Aspergillus fungi contain α-1,3-glucan with a low proportion of α-1,4-glucan as a major cell wall polysaccharide. Glycosylphosphatidylinositol (GPI)-anchored α-amylases are conserved in Aspergillus fungi. The GPI-anchored α-amylase AmyD in Aspergillus nidulans has been reported to directly suppress the biosynthesis of cell wall α-1,3-glucan but not to degrade it in vivo. However, the detailed mechanism of cell wall α-1,3-glucan biosynthesis regulation by AmyD remains unclear. Here we focused on AoAgtA, which is encoded by the Aspergillus oryzae agtA gene, an ortholog of the A. nidulans amyD gene. Similar to findings in A. nidulans, agtA overexpression in A. oryzae grown in submerged culture decreased the amount of cell wall α-1,3-glucan and led to the formation of smaller hyphal pellets in comparison with the wild-type strain. We analyzed the enzymatic properties of recombinant (r)AoAgtA produced in Pichia pastoris and found that it degraded soluble starch, but not linear bacterial α-1,3-glucan. Furthermore, rAoAgtA cleaved 3-α-maltotetraosylglucose with a structure similar to the predicted boundary structure between the α-1,3-glucan main chain and a short spacer composed of α-1,4-linked glucose residues in cell wall α-1,3-glucan. Interestingly, rAoAgtA randomly cleaved only the α-1,4-glycosidic bonds of 3-α-maltotetraosylglucose, indicating that AoAgtA may cleave the spacer in cell wall α-1,3-glucan. Consistent with this hypothesis, heterologous overexpression of agtA in A. nidulans decreased the molecular weight of cell wall α-1,3-glucan. These in vitro and in vivo properties of AoAgtA suggest that GPI-anchored α-amylases can degrade the spacer α-1,4-glycosidic linkages in cell wall α-1,3-glucan before its insolubilization, and this spacer cleavage decreases the molecular weight of cell wall α-1,3-glucan in vivo.
{"title":"Cleavage of α-1,4-glycosidic linkages by the glycosylphosphatidylinositol-anchored α-amylase AgtA decreases the molecular weight of cell wall α-1,3-glucan in <i>Aspergillus oryzae</i>.","authors":"Ami Koizumi, Ken Miyazawa, Makoto Ogata, Yuzuru Takahashi, Shigekazu Yano, Akira Yoshimi, Motoaki Sano, Masafumi Hidaka, Takanori Nihira, Hiroyuki Nakai, Satoshi Kimura, Tadahisa Iwata, Keietsu Abe","doi":"10.3389/ffunb.2022.1061841","DOIUrl":"10.3389/ffunb.2022.1061841","url":null,"abstract":"<p><p><i>Aspergillus</i> fungi contain α-1,3-glucan with a low proportion of α-1,4-glucan as a major cell wall polysaccharide. Glycosylphosphatidylinositol (GPI)-anchored α-amylases are conserved in <i>Aspergillus</i> fungi. The GPI-anchored α-amylase AmyD in <i>Aspergillus nidulans</i> has been reported to directly suppress the biosynthesis of cell wall α-1,3-glucan but not to degrade it <i>in vivo</i>. However, the detailed mechanism of cell wall α-1,3-glucan biosynthesis regulation by AmyD remains unclear. Here we focused on AoAgtA, which is encoded by the <i>Aspergillus oryzae agtA</i> gene, an ortholog of the <i>A. nidulans amyD</i> gene. Similar to findings in <i>A. nidulans</i>, <i>agtA</i> overexpression in <i>A. oryzae</i> grown in submerged culture decreased the amount of cell wall α-1,3-glucan and led to the formation of smaller hyphal pellets in comparison with the wild-type strain. We analyzed the enzymatic properties of recombinant (r)AoAgtA produced in <i>Pichia pastoris</i> and found that it degraded soluble starch, but not linear bacterial α-1,3-glucan. Furthermore, rAoAgtA cleaved 3-α-maltotetraosylglucose with a structure similar to the predicted boundary structure between the α-1,3-glucan main chain and a short spacer composed of α-1,4-linked glucose residues in cell wall α-1,3-glucan. Interestingly, rAoAgtA randomly cleaved only the α-1,4-glycosidic bonds of 3-α-maltotetraosylglucose, indicating that AoAgtA may cleave the spacer in cell wall α-1,3-glucan. Consistent with this hypothesis, heterologous overexpression of <i>agtA</i> in <i>A. nidulans</i> decreased the molecular weight of cell wall α-1,3-glucan. These <i>in vitro</i> and <i>in vivo</i> properties of AoAgtA suggest that GPI-anchored α-amylases can degrade the spacer α-1,4-glycosidic linkages in cell wall α-1,3-glucan before its insolubilization, and this spacer cleavage decreases the molecular weight of cell wall α-1,3-glucan <i>in vivo</i>.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-09eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.1040102
Warre Van Caenegem, Piotr Ceryngier, Jerzy Romanowski, Donald H Pfister, Danny Haelewaters
Laboulbeniales (Ascomycota, Laboulbeniomycetes) are biotrophic microfungi always attached to the exoskeleton of their arthropod hosts. They do not form hyphae or a mycelium; instead, they undergo determinate growth, developing from a two-celled ascospore to form a multicellular thallus. Hesperomyces virescens has been reported on over 30 species of ladybirds (Coleoptera, Coccinellidae); in reality, it represents a complex of species, presumably segregated by host genus association. In this study, we report on Hesperomyces thalli on Hyperaspis vinciguerrae from the Canary Islands and compare them with the Hesperomyces hyperaspidis described on Hyperaspis sp. from Trinidad. We generated the sequences of the internal transcribed spacer (ITS) region, the large subunit (LSU) nuclear ribosomal RNA gene, and the minichromosome maintenance complex component 7 (MCM7) protein-coding gene. Our phylogenetic reconstruction of Hesperomyces based on a concatenated ITS-LSU-MCM7 dataset revealed Hesperomyces sp. ex Hy. vinciguerrae as a member of the He. virescens species complex distinct from He. virescens sensu stricto (s.s.). It also revealed that the Hesperomyces sp. ex Chilocorus bipustulatus from Algeria is different from He. virescens s.s., which is associated with Chilocorus stigma from the USA. This suggests that the species of Hesperomyces are not solely segregated by host association, but that there is also a biogeographical component involved. Based on these data, we refrained from referring our material from Hy. vinciguerrae to He. hyperaspidis. Finally, we discuss the usefulness of MCM7 as a useful marker for species delimitation in Hesperomyces.
{"title":"<i>Hesperomyces</i> (Fungi, Ascomycota) associated with <i>Hyperaspis</i> ladybirds (Coleoptera, Coccinellidae): Rethinking host specificity.","authors":"Warre Van Caenegem, Piotr Ceryngier, Jerzy Romanowski, Donald H Pfister, Danny Haelewaters","doi":"10.3389/ffunb.2022.1040102","DOIUrl":"https://doi.org/10.3389/ffunb.2022.1040102","url":null,"abstract":"<p><p>Laboulbeniales (Ascomycota, Laboulbeniomycetes) are biotrophic microfungi always attached to the exoskeleton of their arthropod hosts. They do not form hyphae or a mycelium; instead, they undergo determinate growth, developing from a two-celled ascospore to form a multicellular thallus. <i>Hesperomyces virescens</i> has been reported on over 30 species of ladybirds (Coleoptera, Coccinellidae); in reality, it represents a complex of species, presumably segregated by host genus association. In this study, we report on <i>Hesperomyces</i> thalli on <i>Hyperaspis vinciguerrae</i> from the Canary Islands and compare them with the <i>Hesperomyces hyperaspidis</i> described on <i>Hyperaspis</i> sp. from Trinidad. We generated the sequences of the internal transcribed spacer (ITS) region, the large subunit (LSU) nuclear ribosomal RNA gene, and the minichromosome maintenance complex component 7 (<i>MCM7</i>) protein-coding gene. Our phylogenetic reconstruction of <i>Hesperomyces</i> based on a concatenated ITS-LSU-<i>MCM7</i> dataset revealed <i>Hesperomyces</i> sp. ex <i>Hy. vinciguerrae</i> as a member of the <i>He. virescens</i> species complex distinct from <i>He. virescens sensu stricto</i> (s.s.). It also revealed that the <i>Hesperomyces</i> sp. ex <i>Chilocorus bipustulatus</i> from Algeria is different from <i>He. virescens</i> s.s., which is associated with <i>Chilocorus stigma</i> from the USA. This suggests that the species of <i>Hesperomyces</i> are not solely segregated by host association, but that there is also a biogeographical component involved. Based on these data, we refrained from referring our material from <i>Hy. vinciguerrae</i> to <i>He. hyperaspidis</i>. Finally, we discuss the usefulness of <i>MCM7</i> as a useful marker for species delimitation in <i>Hesperomyces</i>.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41146959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3389/ffunb.2023.1183291
Rajendra Upadhya, Woei C Lam, Camaron R Hole, Joseph G Vasselli, Jennifer K Lodge
Introduction: Cryptococcus neoformans is a basidiomycete fungus that can cause meningoencephalitis, especially in immunocompromised patients. Cryptococcus grows in many different media, although little attention has been paid to the role of growth conditions on the cryptococcal cell wall or on virulence.
Objective: The purpose of this study was to determine how different media influenced the amount of chitin and chitosan in the cell wall, which in turn impacted the cell wall architecture and host response.
Methods: Yeast extract, peptone, and dextrose (YPD) and yeast nitrogen base (YNB) are two commonly used media for growing Cryptococcus before use in in vitro or in vivo experiments. As a result, C. neoformans was grown in either YPD or YNB, which were either left unbuffered or buffered to pH 7 with MOPS. These cells were then labeled with cell wall-specific fluorescent probes to determine the amounts of various cell wall components. In addition, these cells were employed in animal virulence studies using the murine inhalation model of infection.
Results: We observed that the growth of wild-type C. neoformans KN99 significantly changes the pH of unbuffered media during growth. It raises the pH to 8.0 when grown in unbuffered YPD but lowers the pH to 2.0 when grown in unbuffered YNB (YNB-U). Importantly, the composition of the cell wall was substantially impacted by growth in different media. Cells grown in YNB-U exhibited a 90% reduction in chitosan, the deacetylated form of chitin, compared with cells grown in YPD. The decrease in pH and chitosan in the YNB-U-grown cells was associated with a significant increase in some pathogen-associated molecular patterns on the surface of cells compared with cells grown in YPD or YNB, pH 7. This altered cell wall architecture resulted in a significant reduction in virulence when tested using a murine model of infection. Furthermore, when heat-killed cells were used as the inoculum, KN99 cells grown in YNB-U caused an aberrant hyper-inflammatory response in the lungs, resulting in rapid animal death. In contrast, heat-killed KN99 cells grown in YNB, pH 7, caused little to no inflammatory response in the host lung, but, when used as a vaccine, they conferred a robust protective response against a subsequent challenge infection with the virulent KN99 cells.
Conclusion: These findings emphasize the importance of culture media and pH during growth in shaping the content and organization of the C. neoformans cell wall, as well as their impact on fungal virulence and the host response.
{"title":"Cell wall composition in <i>Cryptococcus neoformans</i> is media dependent and alters host response, inducing protective immunity.","authors":"Rajendra Upadhya, Woei C Lam, Camaron R Hole, Joseph G Vasselli, Jennifer K Lodge","doi":"10.3389/ffunb.2023.1183291","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1183291","url":null,"abstract":"<p><strong>Introduction: </strong><i>Cryptococcus neoformans</i> is a basidiomycete fungus that can cause meningoencephalitis, especially in immunocompromised patients. Cryptococcus grows in many different media, although little attention has been paid to the role of growth conditions on the cryptococcal cell wall or on virulence.</p><p><strong>Objective: </strong>The purpose of this study was to determine how different media influenced the amount of chitin and chitosan in the cell wall, which in turn impacted the cell wall architecture and host response.</p><p><strong>Methods: </strong>Yeast extract, peptone, and dextrose (YPD) and yeast nitrogen base (YNB) are two commonly used media for growing Cryptococcus before use in in vitro or in vivo experiments. As a result, <i>C. neoformans</i> was grown in either YPD or YNB, which were either left unbuffered or buffered to pH 7 with MOPS. These cells were then labeled with cell wall-specific fluorescent probes to determine the amounts of various cell wall components. In addition, these cells were employed in animal virulence studies using the murine inhalation model of infection.</p><p><strong>Results: </strong>We observed that the growth of wild-type <i>C. neoformans</i> KN99 significantly changes the pH of unbuffered media during growth. It raises the pH to 8.0 when grown in unbuffered YPD but lowers the pH to 2.0 when grown in unbuffered YNB (YNB-U). Importantly, the composition of the cell wall was substantially impacted by growth in different media. Cells grown in YNB-U exhibited a 90% reduction in chitosan, the deacetylated form of chitin, compared with cells grown in YPD. The decrease in pH and chitosan in the YNB-U-grown cells was associated with a significant increase in some pathogen-associated molecular patterns on the surface of cells compared with cells grown in YPD or YNB, pH 7. This altered cell wall architecture resulted in a significant reduction in virulence when tested using a murine model of infection. Furthermore, when heat-killed cells were used as the inoculum, KN99 cells grown in YNB-U caused an aberrant hyper-inflammatory response in the lungs, resulting in rapid animal death. In contrast, heat-killed KN99 cells grown in YNB, pH 7, caused little to no inflammatory response in the host lung, but, when used as a vaccine, they conferred a robust protective response against a subsequent challenge infection with the virulent KN99 cells.</p><p><strong>Conclusion: </strong>These findings emphasize the importance of culture media and pH during growth in shaping the content and organization of the <i>C. neoformans</i> cell wall, as well as their impact on fungal virulence and the host response.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9942899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-22eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.1085624
Maiko Umemura, Koichi Tamano
Peptidyl compounds produced by filamentous fungi, which are nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs), are rich sources of bioactive compounds with a wide variety of structures. Some of these peptidyl compounds are useful as pharmaceuticals and pesticides. However, for industrial use, their low production often becomes an obstacle, and various approaches have been challenged to overcome this weakness. In this article, we summarize the successful attempts to increase the production of NRPs and RiPPs in filamentous fungi and present our perspectives on how to improve it further.
{"title":"How to improve the production of peptidyl compounds in filamentous fungi.","authors":"Maiko Umemura, Koichi Tamano","doi":"10.3389/ffunb.2022.1085624","DOIUrl":"10.3389/ffunb.2022.1085624","url":null,"abstract":"<p><p>Peptidyl compounds produced by filamentous fungi, which are nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs), are rich sources of bioactive compounds with a wide variety of structures. Some of these peptidyl compounds are useful as pharmaceuticals and pesticides. However, for industrial use, their low production often becomes an obstacle, and various approaches have been challenged to overcome this weakness. In this article, we summarize the successful attempts to increase the production of NRPs and RiPPs in filamentous fungi and present our perspectives on how to improve it further.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41124680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-08eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.1049690
Pedro Góes Mesquita, Laiza Magalhaes de Araujo, Francisco de Assis Rocha Neves, Maria de Fátima Borin
Diabetes mellitus is a metabolic disorder that affects millions of people worldwide and is linked to oxidative stress and inflammation. Thiazolidinediones (TZD) improve insulin sensitization and glucose homeostasis mediated by the activation of peroxisome proliferator-activated receptors γ (PPARγ) in patients with type 2 diabetes. However, their use is associated with severe adverse effects such as loss of bone mass, retention of body fluids, liver and heart problems, and increased risk of bladder cancer. Partial PPARγ agonists can promote the beneficial effects of thiazolidinediones with fewer adverse effects. Endophytic fungi colonize plant tissues and have a particularly active metabolism caused by the interaction with them, which leads to the production of natural products with significant biological effects that may be like that of the colonized plant. Here, we identify seven endophytic fungi isolated from Bauhinia variegata leaves that have antioxidant activities. Also, one of the extracts presented pan-agonist activity on PPAR, and another showed activity in PPARα and PPARβ/δ. A better understanding of this relationship could help to comprehend the mechanism of action of antioxidants in treating diabetes and its complications. Moreover, compounds with these capabilities to reduce oxidative stress and activate the receptor that promotes glucose homeostasis are promising candidates in treatment of diabetes.
{"title":"Metabolites of endophytic fungi isolated from leaves of <i>Bauhinia variegata</i> exhibit antioxidant activity and agonist activity on peroxisome proliferator-activated receptors α, β/δ and γ.","authors":"Pedro Góes Mesquita, Laiza Magalhaes de Araujo, Francisco de Assis Rocha Neves, Maria de Fátima Borin","doi":"10.3389/ffunb.2022.1049690","DOIUrl":"10.3389/ffunb.2022.1049690","url":null,"abstract":"<p><p><i>Diabetes mellitus</i> is a metabolic disorder that affects millions of people worldwide and is linked to oxidative stress and inflammation. Thiazolidinediones (TZD) improve insulin sensitization and glucose homeostasis mediated by the activation of peroxisome proliferator-activated receptors γ (PPARγ) in patients with type 2 diabetes. However, their use is associated with severe adverse effects such as loss of bone mass, retention of body fluids, liver and heart problems, and increased risk of bladder cancer. Partial PPARγ agonists can promote the beneficial effects of thiazolidinediones with fewer adverse effects. Endophytic fungi colonize plant tissues and have a particularly active metabolism caused by the interaction with them, which leads to the production of natural products with significant biological effects that may be like that of the colonized plant. Here, we identify seven endophytic fungi isolated from <i>Bauhinia variegata</i> leaves that have antioxidant activities. Also, one of the extracts presented pan-agonist activity on PPAR, and another showed activity in PPARα and PPARβ/δ. A better understanding of this relationship could help to comprehend the mechanism of action of antioxidants in treating diabetes and its complications. Moreover, compounds with these capabilities to reduce oxidative stress and activate the receptor that promotes glucose homeostasis are promising candidates in treatment of diabetes.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41173667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-02eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.1048734
Daniela Gurgel de Freitas Pires, Laíza Magalhães de Araújo, Pedro Góes Mesquita, Francisco de Assis Rocha Neves, Maria de Fátima Borin
Endophytes are considered an essential source of natural products. Skin is the body's largest organ; its primary function is the protection of other organs, and aging is one of the most relevant problems associated with this organ. UV radiation generates reactive oxygen species (ROS), which lead to skin degeneration and consequent aging. The main endogenous antioxidants that neutralize ROS are enzymatic antioxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase, and glutathione reductase, and non-enzymatic antioxidants, such as glutathione and α-tocopherol. Nuclear receptors are involved in molecular mechanisms that control the aging process, especially peroxisome proliferator-activated receptors (PPAR), which regulate the function and expression of genes that modulate the balance between matrix metalloproteinases (MMP) activity and the expression of collagen. Some natural compounds, such as polyphenols, can activate PPAR and reduce the activation of MMP and collagen degradation. In this work, the antioxidant activity of the mycelia methanolic extracts of two endophytic fungi isolated from leaves of Bauhinia variegata, named BvFV and BvFIX, their action as PPAR agonists, and their effect on the activity of antioxidant defense system enzymes were evaluated. The mycelia methanolic extract of BvFV showed a weak agonist effect on PPARβ/δ, a high capability to inhibit lipid peroxidation, increased catalase activity, and increased superoxide dismutase activity by approximately 64%. In contrast, BvFIX increased catalase activity and increased superoxide dismutase activity in a dose-dependent manner, with an increase of 49.62% ± 7.87%, 56.64% ± 12.27%, and 240.46% ± 26.11% at concentrations of 25 µg/mL, 50 µg/mL and 100 µg/mL, respectively, in human dermal fibroblasts submitted to oxidative stress. These results suggest that the metabolites of the mycelia of endophytic fungi studied are promising to act in the chemoprevention of skin aging.
{"title":"Antioxidant activity of mycelia methanolic extracts of endophytic fungi BvFV and BvFIX isolated from leaves of <i>Bauhinia variegata</i>.","authors":"Daniela Gurgel de Freitas Pires, Laíza Magalhães de Araújo, Pedro Góes Mesquita, Francisco de Assis Rocha Neves, Maria de Fátima Borin","doi":"10.3389/ffunb.2022.1048734","DOIUrl":"10.3389/ffunb.2022.1048734","url":null,"abstract":"<p><p>Endophytes are considered an essential source of natural products. Skin is the body's largest organ; its primary function is the protection of other organs, and aging is one of the most relevant problems associated with this organ. UV radiation generates reactive oxygen species (ROS), which lead to skin degeneration and consequent aging. The main endogenous antioxidants that neutralize ROS are enzymatic antioxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase, and glutathione reductase, and non-enzymatic antioxidants, such as glutathione and α-tocopherol. Nuclear receptors are involved in molecular mechanisms that control the aging process, especially peroxisome proliferator-activated receptors (PPAR), which regulate the function and expression of genes that modulate the balance between matrix metalloproteinases (MMP) activity and the expression of collagen. Some natural compounds, such as polyphenols, can activate PPAR and reduce the activation of MMP and collagen degradation. In this work, the antioxidant activity of the mycelia methanolic extracts of two endophytic fungi isolated from leaves of <i>Bauhinia variegata</i>, named BvFV and BvFIX, their action as PPAR agonists, and their effect on the activity of antioxidant defense system enzymes were evaluated. The mycelia methanolic extract of BvFV showed a weak agonist effect on PPARβ/δ, a high capability to inhibit lipid peroxidation, increased catalase activity, and increased superoxide dismutase activity by approximately 64%. In contrast, BvFIX increased catalase activity and increased superoxide dismutase activity in a dose-dependent manner, with an increase of 49.62% ± 7.87%, 56.64% ± 12.27%, and 240.46% ± 26.11% at concentrations of 25 µg/mL, 50 µg/mL and 100 µg/mL, respectively, in human dermal fibroblasts submitted to oxidative stress. These results suggest that the metabolites of the mycelia of endophytic fungi studied are promising to act in the chemoprevention of skin aging.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41157250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-02eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.1062444
Janice Bamforth, Tiffany Chin, Tehreem Ashfaq, Niradha Withana Gamage, Kerri Pleskach, Sheryl A Tittlemier, Maria Antonia Henriquez, Shimosh Kurera, Sung-Jong Lee, Bhaktiben Patel, Tom Gräfenhan, Sean Walkowiak
Introduction: Wheat is a staple food that is important to global food security, but in epidemic years, fungal pathogens can threaten production, quality, and safety of wheat grain. Globally, one of the most important fungal diseases of wheat is Fusarium head blight (FHB). This disease can be caused by several different Fusarium species with known differences in aggressiveness and mycotoxin-production potential, with the trichothecene toxin deoxynivalenol (DON) and its derivatives being of particular concern. In North America, the most predominant species causing FHB is F. graminearum, which has two distinct sub-populations that are commonly classified into two main chemotypes/genotypes based on their propensity to form trichothecene derivatives, namely 15-acetyldeoxynivalenol (15-ADON) and 3-acetyldeoxynivalenol (3-ADON).
Materials and methods: We used a panel of 13 DNA markers to perform species and ADON genotype identification for 55, 444 wheat kernels from 7, 783 samples originating from across Canada from 2014 to 2020.
Results and discussion: Based on single-seed analyses, we demonstrate the relationships between Fusarium species and trichothecene chemotype with sample year, sample location, wheat species (hexaploid and durum wheat), severity of Fusarium damaged kernels (FDK), and accumulation of DON. Results indicate that various Fusarium species are present across wheat growing regions in Canada; however, F. graminearum is the most common species and 3-ADON the most common genotype. We observed an increase in the occurrence of the 3-ADON genotype, particularly in the western Prairie regions. Our data provides important information on special-temporal trends in Fusarium species and chemotypes that can aid with the implementation of integrated disease management strategies to control the detrimental effects of this devastating disease.
{"title":"A survey of <i>Fusarium</i> species and ADON genotype on Canadian wheat grain.","authors":"Janice Bamforth, Tiffany Chin, Tehreem Ashfaq, Niradha Withana Gamage, Kerri Pleskach, Sheryl A Tittlemier, Maria Antonia Henriquez, Shimosh Kurera, Sung-Jong Lee, Bhaktiben Patel, Tom Gräfenhan, Sean Walkowiak","doi":"10.3389/ffunb.2022.1062444","DOIUrl":"https://doi.org/10.3389/ffunb.2022.1062444","url":null,"abstract":"<p><strong>Introduction: </strong>Wheat is a staple food that is important to global food security, but in epidemic years, fungal pathogens can threaten production, quality, and safety of wheat grain. Globally, one of the most important fungal diseases of wheat is Fusarium head blight (FHB). This disease can be caused by several different <i>Fusarium</i> species with known differences in aggressiveness and mycotoxin-production potential, with the trichothecene toxin deoxynivalenol (DON) and its derivatives being of particular concern. In North America, the most predominant species causing FHB is <i>F. graminearum</i>, which has two distinct sub-populations that are commonly classified into two main chemotypes/genotypes based on their propensity to form trichothecene derivatives, namely 15-acetyldeoxynivalenol (15-ADON) and 3-acetyldeoxynivalenol (3-ADON).</p><p><strong>Materials and methods: </strong>We used a panel of 13 DNA markers to perform species and ADON genotype identification for 55, 444 wheat kernels from 7, 783 samples originating from across Canada from 2014 to 2020.</p><p><strong>Results and discussion: </strong>Based on single-seed analyses, we demonstrate the relationships between <i>Fusarium</i> species and trichothecene chemotype with sample year, sample location, wheat species (hexaploid and durum wheat), severity of <i>Fusarium</i> damaged kernels (FDK), and accumulation of DON. Results indicate that various <i>Fusarium</i> species are present across wheat growing regions in Canada; however, <i>F. graminearum</i> is the most common species and 3-ADON the most common genotype. We observed an increase in the occurrence of the 3-ADON genotype, particularly in the western Prairie regions. Our data provides important information on special-temporal trends in <i>Fusarium</i> species and chemotypes that can aid with the implementation of integrated disease management strategies to control the detrimental effects of this devastating disease.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41164869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-29eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.941691
Stephanie Anthonies, José M Vargas-Muñiz
Hortaea werneckii is a black yeast with a remarkable tolerance to salt. Most studies have been dedicated to understanding how H. werneckii adapts to hypersaline environments. H. werneckii has an unconventional cell cycle in which it alternates between fission and budding, which is modulated by cell density. Additionally, H. werneckii can cause superficial mycosis of the palm and sole of humans. Here, we determine the impact of salt concentration on the EXF-2000 strain's cell division pattern and morphology by performing timelapse microscopy at different salt concentrations. At low density and no salt, EXF-2000 primarily grows as pseudohyphae dividing mainly by septation. When grown in the presence of salt at a similar concentration to saltwater or hypersaline environments, we observe it grows first by undergoing fission followed by budding at the poles. Then, we examined a collection of 16 isolates in the presence of 0.6M NaCl, including isolates from marine and hypersaline environments and isolates from patients. These isolates exhibit a wide diversity in colony shape and cellular morphology. The isolates grew as yeast, pseudohyphae, and true hyphae, indicating that isolates can exhibit various cell morphologies under similar environmental conditions. We used the insect larvae Galleria mellonella to determine the pathogenic potential of our isolates. We observe that only a subset of isolates can cause death in our model, and there was no correlation between H. werneckii morphology and capacity to cause disease. Taken together, H. werneckii genomic and phenotypic diversity can serve as a model to better understand how phenotypes and pathogenic potential evolve in environmental fungi.
{"title":"<i>Hortaea werneckii</i> isolates exhibit different pathogenic potential in the invertebrate infection model <i>Galleria mellonella</i>.","authors":"Stephanie Anthonies, José M Vargas-Muñiz","doi":"10.3389/ffunb.2022.941691","DOIUrl":"https://doi.org/10.3389/ffunb.2022.941691","url":null,"abstract":"<p><p><i>Hortaea werneckii</i> is a black yeast with a remarkable tolerance to salt. Most studies have been dedicated to understanding how <i>H. werneckii</i> adapts to hypersaline environments. <i>H. werneckii</i> has an unconventional cell cycle in which it alternates between fission and budding, which is modulated by cell density. Additionally, <i>H. werneckii</i> can cause superficial mycosis of the palm and sole of humans. Here, we determine the impact of salt concentration on the EXF-2000 strain's cell division pattern and morphology by performing timelapse microscopy at different salt concentrations. At low density and no salt, EXF-2000 primarily grows as pseudohyphae dividing mainly by septation. When grown in the presence of salt at a similar concentration to saltwater or hypersaline environments, we observe it grows first by undergoing fission followed by budding at the poles. Then, we examined a collection of 16 isolates in the presence of 0.6M NaCl, including isolates from marine and hypersaline environments and isolates from patients. These isolates exhibit a wide diversity in colony shape and cellular morphology. The isolates grew as yeast, pseudohyphae, and true hyphae, indicating that isolates can exhibit various cell morphologies under similar environmental conditions. We used the insect larvae <i>Galleria mellonella</i> to determine the pathogenic potential of our isolates. We observe that only a subset of isolates can cause death in our model, and there was no correlation between <i>H. werneckii</i> morphology and capacity to cause disease. Taken together, <i>H. werneckii</i> genomic and phenotypic diversity can serve as a model to better understand how phenotypes and pathogenic potential evolve in environmental fungi.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41142036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}