FAIR (findable, accessible, interoperable, reusable) principles were applied to both the listings of live training courses and the presentation of on-demand training content. Each of the FAIR principles guided decisions on the choice of technology used to develop the website, including the details provided about training and the way in which training was presented. Since its release the openly accessible website has been accessed by an average of 58,492 users a month. There have also been over 12,000 unique users creating accounts since the functionality was added in March 2022, allowing these users to track their learning and record completion of training. Development of the website was completed using the Agile Scrum project management methodology and a focus on user experience. This framework continues to be used now that the website is live for the maintenance and improvement of the website, as feedback continues to be collected and further ways to make training FAIR are identified. Here, we describe the process of making EMBL-EBI's training FAIR through the development of a new website and our experience of implementing Agile Scrum.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1347168"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31eCollection Date: 2024-01-01DOI: 10.3389/fbinf.2024.1293412
Aimer Gutierrez-Diaz, Steve Hoffmann, Juan Carlos Gallego-Gómez, Clara Isabel Bermudez-Santana
In recent years, a population of small RNA fragments derived from non-coding RNAs (sfd-RNAs) has gained significant interest due to its functional and structural resemblance to miRNAs, adding another level of complexity to our comprehension of small-RNA-mediated gene regulation. Despite this, scientists need more tools to test the differential expression of sfd-RNAs since the current methods to detect miRNAs may not be directly applied to them. The primary reasons are the lack of accurate small RNA and ncRNA annotation, the multi-mapping read (MMR) placement, and the multicopy nature of ncRNAs in the human genome. To solve these issues, a methodology that allows the detection of differentially expressed sfd-RNAs, including canonical miRNAs, by using an integrated copy-number-corrected ncRNA annotation was implemented. This approach was coupled with sixteen different computational strategies composed of combinations of four aligners and four normalization methods to provide a rank-order of prediction for each differentially expressed sfd-RNA. By systematically addressing the three main problems, we could detect differentially expressed miRNAs and sfd-RNAs in dengue virus-infected human dermal microvascular endothelial cells. Although more biological evaluations are required, two molecular targets of the hsa-mir-103a and hsa-mir-494 (CDK5 and PI3/AKT) appear relevant for dengue virus (DENV) infections. Here, we performed a comprehensive annotation and differential expression analysis, which can be applied in other studies addressing the role of small fragment RNA populations derived from ncRNAs in virus infection.
{"title":"Systematic computational hunting for small RNAs derived from ncRNAs during dengue virus infection in endothelial HMEC-1 cells.","authors":"Aimer Gutierrez-Diaz, Steve Hoffmann, Juan Carlos Gallego-Gómez, Clara Isabel Bermudez-Santana","doi":"10.3389/fbinf.2024.1293412","DOIUrl":"10.3389/fbinf.2024.1293412","url":null,"abstract":"<p><p>In recent years, a population of small RNA fragments derived from non-coding RNAs (sfd-RNAs) has gained significant interest due to its functional and structural resemblance to miRNAs, adding another level of complexity to our comprehension of small-RNA-mediated gene regulation. Despite this, scientists need more tools to test the differential expression of sfd-RNAs since the current methods to detect miRNAs may not be directly applied to them. The primary reasons are the lack of accurate small RNA and ncRNA annotation, the multi-mapping read (MMR) placement, and the multicopy nature of ncRNAs in the human genome. To solve these issues, a methodology that allows the detection of differentially expressed sfd-RNAs, including canonical miRNAs, by using an integrated copy-number-corrected ncRNA annotation was implemented. This approach was coupled with sixteen different computational strategies composed of combinations of four aligners and four normalization methods to provide a rank-order of prediction for each differentially expressed sfd-RNA. By systematically addressing the three main problems, we could detect differentially expressed miRNAs and sfd-RNAs in dengue virus-infected human dermal microvascular endothelial cells. Although more biological evaluations are required, two molecular targets of the hsa-mir-103a and hsa-mir-494 (CDK5 and PI3/AKT) appear relevant for dengue virus (DENV) infections. Here, we performed a comprehensive annotation and differential expression analysis, which can be applied in other studies addressing the role of small fragment RNA populations derived from ncRNAs in virus infection.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1293412"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864640/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-15eCollection Date: 2023-01-01DOI: 10.3389/fbinf.2023.1328262
Anush Karampuri, Shyam Perugu
Breast cancer is the most prevalent and heterogeneous form of cancer affecting women worldwide. Various therapeutic strategies are in practice based on the extent of disease spread, such as surgery, chemotherapy, radiotherapy, and immunotherapy. Combinational therapy is another strategy that has proven to be effective in controlling cancer progression. Administration of Anchor drug, a well-established primary therapeutic agent with known efficacy for specific targets, with Library drug, a supplementary drug to enhance the efficacy of anchor drugs and broaden the therapeutic approach. Our work focused on harnessing regression-based Machine learning (ML) and deep learning (DL) algorithms to develop a structure-activity relationship between the molecular descriptors of drug pairs and their combined biological activity through a QSAR (Quantitative structure-activity relationship) model. 11 popularly known machine learning and deep learning algorithms were used to develop QSAR models. A total of 52 breast cancer cell lines, 25 anchor drugs, and 51 library drugs were considered in developing the QSAR model. It was observed that Deep Neural Networks (DNNs) achieved an impressive R2 (Coefficient of Determination) of 0.94, with an RMSE (Root Mean Square Error) value of 0.255, making it the most effective algorithm for developing a structure-activity relationship with strong generalization capabilities. In conclusion, applying combinational therapy alongside ML and DL techniques represents a promising approach to combating breast cancer.
{"title":"A breast cancer-specific combinational QSAR model development using machine learning and deep learning approaches.","authors":"Anush Karampuri, Shyam Perugu","doi":"10.3389/fbinf.2023.1328262","DOIUrl":"10.3389/fbinf.2023.1328262","url":null,"abstract":"<p><p>Breast cancer is the most prevalent and heterogeneous form of cancer affecting women worldwide. Various therapeutic strategies are in practice based on the extent of disease spread, such as surgery, chemotherapy, radiotherapy, and immunotherapy. Combinational therapy is another strategy that has proven to be effective in controlling cancer progression. Administration of Anchor drug, a well-established primary therapeutic agent with known efficacy for specific targets, with Library drug, a supplementary drug to enhance the efficacy of anchor drugs and broaden the therapeutic approach. Our work focused on harnessing regression-based Machine learning (ML) and deep learning (DL) algorithms to develop a structure-activity relationship between the molecular descriptors of drug pairs and their combined biological activity through a QSAR (Quantitative structure-activity relationship) model. 11 popularly known machine learning and deep learning algorithms were used to develop QSAR models. A total of 52 breast cancer cell lines, 25 anchor drugs, and 51 library drugs were considered in developing the QSAR model. It was observed that Deep Neural Networks (DNNs) achieved an impressive R<sup>2</sup> (Coefficient of Determination) of 0.94, with an RMSE (Root Mean Square Error) value of 0.255, making it the most effective algorithm for developing a structure-activity relationship with strong generalization capabilities. In conclusion, applying combinational therapy alongside ML and DL techniques represents a promising approach to combating breast cancer.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"3 ","pages":"1328262"},"PeriodicalIF":2.8,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139577087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.3389/fbinf.2023.1284705
Suraiya Akhter, John H. Miller
The use of bacteriocins has emerged as a propitious strategy in the development of new drugs to combat antibiotic resistance, given their ability to kill bacteria with both broad and narrow natural spectra. Hence, a compelling requirement arises for a precise and efficient computational model that can accurately predict novel bacteriocins. Machine learning’s ability to learn patterns and features from bacteriocin sequences that are difficult to capture using sequence matching-based methods makes it a potentially superior choice for accurate prediction. A web application for predicting bacteriocin was created in this study, utilizing a machine learning approach. The feature sets employed in the application were chosen using alternating decision tree (ADTree), genetic algorithm (GA), and linear support vector classifier (linear SVC)-based feature evaluation methods. Initially, potential features were extracted from the physicochemical, structural, and sequence-profile attributes of both bacteriocin and non-bacteriocin protein sequences. We assessed the candidate features first using the Pearson correlation coefficient, followed by separate evaluations with ADTree, GA, and linear SVC to eliminate unnecessary features. Finally, we constructed random forest (RF), support vector machine (SVM), decision tree (DT), logistic regression (LR), k-nearest neighbors (KNN), and Gaussian naïve Bayes (GNB) models using reduced feature sets. We obtained the overall top performing model using SVM with ADTree-reduced features, achieving an accuracy of 99.11% and an AUC value of 0.9984 on the testing dataset. We also assessed the predictive capabilities of our best-performing models for each reduced feature set relative to our previously developed software solution, a sequence alignment-based tool, and a deep-learning approach. A web application, titled BPAGS (Bacteriocin Prediction based on ADTree, GA, and linear SVC), was developed to incorporate the predictive models built using ADTree, GA, and linear SVC-based feature sets. Currently, the web-based tool provides classification results with associated probability values and has options to add new samples in the training data to improve the predictive efficacy. BPAGS is freely accessible at https://shiny.tricities.wsu.edu/bacteriocin-prediction/.
{"title":"BPAGS: a web application for bacteriocin prediction via feature evaluation using alternating decision tree, genetic algorithm, and linear support vector classifier","authors":"Suraiya Akhter, John H. Miller","doi":"10.3389/fbinf.2023.1284705","DOIUrl":"https://doi.org/10.3389/fbinf.2023.1284705","url":null,"abstract":"The use of bacteriocins has emerged as a propitious strategy in the development of new drugs to combat antibiotic resistance, given their ability to kill bacteria with both broad and narrow natural spectra. Hence, a compelling requirement arises for a precise and efficient computational model that can accurately predict novel bacteriocins. Machine learning’s ability to learn patterns and features from bacteriocin sequences that are difficult to capture using sequence matching-based methods makes it a potentially superior choice for accurate prediction. A web application for predicting bacteriocin was created in this study, utilizing a machine learning approach. The feature sets employed in the application were chosen using alternating decision tree (ADTree), genetic algorithm (GA), and linear support vector classifier (linear SVC)-based feature evaluation methods. Initially, potential features were extracted from the physicochemical, structural, and sequence-profile attributes of both bacteriocin and non-bacteriocin protein sequences. We assessed the candidate features first using the Pearson correlation coefficient, followed by separate evaluations with ADTree, GA, and linear SVC to eliminate unnecessary features. Finally, we constructed random forest (RF), support vector machine (SVM), decision tree (DT), logistic regression (LR), k-nearest neighbors (KNN), and Gaussian naïve Bayes (GNB) models using reduced feature sets. We obtained the overall top performing model using SVM with ADTree-reduced features, achieving an accuracy of 99.11% and an AUC value of 0.9984 on the testing dataset. We also assessed the predictive capabilities of our best-performing models for each reduced feature set relative to our previously developed software solution, a sequence alignment-based tool, and a deep-learning approach. A web application, titled BPAGS (Bacteriocin Prediction based on ADTree, GA, and linear SVC), was developed to incorporate the predictive models built using ADTree, GA, and linear SVC-based feature sets. Currently, the web-based tool provides classification results with associated probability values and has options to add new samples in the training data to improve the predictive efficacy. BPAGS is freely accessible at https://shiny.tricities.wsu.edu/bacteriocin-prediction/.","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"8 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139439460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-08DOI: 10.3389/fbinf.2023.1332902
Prajay Patel, Nisha Pillai, Inimary T. Toby
No-boundary thinking enables the scientific community to reflect in a thoughtful manner and discover new opportunities, create innovative solutions, and break through barriers that might have otherwise constrained their progress. This concept encourages thinking without being confined by traditional rules, limitations, or established norms, and a mindset that is not limited by previous work, leading to fresh perspectives and innovative outcomes. So, where do we see the field of artificial intelligence (AI) in bioinformatics going in the next 30 years? That was the theme of a “No-Boundary Thinking” Session as part of the Mid-South Computational Bioinformatics Society’s (MCBIOS) 19th annual meeting in Irving, Texas. This session addressed various areas of AI in an open discussion and raised some perspectives on how popular tools like ChatGPT can be integrated into bioinformatics, communicating with scientists in different fields to properly utilize the potential of these algorithms, and how to continue educational outreach to further interest of data science and informatics to the next-generation of scientists.
{"title":"No-boundary thinking for artificial intelligence in bioinformatics and education","authors":"Prajay Patel, Nisha Pillai, Inimary T. Toby","doi":"10.3389/fbinf.2023.1332902","DOIUrl":"https://doi.org/10.3389/fbinf.2023.1332902","url":null,"abstract":"No-boundary thinking enables the scientific community to reflect in a thoughtful manner and discover new opportunities, create innovative solutions, and break through barriers that might have otherwise constrained their progress. This concept encourages thinking without being confined by traditional rules, limitations, or established norms, and a mindset that is not limited by previous work, leading to fresh perspectives and innovative outcomes. So, where do we see the field of artificial intelligence (AI) in bioinformatics going in the next 30 years? That was the theme of a “No-Boundary Thinking” Session as part of the Mid-South Computational Bioinformatics Society’s (MCBIOS) 19th annual meeting in Irving, Texas. This session addressed various areas of AI in an open discussion and raised some perspectives on how popular tools like ChatGPT can be integrated into bioinformatics, communicating with scientists in different fields to properly utilize the potential of these algorithms, and how to continue educational outreach to further interest of data science and informatics to the next-generation of scientists.","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"49 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139448061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.3389/fbinf.2023.1321287
Patricia Soto, Davis T. Thalhuber, Frank Luceri, Jamie Janos, Mason R. Borgman, Noah M. Greenwood, Sofia Acosta, Hunter Stoffel
The Prion protein is the molecular hallmark of the incurable prion diseases affecting mammals, including humans. The protein-only hypothesis states that the misfolding, accumulation, and deposition of the Prion protein play a critical role in toxicity. The cellular Prion protein (PrPC) anchors to the extracellular leaflet of the plasma membrane and prefers cholesterol- and sphingomyelin-rich membrane domains. Conformational Prion protein conversion into the pathological isoform happens on the cell surface. In vitro and in vivo experiments indicate that Prion protein misfolding, aggregation, and toxicity are sensitive to the lipid composition of plasma membranes and vesicles. A picture of the underlying biophysical driving forces that explain the effect of Prion protein - lipid interactions in physiological conditions is needed to develop a structural model of Prion protein conformational conversion. To this end, we use molecular dynamics simulations that mimic the interactions between the globular domain of PrPC anchored to model membrane patches. In addition, we also simulate the Doppel protein anchored to such membrane patches. The Doppel protein is the closest in the phylogenetic tree to PrPC, localizes in an extracellular milieu similar to that of PrPC, and exhibits a similar topology to PrPC even if the amino acid sequence is only 25% identical. Our simulations show that specific protein-lipid interactions and conformational constraints imposed by GPI anchoring together favor specific binding sites in globular PrPC but not in Doppel. Interestingly, the binding sites we found in PrPC correspond to prion protein loops, which are critical in aggregation and prion disease transmission barrier (β2-α2 loop) and in initial spontaneous misfolding (α2-α3 loop). We also found that the membrane re-arranges locally to accommodate protein residues inserted in the membrane surface as a response to protein binding.
{"title":"Protein-lipid interactions and protein anchoring modulate the modes of association of the globular domain of the Prion protein and Doppel protein to model membrane patches","authors":"Patricia Soto, Davis T. Thalhuber, Frank Luceri, Jamie Janos, Mason R. Borgman, Noah M. Greenwood, Sofia Acosta, Hunter Stoffel","doi":"10.3389/fbinf.2023.1321287","DOIUrl":"https://doi.org/10.3389/fbinf.2023.1321287","url":null,"abstract":"The Prion protein is the molecular hallmark of the incurable prion diseases affecting mammals, including humans. The protein-only hypothesis states that the misfolding, accumulation, and deposition of the Prion protein play a critical role in toxicity. The cellular Prion protein (PrPC) anchors to the extracellular leaflet of the plasma membrane and prefers cholesterol- and sphingomyelin-rich membrane domains. Conformational Prion protein conversion into the pathological isoform happens on the cell surface. In vitro and in vivo experiments indicate that Prion protein misfolding, aggregation, and toxicity are sensitive to the lipid composition of plasma membranes and vesicles. A picture of the underlying biophysical driving forces that explain the effect of Prion protein - lipid interactions in physiological conditions is needed to develop a structural model of Prion protein conformational conversion. To this end, we use molecular dynamics simulations that mimic the interactions between the globular domain of PrPC anchored to model membrane patches. In addition, we also simulate the Doppel protein anchored to such membrane patches. The Doppel protein is the closest in the phylogenetic tree to PrPC, localizes in an extracellular milieu similar to that of PrPC, and exhibits a similar topology to PrPC even if the amino acid sequence is only 25% identical. Our simulations show that specific protein-lipid interactions and conformational constraints imposed by GPI anchoring together favor specific binding sites in globular PrPC but not in Doppel. Interestingly, the binding sites we found in PrPC correspond to prion protein loops, which are critical in aggregation and prion disease transmission barrier (β2-α2 loop) and in initial spontaneous misfolding (α2-α3 loop). We also found that the membrane re-arranges locally to accommodate protein residues inserted in the membrane surface as a response to protein binding.","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"39 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139381635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.3389/fbinf.2023.1328613
Huyen Le, Ru Chen, Stephen Harris, Hong Fang, Beverly Lyn-Cook, H. Hong, W. Ge, Paul Rogers, Weida Tong, Wen Zou
Numerous studies have been conducted on the US Food and Drug Administration (FDA) Adverse Events Reporting System (FAERS) database to assess post-marketing reporting rates for drug safety review and risk assessment. However, the drug names in the adverse event (AE) reports from FAERS were heterogeneous due to a lack of uniformity of information submitted mandatorily by pharmaceutical companies and voluntarily by patients, healthcare professionals, and the public. Studies using FAERS and other spontaneous reporting AEs database without drug name normalization may encounter incomplete collection of AE reports from non-standard drug names and the accuracies of the results might be impacted. In this study, we demonstrated applicability of RxNorm, developed by the National Library of Medicine, for drug name normalization in FAERS. Using prescription opioids as a case study, we used RxNorm application program interface (API) to map all FDA-approved prescription opioids described in FAERS AE reports to their equivalent RxNorm Concept Unique Identifiers (RxCUIs) and RxNorm names. The different names of the opioids were then extracted, and their usage frequencies were calculated in collection of more than 14.9 million AE reports for 13 FDA-approved prescription opioid classes, reported over 17 years. The results showed that a significant number of different names were consistently used for opioids in FAERS reports, with 2,086 different names (out of 7,892) used at least three times and 842 different names used at least ten times for each of the 92 RxNorm names of FDA-approved opioids. Our method of using RxNorm API mapping was confirmed to be efficient and accurate and capable of reducing the heterogeneity of prescription opioid names significantly in the AE reports in FAERS; meanwhile, it is expected to have a broad application to different sets of drug names from any database where drug names are diverse and unnormalized. It is expected to be able to automatically standardize and link different representations of the same drugs to build an intact and high-quality database for diverse research, particularly postmarketing data analysis in pharmacovigilance initiatives.
{"title":"RxNorm for drug name normalization: a case study of prescription opioids in the FDA adverse events reporting system","authors":"Huyen Le, Ru Chen, Stephen Harris, Hong Fang, Beverly Lyn-Cook, H. Hong, W. Ge, Paul Rogers, Weida Tong, Wen Zou","doi":"10.3389/fbinf.2023.1328613","DOIUrl":"https://doi.org/10.3389/fbinf.2023.1328613","url":null,"abstract":"Numerous studies have been conducted on the US Food and Drug Administration (FDA) Adverse Events Reporting System (FAERS) database to assess post-marketing reporting rates for drug safety review and risk assessment. However, the drug names in the adverse event (AE) reports from FAERS were heterogeneous due to a lack of uniformity of information submitted mandatorily by pharmaceutical companies and voluntarily by patients, healthcare professionals, and the public. Studies using FAERS and other spontaneous reporting AEs database without drug name normalization may encounter incomplete collection of AE reports from non-standard drug names and the accuracies of the results might be impacted. In this study, we demonstrated applicability of RxNorm, developed by the National Library of Medicine, for drug name normalization in FAERS. Using prescription opioids as a case study, we used RxNorm application program interface (API) to map all FDA-approved prescription opioids described in FAERS AE reports to their equivalent RxNorm Concept Unique Identifiers (RxCUIs) and RxNorm names. The different names of the opioids were then extracted, and their usage frequencies were calculated in collection of more than 14.9 million AE reports for 13 FDA-approved prescription opioid classes, reported over 17 years. The results showed that a significant number of different names were consistently used for opioids in FAERS reports, with 2,086 different names (out of 7,892) used at least three times and 842 different names used at least ten times for each of the 92 RxNorm names of FDA-approved opioids. Our method of using RxNorm API mapping was confirmed to be efficient and accurate and capable of reducing the heterogeneity of prescription opioid names significantly in the AE reports in FAERS; meanwhile, it is expected to have a broad application to different sets of drug names from any database where drug names are diverse and unnormalized. It is expected to be able to automatically standardize and link different representations of the same drugs to build an intact and high-quality database for diverse research, particularly postmarketing data analysis in pharmacovigilance initiatives.","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"48 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139383606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.3389/fbinf.2023.1338560
Daisuke Kihara
{"title":"Editorial: Expert opinions in protein bioinformatics: 2022","authors":"Daisuke Kihara","doi":"10.3389/fbinf.2023.1338560","DOIUrl":"https://doi.org/10.3389/fbinf.2023.1338560","url":null,"abstract":"","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"50 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139383582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.3389/fbinf.2023.1320748
Yixuan Ye, Jiaqi Hu, Fuyuan Pang, Can Cui, Hongyu Zhao
Background: Polygenic risk score (PRS) has proved useful in predicting the risk of cardiovascular diseases (CVD) based on the genotypes of an individual, but most analyses have focused on disease onset in the general population. The usefulness of PRS to predict CVD risk among type 2 diabetes (T2D) patients remains unclear.Methods: We built a meta-PRSCVD upon the candidate PRSs developed from state-of-the-art PRS methods for three CVD subtypes of significant importance: coronary artery disease (CAD), ischemic stroke (IS), and heart failure (HF). To evaluate the prediction performance of the meta-PRSCVD, we restricted our analysis to 21,092 white British T2D patients in the UK Biobank, among which 4,015 had CVD events.Results: Results showed that the meta-PRSCVD was significantly associated with CVD risk with a hazard ratio per standard deviation increase of 1.28 (95% CI: 1.23–1.33). The meta-PRSCVD alone predicted the CVD incidence with an area under the receiver operating characteristic curve (AUC) of 0.57 (95% CI: 0.54–0.59). When restricted to the early-onset patients (onset age ≤ 55), the AUC was further increased to 0.61 (95% CI 0.56–0.67).Conclusion: Our results highlight the potential role of genomic screening for secondary preventions of CVD among T2D patients, especially among early-onset patients.
{"title":"Genomic risk prediction of cardiovascular diseases among type 2 diabetes patients in the UK Biobank","authors":"Yixuan Ye, Jiaqi Hu, Fuyuan Pang, Can Cui, Hongyu Zhao","doi":"10.3389/fbinf.2023.1320748","DOIUrl":"https://doi.org/10.3389/fbinf.2023.1320748","url":null,"abstract":"Background: Polygenic risk score (PRS) has proved useful in predicting the risk of cardiovascular diseases (CVD) based on the genotypes of an individual, but most analyses have focused on disease onset in the general population. The usefulness of PRS to predict CVD risk among type 2 diabetes (T2D) patients remains unclear.Methods: We built a meta-PRSCVD upon the candidate PRSs developed from state-of-the-art PRS methods for three CVD subtypes of significant importance: coronary artery disease (CAD), ischemic stroke (IS), and heart failure (HF). To evaluate the prediction performance of the meta-PRSCVD, we restricted our analysis to 21,092 white British T2D patients in the UK Biobank, among which 4,015 had CVD events.Results: Results showed that the meta-PRSCVD was significantly associated with CVD risk with a hazard ratio per standard deviation increase of 1.28 (95% CI: 1.23–1.33). The meta-PRSCVD alone predicted the CVD incidence with an area under the receiver operating characteristic curve (AUC) of 0.57 (95% CI: 0.54–0.59). When restricted to the early-onset patients (onset age ≤ 55), the AUC was further increased to 0.61 (95% CI 0.56–0.67).Conclusion: Our results highlight the potential role of genomic screening for secondary preventions of CVD among T2D patients, especially among early-onset patients.","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"59 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}