Pub Date : 2023-08-21DOI: 10.3389/fsoil.2023.1267715
S. Grunwald, S. Daroub
{"title":"Editorial: Women in pedometrics, soil health and security","authors":"S. Grunwald, S. Daroub","doi":"10.3389/fsoil.2023.1267715","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1267715","url":null,"abstract":"","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41889586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.3389/fsoil.2023.1194825
M. Foltz, A. Alesso, J. Zilles
Nitrous oxide (N2O), which contributes to global climate change and stratospheric ozone destruction, can be produced during denitrification. Although the N2O ratio, a measure of denitrification completion, is influenced by various properties, studies have largely been limited to site- or treatment-specific conclusions. The primary objective of this study was to identify important factors driving N2O ratios and their relationships in soils by systematically reviewing and quantitatively evaluating results from published laboratory denitrification studies. A database with 60 studies (657 observations) was compiled, including studies meeting the minimum criteria: (i) laboratory experiments on soils, (ii) nutrient (carbon and/or nitrogen) addition, and (iii) N2O and dinitrogen gas measurements. Of these, 14 studies (100 observations) had sufficient data for inclusion in the meta-analysis to assess the effect of added nutrients on the N2O ratio. Furthermore, we modeled the effect of moderators on treatment effect by fitting a meta-regression model with both quantitative and categorical variables. Close review of studies in the database identified soil pH, carbon addition, and nitrogen addition as important variables for the N2O ratio, but trends varied across studies. Correlation analysis of all studies clarified that soil pH was significantly correlated with the N2O ratio, where soils with higher pH had lower N2O ratios. The meta-analysis further revealed that nutrient addition had an overall significant, positive treatment effect (0.30 ± 0.03, P<.0001), indicating that experimentally adding nutrients increased the N2O ratio. The model was most significantly improved when soil texture was used as a moderator. The significance of soil texture for the N2O ratio was a major finding of this study, especially since the assays were usually conducted with soil slurries. Overall, this study highlights the importance of field soil properties (i.e., pH, texture) and laboratory conditions (i.e., nutrient addition) in driving the N2O ratio and N2O production from denitrification in soils.
{"title":"Field soil properties and experimental nutrient additions drive the nitrous oxide ratio in laboratory denitrification experiments: a systematic review","authors":"M. Foltz, A. Alesso, J. Zilles","doi":"10.3389/fsoil.2023.1194825","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1194825","url":null,"abstract":"Nitrous oxide (N2O), which contributes to global climate change and stratospheric ozone destruction, can be produced during denitrification. Although the N2O ratio, a measure of denitrification completion, is influenced by various properties, studies have largely been limited to site- or treatment-specific conclusions. The primary objective of this study was to identify important factors driving N2O ratios and their relationships in soils by systematically reviewing and quantitatively evaluating results from published laboratory denitrification studies. A database with 60 studies (657 observations) was compiled, including studies meeting the minimum criteria: (i) laboratory experiments on soils, (ii) nutrient (carbon and/or nitrogen) addition, and (iii) N2O and dinitrogen gas measurements. Of these, 14 studies (100 observations) had sufficient data for inclusion in the meta-analysis to assess the effect of added nutrients on the N2O ratio. Furthermore, we modeled the effect of moderators on treatment effect by fitting a meta-regression model with both quantitative and categorical variables. Close review of studies in the database identified soil pH, carbon addition, and nitrogen addition as important variables for the N2O ratio, but trends varied across studies. Correlation analysis of all studies clarified that soil pH was significantly correlated with the N2O ratio, where soils with higher pH had lower N2O ratios. The meta-analysis further revealed that nutrient addition had an overall significant, positive treatment effect (0.30 ± 0.03, P<.0001), indicating that experimentally adding nutrients increased the N2O ratio. The model was most significantly improved when soil texture was used as a moderator. The significance of soil texture for the N2O ratio was a major finding of this study, especially since the assays were usually conducted with soil slurries. Overall, this study highlights the importance of field soil properties (i.e., pH, texture) and laboratory conditions (i.e., nutrient addition) in driving the N2O ratio and N2O production from denitrification in soils.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45135498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-11DOI: 10.3389/fsoil.2023.1118526
Surendra Singh, S. Jagadamma, D. Yoder, X. Yin, F. Walker
Promoting sustainable crop production is enhanced by an effective method to assess soil health. However, soil health assessment is challenging due to multiple interactions among dynamic soil properties (i.e., soil health indicators) across management practices and agroecological regions. We tested several currently popular soil health assessment methods for cropping systems in Tennessee in the southeastern US and found that these methods failed to differentiate Tennessee soil health under long-term conservation and conventional management.This study developed a Tennessee weighted soil health index (WSHI) by: 1) selecting a set of management-sensitive soil health indicators, 2) assigning meaningful weights to indicators, and 3) normalizing the scores based on regionally relevant undisturbed natural reference sites. The tested cropping systems treatments were moldboard plow (MP) in continuous soybean (SS), no tillage (NT) in SS, NT with wheat cover (NTW) in SS, no cover and chisel plow (NCCT) in continuous cotton (CC), no cover and no tillage (NCNT) in CC, and hairy vetch cover and no tillage (VCNT) in CC. In addition, two woodlots and one grassland sites in the vicinity of the cropping systems were selected to represent undisturbed natural systems.Out of 22 indicators that proved to be management-sensitive, six were selected as a minimum dataset (MDS). These were particulate organic matter C (POM-C), soil respiration from 4-day incubation (4d CO2), small macroaggregate (0.250-2mm)-associated C (SMA-C), surface hardness (PR15), microbial biomass N (MBN), and bulk density (BD). Measured values of the MDS indicators were transformed into unitless normalized scores (based on the regional range of the indicator), and finally integrated into WSHI scores using a weighted-addition approach. Additionally, the soil health gap (SHG) between the soil health of the regional reference system and different cropping systems was calculated. Results revealed that WSHI strongly differentiated soil health between long-term conservation and conventional managements practices. The WSHI scores for southeastern cropland soils varied as follows: VCNT = NTW > NT > NCNT ≥ NCCT ≥ MP. The SHGs under MP, NCCT, NCNT, NT, NTW, and VCNT were 85.5, 79.9, 68, 45.1, 25.2, and 24.3, respectively, relative to the average WSHI of three undisturbed systems. Results showed that the WSHI approach is effective in more meaningful regional assessment of soil health and SHG can be a potential metric for comparing soil health across agroecological regions.
{"title":"A weighted soil heath index approach for refined assessment of soil health in cropping systems","authors":"Surendra Singh, S. Jagadamma, D. Yoder, X. Yin, F. Walker","doi":"10.3389/fsoil.2023.1118526","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1118526","url":null,"abstract":"Promoting sustainable crop production is enhanced by an effective method to assess soil health. However, soil health assessment is challenging due to multiple interactions among dynamic soil properties (i.e., soil health indicators) across management practices and agroecological regions. We tested several currently popular soil health assessment methods for cropping systems in Tennessee in the southeastern US and found that these methods failed to differentiate Tennessee soil health under long-term conservation and conventional management.This study developed a Tennessee weighted soil health index (WSHI) by: 1) selecting a set of management-sensitive soil health indicators, 2) assigning meaningful weights to indicators, and 3) normalizing the scores based on regionally relevant undisturbed natural reference sites. The tested cropping systems treatments were moldboard plow (MP) in continuous soybean (SS), no tillage (NT) in SS, NT with wheat cover (NTW) in SS, no cover and chisel plow (NCCT) in continuous cotton (CC), no cover and no tillage (NCNT) in CC, and hairy vetch cover and no tillage (VCNT) in CC. In addition, two woodlots and one grassland sites in the vicinity of the cropping systems were selected to represent undisturbed natural systems.Out of 22 indicators that proved to be management-sensitive, six were selected as a minimum dataset (MDS). These were particulate organic matter C (POM-C), soil respiration from 4-day incubation (4d CO2), small macroaggregate (0.250-2mm)-associated C (SMA-C), surface hardness (PR15), microbial biomass N (MBN), and bulk density (BD). Measured values of the MDS indicators were transformed into unitless normalized scores (based on the regional range of the indicator), and finally integrated into WSHI scores using a weighted-addition approach. Additionally, the soil health gap (SHG) between the soil health of the regional reference system and different cropping systems was calculated. Results revealed that WSHI strongly differentiated soil health between long-term conservation and conventional managements practices. The WSHI scores for southeastern cropland soils varied as follows: VCNT = NTW > NT > NCNT ≥ NCCT ≥ MP. The SHGs under MP, NCCT, NCNT, NT, NTW, and VCNT were 85.5, 79.9, 68, 45.1, 25.2, and 24.3, respectively, relative to the average WSHI of three undisturbed systems. Results showed that the WSHI approach is effective in more meaningful regional assessment of soil health and SHG can be a potential metric for comparing soil health across agroecological regions.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43855980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.3389/fsoil.2023.1155889
Maximilian Rötzer, A. Prechtel, N. Ray
Investigating plant/root-soil interactions at different scales is crucial to advance the understanding of soil structure formation in the rhizosphere. To better comprehend the underlying interwoven processes an explicit, fully dynamic spatial and image-based modeling at the pore scale is a promising tool especially taking into account experimental limitations. We develop a modeling tool to investigate how soil aggregation, root growth and root exudates mutually interact with each other at the micro-scale. This allows the simultaneous simulation of the dynamic rearrangement of soil particles, the input and turnover of particulate organic matter, root growth and decay as well as the deposition, redistribution and decomposition of mucilage in the rhizosphere. The interactions are realized within a cellular automaton framework. The most stable configuration is determined by the amount and attractiveness of surface contacts between the particles, where organo-mineral associations preferably lead to the formation of soil aggregates. Their break-up can be induced by root growth or the degradation of gluing agents previously created after the decomposition of particulate organic matter and mucilage. We illustrate the capability of our model by simulating a full life cycle of a fine root in a two-dimensional, horizontal cross section through the soil. We evaluate various scenarios to identify the role of different drivers such as soil texture and mucilage. We quantify the displacement intensity of individual particles and the variations in local porosity due to the change in available pore space as influenced by the root growth and observe compaction, gap formation and a biopore evolution. The simulation results support that the deposition of mucilage is an important driver for structure formation in the rhizosphere. Although mucilage is degraded within a few days after exudation, it leads to a persistent stabilization of the aggregated structures for both textures in the vicinity of the root within a time frame of 1000 days. Local porosity changes are quantified for exudation periods of 1, 10 and 100 days and are already pronounced for short-term exudation of mucilage. This stabilization is significantly different from the structures encountered when only POM could trigger the evolution of gluing spots, and is still present after complete degradation of the root.
{"title":"Pore scale modeling of the mutual influence of roots and soil aggregation in the rhizosphere","authors":"Maximilian Rötzer, A. Prechtel, N. Ray","doi":"10.3389/fsoil.2023.1155889","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1155889","url":null,"abstract":"Investigating plant/root-soil interactions at different scales is crucial to advance the understanding of soil structure formation in the rhizosphere. To better comprehend the underlying interwoven processes an explicit, fully dynamic spatial and image-based modeling at the pore scale is a promising tool especially taking into account experimental limitations. We develop a modeling tool to investigate how soil aggregation, root growth and root exudates mutually interact with each other at the micro-scale. This allows the simultaneous simulation of the dynamic rearrangement of soil particles, the input and turnover of particulate organic matter, root growth and decay as well as the deposition, redistribution and decomposition of mucilage in the rhizosphere. The interactions are realized within a cellular automaton framework. The most stable configuration is determined by the amount and attractiveness of surface contacts between the particles, where organo-mineral associations preferably lead to the formation of soil aggregates. Their break-up can be induced by root growth or the degradation of gluing agents previously created after the decomposition of particulate organic matter and mucilage. We illustrate the capability of our model by simulating a full life cycle of a fine root in a two-dimensional, horizontal cross section through the soil. We evaluate various scenarios to identify the role of different drivers such as soil texture and mucilage. We quantify the displacement intensity of individual particles and the variations in local porosity due to the change in available pore space as influenced by the root growth and observe compaction, gap formation and a biopore evolution. The simulation results support that the deposition of mucilage is an important driver for structure formation in the rhizosphere. Although mucilage is degraded within a few days after exudation, it leads to a persistent stabilization of the aggregated structures for both textures in the vicinity of the root within a time frame of 1000 days. Local porosity changes are quantified for exudation periods of 1, 10 and 100 days and are already pronounced for short-term exudation of mucilage. This stabilization is significantly different from the structures encountered when only POM could trigger the evolution of gluing spots, and is still present after complete degradation of the root.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46683250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21DOI: 10.3389/fsoil.2023.1194828
Jhoana Hernández, Laura Rodríguez-Bustos, Aylin Barreras, Lizeth Caballero, Ilce Lara, M. Guevara, A. Lopera, A. Vázquez‐Lule, Mariano Torres-Gómez, Blanca Prado
In the world, 33% of soils are degraded, and 2.9 million people are affected by land degradation, with problems associated with food security, conflicts over natural resources, and migration with different impacts on men or women. To support sustainable soil management, it is necessary to include women’s contributions to soil Sciences; their achievements and academic performance still need to be represented. Women in Science represent 30% worldwide. In Mexico, only 24% of top academic positions are women. For commitment to soil Sciences for Sustainable Development Goals (SDGs), UNAM created the University Program for Interdisciplinary Soil Studies (PUEIS).This research evaluates women’s representation through gender indicators in the PUEIS and SNI datasets and discusses their implications for the gender gap in the soil Science community from Mexico. The data was collected with an online semi-structured survey and the gender indicators selected were related to participation, gender gap, sexism, equal opportunities, exclusion, and academic performance.The results show that in the PUEIS, 54% of members identify themselves as women and 46% as men. The gender gap shows equality in the total number of members. However, low-rank jobs, such as lecturers and lab technicians are women dominated, and the top-ranked positions as a full professor, associate professor, and research scientist are equal. One result to consider for the PUEIS members is that the younger generation, as is the older generation, is dominated by men. This could indicate a setback in intermediate generations’ progress toward achieving gender equality. In the case of SNI members, there is a gender gap problem; of members with a Ph.D. degree, only 38% are women, and the elite group of scientists with a Ph.D. at the top position is represented only by 24% of females.This work constitutes the first gender exercise for analyzing women’s participation in the soil Sciences in Mexico. From our perspective, it is not about competition in scientific careers between women and men; however, it is essential to recognize that gender inequalities are related to income, professional development, and science funding inequalities, and these disparities impact women more than men.
{"title":"Women representation in soil science: gender indicators in the University Program of Interdisciplinary Soil Studies","authors":"Jhoana Hernández, Laura Rodríguez-Bustos, Aylin Barreras, Lizeth Caballero, Ilce Lara, M. Guevara, A. Lopera, A. Vázquez‐Lule, Mariano Torres-Gómez, Blanca Prado","doi":"10.3389/fsoil.2023.1194828","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1194828","url":null,"abstract":"In the world, 33% of soils are degraded, and 2.9 million people are affected by land degradation, with problems associated with food security, conflicts over natural resources, and migration with different impacts on men or women. To support sustainable soil management, it is necessary to include women’s contributions to soil Sciences; their achievements and academic performance still need to be represented. Women in Science represent 30% worldwide. In Mexico, only 24% of top academic positions are women. For commitment to soil Sciences for Sustainable Development Goals (SDGs), UNAM created the University Program for Interdisciplinary Soil Studies (PUEIS).This research evaluates women’s representation through gender indicators in the PUEIS and SNI datasets and discusses their implications for the gender gap in the soil Science community from Mexico. The data was collected with an online semi-structured survey and the gender indicators selected were related to participation, gender gap, sexism, equal opportunities, exclusion, and academic performance.The results show that in the PUEIS, 54% of members identify themselves as women and 46% as men. The gender gap shows equality in the total number of members. However, low-rank jobs, such as lecturers and lab technicians are women dominated, and the top-ranked positions as a full professor, associate professor, and research scientist are equal. One result to consider for the PUEIS members is that the younger generation, as is the older generation, is dominated by men. This could indicate a setback in intermediate generations’ progress toward achieving gender equality. In the case of SNI members, there is a gender gap problem; of members with a Ph.D. degree, only 38% are women, and the elite group of scientists with a Ph.D. at the top position is represented only by 24% of females.This work constitutes the first gender exercise for analyzing women’s participation in the soil Sciences in Mexico. From our perspective, it is not about competition in scientific careers between women and men; however, it is essential to recognize that gender inequalities are related to income, professional development, and science funding inequalities, and these disparities impact women more than men.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44853826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-12DOI: 10.3389/fsoil.2023.1241590
S. R. Cotta, A. Pereira, J. Verma
{"title":"Editorial: Microbiome-based technologies: use of inoculants for improving agricultural productivity and sustainability","authors":"S. R. Cotta, A. Pereira, J. Verma","doi":"10.3389/fsoil.2023.1241590","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1241590","url":null,"abstract":"","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49129791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-11DOI: 10.3389/fsoil.2023.1240930
Jorge F. Pérez-Quezada, A. Meijide, S. Leitner
{"title":"Editorial: Greenhouse gas measurements in underrepresented areas of the world","authors":"Jorge F. Pérez-Quezada, A. Meijide, S. Leitner","doi":"10.3389/fsoil.2023.1240930","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1240930","url":null,"abstract":"","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43116953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20DOI: 10.3389/fsoil.2023.1209530
M. Oelbermann, R. Jiang, M. Mechler
Modeling plays an important role in predicting the long-term effects of biochar on soil organic carbon dynamics. The objective of our study was to apply the Century model to assess changes in temporal soil organic carbon in soil amended with manure and nitrogen fertilizer (MN), with manure and biochar (MB) or with manure, nitrogen fertilizer and biochar (MNB). We determined that, after 115 years, soil organic carbon stocks could not reach a steady state (equilibrium) or pre-cultivation levels, regardless of amendment type. Our results showed that a biennial input of manure and nitrogen fertilizer (MN) led to a 84% increase in soil organic carbon compared to a 79% (MNB) and 70% (MB) increase when amendments contained biochar. However, the quantity of organic matter input from crop residues and amendments was sufficient to increase the active fraction, with a turnover time of months to years, by 86%. In fact, carbon associated with the slow fraction, with a turnover time of 20 to 50 years, was the key driver for soil organic carbon accumulation in all amendment types. Although the passive fraction is the most stable form of carbon in the soil, with a turnover time of 400 to 100 years, once manure and biochar were added to the soil, this fraction increased up to 32%. Our results provided further insight into the ability of Century to accurately predict changes in soil organic carbon stocks when a combination of manure, nitrogen fertilizer or biochar were added to soil. Century predicted soil organic carbon stocks within -1% to +9% of measured values. However, further fine-tuning of the model is required since biochar undergoes chemical transformations (e.g., ageing) and changes soil physical parameters (e.g., bulk density) that can not be currently accounted for in the Century model. Addressing these limitations of Century will also help to increase the relationship between measured and predicted values.
{"title":"Predicting changes in soil organic carbon after a low dosage and one-time addition of biochar blended with manure and nitrogen fertilizer","authors":"M. Oelbermann, R. Jiang, M. Mechler","doi":"10.3389/fsoil.2023.1209530","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1209530","url":null,"abstract":"Modeling plays an important role in predicting the long-term effects of biochar on soil organic carbon dynamics. The objective of our study was to apply the Century model to assess changes in temporal soil organic carbon in soil amended with manure and nitrogen fertilizer (MN), with manure and biochar (MB) or with manure, nitrogen fertilizer and biochar (MNB). We determined that, after 115 years, soil organic carbon stocks could not reach a steady state (equilibrium) or pre-cultivation levels, regardless of amendment type. Our results showed that a biennial input of manure and nitrogen fertilizer (MN) led to a 84% increase in soil organic carbon compared to a 79% (MNB) and 70% (MB) increase when amendments contained biochar. However, the quantity of organic matter input from crop residues and amendments was sufficient to increase the active fraction, with a turnover time of months to years, by 86%. In fact, carbon associated with the slow fraction, with a turnover time of 20 to 50 years, was the key driver for soil organic carbon accumulation in all amendment types. Although the passive fraction is the most stable form of carbon in the soil, with a turnover time of 400 to 100 years, once manure and biochar were added to the soil, this fraction increased up to 32%. Our results provided further insight into the ability of Century to accurately predict changes in soil organic carbon stocks when a combination of manure, nitrogen fertilizer or biochar were added to soil. Century predicted soil organic carbon stocks within -1% to +9% of measured values. However, further fine-tuning of the model is required since biochar undergoes chemical transformations (e.g., ageing) and changes soil physical parameters (e.g., bulk density) that can not be currently accounted for in the Century model. Addressing these limitations of Century will also help to increase the relationship between measured and predicted values.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42868366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.3389/fsoil.2023.1171849
Said H. Marzouk, H. Tindwa, B. Massawe, N. Amuri, J. Semoka
Rice (Oryza sativa L.) is the second cereal food crop grown in Tanzania after maize (Zea mays L.) and covers approximately 18% of the agricultural land. Soil degradation due to intensive cultivation along with low organic matter input and nutrient imbalance has led to a decline in rice crop yields. This study was conducted to characterize, classify, and assess the fertility status of soils in two rice irrigation schemes of Morogoro region in Tanzania. The data obtained through this study will contribute significantly to land use planning and will facilitate the transfer of agro-technology and other development of the regions with similar ecological conditions. The studied pedons were named MKU-P1 and MKD-P1 for Mkula and Mkindo irrigation schemes, respectively. A total of seven composite soil samples (0–20 cm) were collected for soil fertility assessments. Landform, soil morphological features, parent material, natural vegetation, drainage, erosion, and laboratory data were used to classify the soils in their respective order as per the United States Department of Agriculture (USDA) Soil Taxonomy and the World Reference Base (WRB) soil classification systems. Results showed that the pedons were sandy clay loam in the topsoil and sandy clay to clay in the subsoil; soil reaction ranged from medium acid (pH 5.7) to strongly alkaline (pH 8.6). The topsoil and subsoil nutrients of the studied pedons including available K+, total N, soil organic matter, and organic carbon are low. Based on the USDA Soil Taxonomy, MKU-P1 is classified as Inceptisols cumulic humaquepts and MKD-P1 as Vertisols Fluvaquentic endoaquerts corresponding to Subaquatic fluvisols (loamic, oxyaquic) and Irragric vertisols (gleyic) in the WRB, respectively. The pedons were ranked as suitable for rice production. However, the chemical fertility of the soil is ranked as low fertile associated with deficient in total N; available P, K+, and Ca2+ with excessive iron and manganese; and likely to pose toxicity to crops. The application of organic and mineral amendments in recommended rates and timing for N and P is therefore essential to increase the nutrient content of these soils and minimize losses. Salinity in the subsurface pedon MKD-P1 needs to be taken into future consideration.
{"title":"Pedological characterization and soil fertility assessment of the selected rice irrigation schemes, Tanzania","authors":"Said H. Marzouk, H. Tindwa, B. Massawe, N. Amuri, J. Semoka","doi":"10.3389/fsoil.2023.1171849","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1171849","url":null,"abstract":"Rice (Oryza sativa L.) is the second cereal food crop grown in Tanzania after maize (Zea mays L.) and covers approximately 18% of the agricultural land. Soil degradation due to intensive cultivation along with low organic matter input and nutrient imbalance has led to a decline in rice crop yields. This study was conducted to characterize, classify, and assess the fertility status of soils in two rice irrigation schemes of Morogoro region in Tanzania. The data obtained through this study will contribute significantly to land use planning and will facilitate the transfer of agro-technology and other development of the regions with similar ecological conditions. The studied pedons were named MKU-P1 and MKD-P1 for Mkula and Mkindo irrigation schemes, respectively. A total of seven composite soil samples (0–20 cm) were collected for soil fertility assessments. Landform, soil morphological features, parent material, natural vegetation, drainage, erosion, and laboratory data were used to classify the soils in their respective order as per the United States Department of Agriculture (USDA) Soil Taxonomy and the World Reference Base (WRB) soil classification systems. Results showed that the pedons were sandy clay loam in the topsoil and sandy clay to clay in the subsoil; soil reaction ranged from medium acid (pH 5.7) to strongly alkaline (pH 8.6). The topsoil and subsoil nutrients of the studied pedons including available K+, total N, soil organic matter, and organic carbon are low. Based on the USDA Soil Taxonomy, MKU-P1 is classified as Inceptisols cumulic humaquepts and MKD-P1 as Vertisols Fluvaquentic endoaquerts corresponding to Subaquatic fluvisols (loamic, oxyaquic) and Irragric vertisols (gleyic) in the WRB, respectively. The pedons were ranked as suitable for rice production. However, the chemical fertility of the soil is ranked as low fertile associated with deficient in total N; available P, K+, and Ca2+ with excessive iron and manganese; and likely to pose toxicity to crops. The application of organic and mineral amendments in recommended rates and timing for N and P is therefore essential to increase the nutrient content of these soils and minimize losses. Salinity in the subsurface pedon MKD-P1 needs to be taken into future consideration.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41456985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}