首页 > 最新文献

GEN biotechnology最新文献

英文 中文
Sweet Dreams are Made of This: An Interview with Carolyn Bertozzi 甜梦由此而生专访卡罗琳-贝托兹
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-01 DOI: 10.1089/genbio.2023.29119.cbe
Carolyn Bertozzi, Alex Philippidis, Kevin Davies
{"title":"Sweet Dreams are Made of This: An Interview with Carolyn Bertozzi","authors":"Carolyn Bertozzi, Alex Philippidis, Kevin Davies","doi":"10.1089/genbio.2023.29119.cbe","DOIUrl":"https://doi.org/10.1089/genbio.2023.29119.cbe","url":null,"abstract":"","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"399 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139022948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The RNA-Recognition Pathway: An Overlooked Transportation Mechanism for Extracellular and Therapeutic RNAs RNA 识别途径:被忽视的细胞外和治疗 RNA 运输机制
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-01 DOI: 10.1089/genbio.2023.0049
Alice Ghidini, Aleksandra Singh
{"title":"The RNA-Recognition Pathway: An Overlooked Transportation Mechanism for Extracellular and Therapeutic RNAs","authors":"Alice Ghidini, Aleksandra Singh","doi":"10.1089/genbio.2023.0049","DOIUrl":"https://doi.org/10.1089/genbio.2023.0049","url":null,"abstract":"","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"111 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139015491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Special Issue Papers: Diversity, Equity, and Inclusion in Biotechnology 征集特刊论文:生物技术中的多样性、公平性和包容性
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-17 DOI: 10.1089/genbio.2023.29118.cfp
Brian Aguado, Karmella Haynes, Ana Maria Porras
{"title":"Call for Special Issue Papers: Diversity, Equity, and Inclusion in Biotechnology","authors":"Brian Aguado, Karmella Haynes, Ana Maria Porras","doi":"10.1089/genbio.2023.29118.cfp","DOIUrl":"https://doi.org/10.1089/genbio.2023.29118.cfp","url":null,"abstract":"","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"32 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139262809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence-Mediated Computer-Aided Design of Viral Gene Therapies 人工智能介导的病毒基因疗法的计算机辅助设计
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-27 DOI: 10.1089/genbio.2023.0014
Alireza Daneshvar, Stefan N. Lukianov
Over 5% of newborns suffer from a genetic disease. These include single gene, polygenic, and chromosomal disorders. Many other noncongenital diseases with genetic components are activated by environmental triggers (autoimmune, cancer, and tissue injury). Sophisticated viral gene therapies could treat, and possibly cure, these diseases and significantly ease patient burden and improve quality of life. Current viral therapies are mostly limited to plasmid-based and adeno-associated virus variants with inefficient response rates and limited use, with some herpes, lenti, and retroviral modalities. Development is slow and expensive. Virtual prototyping of viral gene therapies through computational design, like in other engineering fields, may represent a useful process to accelerate and expand viral pipeline development by opening the human virome to therapeutic development and constructing specificity, potency, efficacy, and safety in silico. Contemporary computational tools (artificial intelligence, machine and deep learning, computer-aided design, high performance computing, cloud and edge computing, and physics-based modeling) now render this possibility feasible and, therefore, constitute powerful options for biopharma researchers to expand and accelerate precision medicine research and development for complex indications.
超过5%的新生儿患有遗传性疾病。这些疾病包括单基因、多基因和染色体疾病。许多其他具有遗传成分的非先天性疾病是由环境触发(自身免疫、癌症和组织损伤)激活的。复杂的病毒基因疗法可以治疗,甚至可能治愈这些疾病,并显著减轻患者的负担,提高生活质量。目前的病毒治疗主要局限于基于质粒和腺相关的病毒变异,反应率低,使用范围有限,还有一些疱疹、慢速病毒和逆转录病毒的治疗方式。开发是缓慢而昂贵的。与其他工程领域一样,通过计算设计进行病毒基因治疗的虚拟原型,可能代表了一个有用的过程,通过打开人类病毒组的治疗开发和构建特异性、效力、有效性和安全性的计算机来加速和扩大病毒管道的开发。现代计算工具(人工智能、机器和深度学习、计算机辅助设计、高性能计算、云和边缘计算以及基于物理的建模)现在使这种可能性变得可行,因此,为生物制药研究人员扩大和加速复杂适应症的精准医学研究和开发提供了强大的选择。
{"title":"Artificial Intelligence-Mediated Computer-Aided Design of Viral Gene Therapies","authors":"Alireza Daneshvar, Stefan N. Lukianov","doi":"10.1089/genbio.2023.0014","DOIUrl":"https://doi.org/10.1089/genbio.2023.0014","url":null,"abstract":"Over 5% of newborns suffer from a genetic disease. These include single gene, polygenic, and chromosomal disorders. Many other noncongenital diseases with genetic components are activated by environmental triggers (autoimmune, cancer, and tissue injury). Sophisticated viral gene therapies could treat, and possibly cure, these diseases and significantly ease patient burden and improve quality of life. Current viral therapies are mostly limited to plasmid-based and adeno-associated virus variants with inefficient response rates and limited use, with some herpes, lenti, and retroviral modalities. Development is slow and expensive. Virtual prototyping of viral gene therapies through computational design, like in other engineering fields, may represent a useful process to accelerate and expand viral pipeline development by opening the human virome to therapeutic development and constructing specificity, potency, efficacy, and safety in silico. Contemporary computational tools (artificial intelligence, machine and deep learning, computer-aided design, high performance computing, cloud and edge computing, and physics-based modeling) now render this possibility feasible and, therefore, constitute powerful options for biopharma researchers to expand and accelerate precision medicine research and development for complex indications.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"28 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136311682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping the Spatial Proteome of Head and Neck Tumors: Key Immune Mediators and Metabolic Determinants in the Tumor Microenvironment 绘制头颈部肿瘤的空间蛋白质组:肿瘤微环境中的关键免疫介质和代谢决定因素
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.0029
Niyati Jhaveri, Bassem Ben Cheikh, Nadezhda Nikulina, Ning Ma, Dmytro Klymyshyn, James DeRosa, Ritu Mihani, Aditya Pratapa, Yasmin Kassim, Sidharth Bommakanti, Olive Shang, Shannon Berry, Nicholas Ihley, Michael McLane, Yan He, Yi Zheng, James Monkman, Caroline Cooper, Ken O'Byrne, Bhaskar Anand, Michael Prater, Subham Basu, Brett G.M. Hughes, Arutha Kulasinghe, Oliver Braubach
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common cancer and represent a global health burden. Immune checkpoint inhibitors (ICIs) have shown promise in treating recurrent/metastatic disease with durable benefit in ∼30% of patients. Current biomarkers for HNSCC are limited in their dynamic ability to capture tumor microenvironment (TME) features with an increasing need for deeper tissue characterization. Therefore, new biomarkers are needed to accurately stratify patients and predict responses to therapy. Here, we have optimized and applied an ultra-high plex, single-cell spatial protein analysis in HNSCC. Tissues were analyzed with a panel of 101 antibodies that targeted biomarkers related to tumor immune, metabolic and stress microenvironments. Our data uncovered a high degree of intra-tumoral heterogeneity intrinsic to HNSCC and provided unique insights into the biology of the disease. In particular, a cellular neighborhood analysis revealed the presence of six unique spatial neighborhoods enriched in functionally specialized immune subsets. In addition, functional phenotyping based on key metabolic and stress markers identified four distinct tumor regions with differential protein signatures. One region was marked by infiltration of CD8+ cytotoxic T cells and overexpression of BAK, a proapoptotic regulator, suggesting strong immune activation and stress. Another adjacent region within the same tumor had high expression of G6PD and MMP9, known drivers of tumor resistance and invasion, respectively. This dichotomy of immune activation-induced death and tumor progression in the same sample demonstrates the heterogenous niches and competing microenvironments that may underpin variable clinical responses. Our data integrate single-cell ultra-high plex spatial information with the functional state of the TME to provide insights into HNSCC biology and differential responses to ICI therapy. We believe that the approach outlined in this study will pave the way toward a new understanding of TME features associated with response and sensitivity to ICI therapies.
头颈部鳞状细胞癌(HNSCCs)是第七大常见癌症,是全球健康负担。免疫检查点抑制剂(ICIs)在治疗复发/转移性疾病方面显示出希望,在约30%的患者中具有持久的益处。当前的HNSCC生物标志物在捕获肿瘤微环境(TME)特征的动态能力方面受到限制,越来越需要更深入的组织表征。因此,需要新的生物标志物来准确地对患者进行分层并预测对治疗的反应。在此,我们优化并应用了一种超高复合体单细胞空间蛋白分析方法。用一组101种抗体对组织进行分析,这些抗体针对与肿瘤免疫、代谢和应激微环境相关的生物标志物。我们的数据揭示了HNSCC固有的高度肿瘤内异质性,并为该疾病的生物学提供了独特的见解。特别是,细胞邻域分析揭示了六个独特的空间邻域的存在,这些空间邻域丰富了功能特化的免疫亚群。此外,基于关键代谢和应激标记的功能表型鉴定出四个不同的肿瘤区域具有差异的蛋白质特征。一个区域以CD8+细胞毒性T细胞浸润和BAK(促凋亡调节因子)过表达为标志,提示强烈的免疫激活和应激。在同一肿瘤的另一个邻近区域,G6PD和MMP9分别高表达,已知它们分别是肿瘤抵抗和侵袭的驱动因素。在同一样本中,免疫激活诱导的死亡和肿瘤进展的二分法表明,异质的生态位和竞争的微环境可能支持不同的临床反应。我们的数据将单细胞超高复杂空间信息与TME的功能状态结合起来,为HNSCC生物学和对ICI治疗的差异反应提供见解。我们相信本研究概述的方法将为对与ICI治疗反应和敏感性相关的TME特征的新理解铺平道路。
{"title":"Mapping the Spatial Proteome of Head and Neck Tumors: Key Immune Mediators and Metabolic Determinants in the Tumor Microenvironment","authors":"Niyati Jhaveri, Bassem Ben Cheikh, Nadezhda Nikulina, Ning Ma, Dmytro Klymyshyn, James DeRosa, Ritu Mihani, Aditya Pratapa, Yasmin Kassim, Sidharth Bommakanti, Olive Shang, Shannon Berry, Nicholas Ihley, Michael McLane, Yan He, Yi Zheng, James Monkman, Caroline Cooper, Ken O'Byrne, Bhaskar Anand, Michael Prater, Subham Basu, Brett G.M. Hughes, Arutha Kulasinghe, Oliver Braubach","doi":"10.1089/genbio.2023.0029","DOIUrl":"https://doi.org/10.1089/genbio.2023.0029","url":null,"abstract":"Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common cancer and represent a global health burden. Immune checkpoint inhibitors (ICIs) have shown promise in treating recurrent/metastatic disease with durable benefit in ∼30% of patients. Current biomarkers for HNSCC are limited in their dynamic ability to capture tumor microenvironment (TME) features with an increasing need for deeper tissue characterization. Therefore, new biomarkers are needed to accurately stratify patients and predict responses to therapy. Here, we have optimized and applied an ultra-high plex, single-cell spatial protein analysis in HNSCC. Tissues were analyzed with a panel of 101 antibodies that targeted biomarkers related to tumor immune, metabolic and stress microenvironments. Our data uncovered a high degree of intra-tumoral heterogeneity intrinsic to HNSCC and provided unique insights into the biology of the disease. In particular, a cellular neighborhood analysis revealed the presence of six unique spatial neighborhoods enriched in functionally specialized immune subsets. In addition, functional phenotyping based on key metabolic and stress markers identified four distinct tumor regions with differential protein signatures. One region was marked by infiltration of CD8+ cytotoxic T cells and overexpression of BAK, a proapoptotic regulator, suggesting strong immune activation and stress. Another adjacent region within the same tumor had high expression of G6PD and MMP9, known drivers of tumor resistance and invasion, respectively. This dichotomy of immune activation-induced death and tumor progression in the same sample demonstrates the heterogenous niches and competing microenvironments that may underpin variable clinical responses. Our data integrate single-cell ultra-high plex spatial information with the functional state of the TME to provide insights into HNSCC biology and differential responses to ICI therapy. We believe that the approach outlined in this study will pave the way toward a new understanding of TME features associated with response and sensitivity to ICI therapies.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering CRISPR Cures: An Interview with Fyodor Urnov 工程CRISPR治疗:Fyodor Urnov访谈
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.29113.fdu
Fyodor D. Urnov, Jonathan D. Grinstein
GEN BiotechnologyVol. 2, No. 5 Asked & AnsweredFree AccessEngineering CRISPR Cures: An Interview with Fyodor UrnovFyodor D. Urnov and Jonathan D. GrinsteinFyodor D. Urnov*Address correspondence to: Fyodor D. Urnov, Director of the Center for Translational Genomics at the Innovative Genomics Institute. E-mail Address: [email protected]Director of the Center for Translational Genomics at the Innovative Genomics Institute.Search for more papers by this author and Jonathan D. GrinsteinSenior Editor, GEN Media Group.Search for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29113.fduAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Fyodor Urnov, Director of the Center for Translational Genomics at the Innovative Genomics Institute (IGI)Fyodor Urnov is a pioneer in the field of genome editing and one of the scientists most invested in expanding the availability and utility of CRISPR-based therapies to the broadest possible population. He envisions a world in which genome editing can treat the nearly 400 million people who are suffering from one of the 7000 diseases brought on by gene mutations.After his PhD in 1996 from Brown University, Urnov worked as a postdoctoral fellow in the laboratory of Alan Wolffe at the National Institutes of Health (NIH). In 2000, Urnov joined Wolffe in moving to Sangamo Therapeutics in California. During his 16 years at Sangamo, Urnov and his colleagues performed the first demonstration using zinc-finger nucleases to modify DNA in human cells in 2005, coining the term “genome editing” in the process.1After that, Urnov led collaborative teams that created large-scale genome editing applications in crop genetics, model animal reverse genetics, and human somatic cell genetics. While at Sangamo, Urnov also led a cross-functional team from basic discovery to the initial design of the first-in-human clinical trials for sickle cell disease and beta-thalassemia, which are being conducted in collaboration with UCSF Benioff Children's Hospital and UCLA Broad Stem Cell Research Center.In 2019, Urnov became the Director of the Center for Translational Genomics at the Innovative Genomics Institute (IGI), working alongside Nobel laureate Jennifer Doudna, and a Professor in the Departments of Genetics, Genomics, and Development at the University of California, Berkeley. At the IGI, Urnov works in collaborative teams to develop first-in-human applications of experimental CRISPR-based therapeutics for sickle cell disease (with Mark Walters, UCSF), genetic disorders of the immune system (with Alexander Marson, UCSF/IGI), radiation injury (with Jonathan Weissman, MIT/Whitehead Institute), cystic fibrosis (with Ross Wilson, IGI), and neurological disorders (with Weill Neurohub and Roche/Genentech).In this exclusive interview, GEN Biotechnology talks to Urnov about his career in
创BiotechnologyVol。free AccessEngineering CRISPR Cures: a Interview with Fyodor D. Urnov and Jonathan D. GrinsteinFyodor D. Urnov*通讯地址:Fyodor D. Urnov, Innovative Genomics Institute翻译基因组学中心主任。电子邮件地址:[email protected]创新基因组学研究所转化基因组学中心主任。搜索本作者和Jonathan D. grinstein (GEN Media Group高级编辑)的更多论文。搜索本文作者的更多论文发表在线:2023年10月16日https://doi.org/10.1089/genbio.2023.29113.fduAboutSectionsPDF/EPUB权限& CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites返回出版物共享共享onFacebookTwitterLinked InRedditEmail Fyodor Urnov,创新基因组学研究所(IGI)转化基因组学中心主任Fyodor Urnov是基因组编辑领域的先驱,也是将crispr疗法的可用性和实用性扩展到尽可能广泛的人群中投入最多的科学家之一。他设想了一个基因组编辑可以治疗近4亿人的世界,这些人患有由基因突变引起的7000种疾病中的一种。1996年从布朗大学获得博士学位后,乌尔诺夫在美国国立卫生研究院(NIH)的艾伦·沃尔夫实验室担任博士后研究员。2000年,乌尔诺夫和沃尔夫一起搬到了加州的Sangamo Therapeutics。在Sangamo工作的16年里,乌尔诺夫和他的同事们在2005年首次演示了使用锌指核酸酶修饰人类细胞中的DNA,并在此过程中创造了“基因组编辑”一词。之后,乌尔诺夫领导的合作团队在作物遗传学、模型动物反向遗传学和人类体细胞遗传学方面创造了大规模的基因组编辑应用。在Sangamo期间,Urnov还领导了一个跨职能团队,从基础发现到最初设计镰状细胞病和-地中海贫血的首次人体临床试验,该团队正在与UCSF Benioff儿童医院和UCLA Broad干细胞研究中心合作进行。2019年,乌尔诺夫成为创新基因组学研究所(IGI)转化基因组学中心主任,与诺贝尔奖获得者詹妮弗·杜德纳(Jennifer Doudna)合作,并担任加州大学伯克利分校遗传学、基因组学和发展系教授。在IGI, Urnov与合作团队合作开发基于crispr的实验性治疗方法的首次人体应用,用于镰状细胞病(与Mark Walters, UCSF),免疫系统遗传疾病(与Alexander Marson, UCSF/IGI),辐射损伤(与Jonathan Weissman, MIT/Whitehead研究所),囊性纤维化(与Ross Wilson, IGI)和神经系统疾病(与Weill Neurohub和Roche/Genentech)。在这次独家采访中,GEN Biotechnology与乌尔诺夫谈论了他在基因组编辑方面的职业生涯,从他早期在Sangamo的工作,到他与查尔斯·格斯巴赫和松野彰(总裁兼首席财务官)共同创立的Tune Therapeutics公司。他详细阐述了他的“按需CRISPR治疗”计划,以及阻碍他实现目标的挑战。(考虑到篇幅和准确性,本文经过了轻微编辑。)我通读了你2021年在《分子疗法》(Molecular Therapy)上发表的文章(《想象一下CRISPR疗法》),我猜这篇文章参考了约翰·列侬(John Lennon)的歌曲,以及你2022年在《纽约时报》(New York Times)上发表的专栏文章(《我们可以通过编辑人的DNA来治愈疾病》)。为什么我们不是?”)在这些文章中,您列出了使CRISPR治疗n = 1疾病和罕见疾病成为现实所需的改进。在实现你的crispr按需治疗愿景方面,我们今天进展如何?乌尔诺夫:摆在我们面前的临床数据表明,基因疗法可以治愈严重疾病。这不是给定的。基因工程治疗疾病是1972年由加州大学圣地亚哥分校的泰德·弗里德曼提出的。那是50年前的事了!第一次基因治疗试验于1989年在美国国立卫生研究院进行。基因疗法能够起作用的曙光出现在本世纪头十年;CRISPR于2012年上线;2019年,首例人类接受了CRISPR治疗。回顾当时,我们很难想象,从1989年到2010年初这段早期的孵化期,一切都很顺利,有时也会出现故障。但后来这个领域取得了长足的进步,我们现在有15-20种基因疗法,仅仅是针对血液疾病,我们有相当惊人的疗效。我说的治愈,并不是指病人稍微好转。我的意思是像腺苷脱氨酶缺乏症,严重的综合免疫缺陷。唐·科恩(加州大学洛杉矶分校)和克莱尔·布斯(伦敦大学学院)有50个孩子肯定会死,他们基本上通过基因疗法治愈了,有两个病例通过骨髓移植治愈了。 我们早在21世纪初就知道我们可以做到这一点,但当你想到设计新型蛋白质的能力时,无论是在与DNA结合方面还是在改变表观基因组方面,当我们想到快速分析它们效力的方法时,它们是否能满足我们的需求,它们的特异性有多强?他们会去别的地方转化其他基因组吗?当我们考虑如何将它们输送到身体的特定细胞或器官时,在过去的20年里,所有这些都经历了一个渐进的变化,它经历了一个渐进的变化,我们可以把一个大型动物,比如人类灵长类动物,注射一茶匙由脂质纳米颗粒(LNP)配制的表观基因组编辑器。把它注射到猴子的血液循环中。LNP内部是一个表观基因组编辑器,用于关闭导致心血管疾病的基因。你瞧,在使用这种肾上腺素编辑器的几周内,基因就消失了。这是一个惊人的成就,只要这个系统被观察到,这个基因就不会出现。我们一直希望能够调整基因的开关,不仅仅是开或关,而是把它想象成一个音板,多一点低音,少一点高音,多一点鼓,当然少一点牛铃!这就是表观基因组编辑让你做的。就像你可以打开一个基因,也可以关闭一个基因,但你也可以调整它。声音输出,你不需要改变DNA序列。你只需在那个基因上加入新的分子组成,而不改变DNA的表达方式,基因就会礼貌地顺从。这是Spark Notes版本。25年前,当你还是已故艾伦·沃尔夫(Alan Wolffe)的博士后时,Tune Therapeutics实现了你的梦想吗?莫斯科:绝对!图灵相信表观遗传学和染色质是了解人类基因运作的关键。在20世纪90年代的时候,我们知道染色质的存在,但是人们认为染色质的存在是为了让真正的行动开始。我们现在知道情况并非如此,但在当时,它并不是研究基因控制或开发治疗方法的人们的首要和中心思想。图灵在两个方面明显领先于他的时代。首先,他只是认为染色质非常深,尽管我们不知道兔子洞有多深。其次,他很年轻。他在2001年的一次事故中不幸去世(42岁)。在过去的20年里,他的专业产出是惊人的。他是NIH历史上被任命为实验室主任的最年轻的实验室主任。他写了关于染色质和表观遗传学的权威专著,这是在这个领域工作的每个人的桌子上。我永远不会忘记我职业生涯中最具影响力的一
{"title":"Engineering CRISPR Cures: An Interview with Fyodor Urnov","authors":"Fyodor D. Urnov, Jonathan D. Grinstein","doi":"10.1089/genbio.2023.29113.fdu","DOIUrl":"https://doi.org/10.1089/genbio.2023.29113.fdu","url":null,"abstract":"GEN BiotechnologyVol. 2, No. 5 Asked & AnsweredFree AccessEngineering CRISPR Cures: An Interview with Fyodor UrnovFyodor D. Urnov and Jonathan D. GrinsteinFyodor D. Urnov*Address correspondence to: Fyodor D. Urnov, Director of the Center for Translational Genomics at the Innovative Genomics Institute. E-mail Address: [email protected]Director of the Center for Translational Genomics at the Innovative Genomics Institute.Search for more papers by this author and Jonathan D. GrinsteinSenior Editor, GEN Media Group.Search for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29113.fduAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Fyodor Urnov, Director of the Center for Translational Genomics at the Innovative Genomics Institute (IGI)Fyodor Urnov is a pioneer in the field of genome editing and one of the scientists most invested in expanding the availability and utility of CRISPR-based therapies to the broadest possible population. He envisions a world in which genome editing can treat the nearly 400 million people who are suffering from one of the 7000 diseases brought on by gene mutations.After his PhD in 1996 from Brown University, Urnov worked as a postdoctoral fellow in the laboratory of Alan Wolffe at the National Institutes of Health (NIH). In 2000, Urnov joined Wolffe in moving to Sangamo Therapeutics in California. During his 16 years at Sangamo, Urnov and his colleagues performed the first demonstration using zinc-finger nucleases to modify DNA in human cells in 2005, coining the term “genome editing” in the process.1After that, Urnov led collaborative teams that created large-scale genome editing applications in crop genetics, model animal reverse genetics, and human somatic cell genetics. While at Sangamo, Urnov also led a cross-functional team from basic discovery to the initial design of the first-in-human clinical trials for sickle cell disease and beta-thalassemia, which are being conducted in collaboration with UCSF Benioff Children's Hospital and UCLA Broad Stem Cell Research Center.In 2019, Urnov became the Director of the Center for Translational Genomics at the Innovative Genomics Institute (IGI), working alongside Nobel laureate Jennifer Doudna, and a Professor in the Departments of Genetics, Genomics, and Development at the University of California, Berkeley. At the IGI, Urnov works in collaborative teams to develop first-in-human applications of experimental CRISPR-based therapeutics for sickle cell disease (with Mark Walters, UCSF), genetic disorders of the immune system (with Alexander Marson, UCSF/IGI), radiation injury (with Jonathan Weissman, MIT/Whitehead Institute), cystic fibrosis (with Ross Wilson, IGI), and neurological disorders (with Weill Neurohub and Roche/Genentech).In this exclusive interview, GEN Biotechnology talks to Urnov about his career in ","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135810519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the Lab and Into the Hospital: An Outlook on the Clinical Utility of Spatial Omics Technologies 走出实验室,走进医院:空间组学技术的临床应用展望
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.0030
Dean M. Pucciarelli, Benjamin Y. Lu, Inti Zlobec, Marcello DiStasio
Spatial omics technologies, including highly multiplexed histologic protein assays, nucleic acid abundance and/or sequence mapping, and spatial epigenetics assays, offer powerful tools for interrogating the complex biology of human tissues. These technologies have been broadly applied in basic and translational research, which presages deployment in clinical settings as well. In this article, we discuss spatial omics technologies with an emphasis on retrieval of disease-related information in single samples, with potential clinical applications in specialties such as oncology and immunology, and in the development of personalized treatment. Capable of localizing detailed molecular information within histologic structures, spatial omics technologies provide both cell-intrinsic information and microenvironmental interaction context. This will allow more precise diagnostic and prognostic classifications and more accurate predictions about treatment responses to be made. While technical and financial challenges to widespread deployment in clinical laboratories remain, spatial omics technologies are expected to dramatically expand actionable information obtained by human tissue sampling for pathologic analysis.
空间组学技术,包括高度多重的组织蛋白分析,核酸丰度和/或序列定位,以及空间表观遗传学分析,为询问人体组织的复杂生物学提供了强大的工具。这些技术已广泛应用于基础研究和转化研究,这也预示着在临床环境中的部署。在本文中,我们讨论了空间组学技术,重点是在单个样本中检索疾病相关信息,在肿瘤学和免疫学等专业的潜在临床应用,以及个性化治疗的发展。空间组学技术能够在组织结构中定位详细的分子信息,提供细胞内在信息和微环境相互作用背景。这将允许更精确的诊断和预后分类,并对治疗反应作出更准确的预测。虽然在临床实验室广泛部署的技术和财政挑战仍然存在,但空间组学技术有望极大地扩展通过人体组织采样进行病理分析获得的可操作信息。
{"title":"Beyond the Lab and Into the Hospital: An Outlook on the Clinical Utility of Spatial Omics Technologies","authors":"Dean M. Pucciarelli, Benjamin Y. Lu, Inti Zlobec, Marcello DiStasio","doi":"10.1089/genbio.2023.0030","DOIUrl":"https://doi.org/10.1089/genbio.2023.0030","url":null,"abstract":"Spatial omics technologies, including highly multiplexed histologic protein assays, nucleic acid abundance and/or sequence mapping, and spatial epigenetics assays, offer powerful tools for interrogating the complex biology of human tissues. These technologies have been broadly applied in basic and translational research, which presages deployment in clinical settings as well. In this article, we discuss spatial omics technologies with an emphasis on retrieval of disease-related information in single samples, with potential clinical applications in specialties such as oncology and immunology, and in the development of personalized treatment. Capable of localizing detailed molecular information within histologic structures, spatial omics technologies provide both cell-intrinsic information and microenvironmental interaction context. This will allow more precise diagnostic and prognostic classifications and more accurate predictions about treatment responses to be made. While technical and financial challenges to widespread deployment in clinical laboratories remain, spatial omics technologies are expected to dramatically expand actionable information obtained by human tissue sampling for pathologic analysis.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Omics Spotlights the Players in the Tumor Microenvironment 空间组学聚焦肿瘤微环境中的参与者
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.29115.sro
Sachin Rawat
GEN BiotechnologyVol. 2, No. 5 News Feature: Spatial OmicsFree AccessSpatial Omics Spotlights the Players in the Tumor MicroenvironmentSachin RawatSachin Rawat*Address correspondence to: Sachin Rawat, Freelance Science Writer. E-mail Address: [email protected]Freelance Science Writer.Search for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29115.sroAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Researchers are using spatial omics to look deeper into the tumor microenvironment and unravel tumor heterogeneity with an eye on gleaning important clinical insights.Tumor immune microenvironment of human colorectal cancer. Cancer cells in green and immune cells in magenta. (Credit: NanoString Technologies)Many hard-to-treat cancers often recur months or years after successful treatment. “You could have one cell that escapes treatment and it's that one cell that will populate and be resistant and allow for a recurrence to happen,” said Jasmine Plummer, founding director of the Center for Spatial Omics at St. Jude Children's Research Hospital.Investigating such tumors with even single-cell omics technologies could miss these resistant cells. Before analysis, single-cell technologies destroy the cancer tissue to look at what's happening in the tissue as a whole. However, a lot of the interesting stuff inside tumors happens at the level of individual cells and depends on the context in which they exist. Single-cell technologies lose this spatial context when the cells are broken up.This is where spatial omics come in.With advances in omics technologies, cancer biologists have extensive information on the genes, proteins, and other metabolites that make up the messy environment of a tumor. Single-cell omics goes further, enabling the identification of all cell types in a tumor sample. This has only deepened our understanding of the extreme heterogeneity of tumor cells. Spatial omics technologies are placing these insights in the spatial context.Jasmine Plummer, Founding Director of the Center for Spatial Omics at St. Jude Children's Research HospitalTake gene expression, for example. Single-cell transcriptomics reveals which genes are being expressed across different cell types. But it doesn't say where these cells are in the tumor. Spatial transcriptomics technologies fill this gap by simultaneously recording spatial coordinates with gene expression data. This is the crux of the growing field of spatial omics: assigning pin codes to omics data.Spatial transcriptomics technologies such as in situ hybridization and in situ sequencing allow researchers to capture transcriptomes without losing spatial information. The former uses fluorescent, gene-specific probes that bind mRNAs, whereas the latter sequences the transcripts directly in a section of a fixed tissue.Complementing these imaging-ba
创BiotechnologyVol。空间组学聚焦肿瘤微环境中的参与者地址通信:Sachin Rawat,自由科学作家。电子邮件地址:[email protected]自由科学作家。搜索本文作者的更多论文发表在线:2023年10月16日https://doi.org/10.1089/genbio.2023.29115.sroAboutSectionsPDF/EPUB权限和引文下载CitationsTrack引文添加到收藏返回出版物共享分享在facebook上推特链接InRedditEmail研究人员正在使用空间组学来深入研究肿瘤微环境,揭示肿瘤异质性,并着眼于收集重要的临床见解。人类结直肠癌肿瘤免疫微环境的研究。绿色是癌细胞,品红是免疫细胞。许多难以治疗的癌症通常在成功治疗数月或数年后复发。St. Jude儿童研究医院空间组学中心的创始主任Jasmine Plummer说:“你可能有一个细胞逃脱了治疗,这个细胞会繁殖并产生抗药性,并允许复发。”即使用单细胞组学技术来研究这类肿瘤,也可能错过这些耐药细胞。在分析之前,单细胞技术会破坏癌症组织,从整体上观察组织中发生了什么。然而,肿瘤内部的许多有趣的事情发生在单个细胞的水平上,并取决于它们存在的环境。当细胞被分解时,单细胞技术就失去了这种空间背景。这就是空间组学的用武之地。随着组学技术的进步,癌症生物学家对构成肿瘤混乱环境的基因、蛋白质和其他代谢物有了广泛的了解。单细胞组学则更进一步,能够识别肿瘤样本中的所有细胞类型。这只加深了我们对肿瘤细胞极端异质性的理解。空间组学技术将这些见解置于空间环境中。Jasmine Plummer, St. Jude儿童研究医院空间组学中心创始主任,以基因表达为例。单细胞转录组学揭示了哪些基因在不同的细胞类型中被表达。但它没有说明这些细胞在肿瘤中的位置。空间转录组学技术通过同时记录空间坐标和基因表达数据来填补这一空白。这是不断发展的空间组学领域的关键:为组学数据分配pin码。空间转录组学技术,如原位杂交和原位测序,使研究人员能够在不丢失空间信息的情况下捕获转录组。前者使用结合mrna的荧光基因特异性探针,而后者直接在固定组织的一部分中对转录本进行测序。补充这些基于成像的方法是基于下一代测序的其他空间技术。其中包括高清晰度空间转录组学(HDST)和用于空间组学测序的组织确定性条形码(DBiT-Seq)。HDST使用空间条形码头阵列将RNA映射到组织学切片上的位置。DBiT对蛋白质和RNA都做同样的工作,使研究RNA-蛋白质在空间背景下的相互作用成为可能。研究蛋白质和其他代谢物的技术在原则上与研究转录物的技术相似。最近,一次调查多层信息的努力推动了空间多组学工具(如DBiT)的发展。癌细胞必须不断地逃避免疫系统,同时建立基础设施来支持其不受控制的生长。这种基础设施需要与不同的小圈子进行仔细的沟通。它包括宿主组织中的健康细胞、必须被欺骗的免疫细胞、肿瘤扩散所需的血管等。这些构成了一个被称为肿瘤微环境(TME)1的动态生态系统,它在肿瘤的生长和扩散中起着关键作用。Charlotte Stadler是空间和单细胞生物学平台(SSCB)的联合主任,也是sciilifelabby空间蛋白质组学单元的负责人,他整合了单细胞组学和空间组学,研究人员终于找到了一种方法来绘制包括癌症在内的不同组织的详细地图。在《分子系统生物学》上发表的一篇文章中,研究人员创建了人类肝脏tme的单细胞图谱。2研究人员发现癌细胞和周围的基质细胞之间反复发生相互作用,这表明针对这些相互作用的药物可能更广泛地适用。在《细胞》杂志发表的另一项研究中,科学家发现免疫T细胞在乳腺TME中表现出显著的表型多样性。 它们不仅在数量上远远超过健康乳腺组织中的T细胞类型,而且肿瘤T细胞类型的激活状态也是连续的。此外,该研究表明,免疫细胞的多样性是肿瘤内局部微环境多样性的结果。法裔美国人工智能生物技术初创公司Owkin的研发战略高级副总裁约瑟夫·勒哈尔(Joseph Lehar)说,肿瘤具有复杂的免疫生态,可以帮助它们“变得对免疫系统不透明,或者告诉免疫系统停止嗅探,让它找不到它,或者告诉T细胞不要试图杀死肿瘤细胞”。在肿瘤免疫生物学中,细胞关于是否杀死疑似肿瘤细胞的决定是高度局部化的。Lehar补充说:“这都是关于一个特定的肿瘤细胞或一组细胞的样子,免疫细胞感知到它,然后以一种特定的方式对它做出反应。”对肿瘤免疫微环境的空间理解对于治疗无法治愈的癌症至关重要。这是因为肿瘤逃避免疫系统的能力是它如何建立生长所需结构和如何抵抗治疗的核心。TME的另一个关键方面是缺氧生态位的存在。这是恶性肿瘤的标志,这是一种低于生理水平的氧气,是肿瘤内不同细胞信号结构的基础。在发表在《免疫》杂志上的一项研究中,研究人员表明,缺氧生态位吸引并隐藏了肿瘤免疫细胞结合空间信息和单细胞转录组学,他们证明了胶质母细胞瘤和免疫细胞在缺氧生态位中的串音在抑制免疫系统中是至关重要的。TME还包括其他机制,通过与癌症细胞和健康细胞的相互作用来塑造肿瘤的命运。这些包括细胞外基质,游离脂质和机械线索,仅举几例。为了沿着肿瘤绘制这些成分,研究人员利用了其他空间分析技术,这些技术通常与空间组学结合使用,如多路成像和细胞计数。在多路成像中,“我们使用抗体在同一组织切片中检测大量不同的蛋白质,”Charlotte Stadler说,她是空间和单细胞生物学平台的联合主任,也是瑞典国家研究中心SciLifeLab空间蛋白质组学部门的负责人(图1)。这使得研究人员能够进行“深度表型分析,并了解哪些细胞类型在空间上接近,并且可能相互作用。”深度表型是一个在精准医学领域日益受到关注的术语,它指的是组学数据在多个层面上的表型。1. Charlotte Stadler在SciLifeLab的研究小组开发并使用空间蛋白质组学方法用于癌症的临床应用。同样,与传统的细胞计数技术相比,大规模细胞计数技术可以让研究人员追踪到更多的代谢物。这种空间剖面技术对于实现三维(3D)空间组学也是至关重要的。虽然空间组学获得的肿瘤地图通常是二维(2D),但肿瘤本身存在于3D中。3D空间组学提供了肿瘤内部发生情况的完整图像,从而提供了更好的见解。肿瘤具有高度的异质性肿瘤内不同的细胞具有不同的基因型和表型组成。即使在肿瘤内基因纯合的癌细胞群中,细胞在表型上也有相当大的差异基因组不稳定性被认为是肿瘤发展的一个重要标志,是肿瘤中高细胞多样性的主要驱动因素。伊拉斯谟大学医学中心(Erasmus University Medical Center)的癌症研究员达纳·阿德尔·穆斯塔法(Dana Adel Mustafa)说,肿瘤内细胞的高度多样性“对于理解肿瘤细胞的多方面功能及其与微环境的复杂关系至关重要”。通过将空间组学技术应用于癌症组织,生物学家正在更多地了解不同肿瘤的异质性。空间组学技术通过产生关于肿瘤异质性的假设数据,正在迅速推进癌症研究。例如,在《癌细胞》杂志上发表的一项研究中,研究人员使用空间转录组学研究肾细胞癌的异质性。他们观察到,在肾癌中,肿瘤内的异质性远远超过了体细胞突变。更具体地说,免疫T细胞在组织中的位置,而不是它们积累的突变,主要决定了它们功能障碍的
{"title":"Spatial Omics Spotlights the Players in the Tumor Microenvironment","authors":"Sachin Rawat","doi":"10.1089/genbio.2023.29115.sro","DOIUrl":"https://doi.org/10.1089/genbio.2023.29115.sro","url":null,"abstract":"GEN BiotechnologyVol. 2, No. 5 News Feature: Spatial OmicsFree AccessSpatial Omics Spotlights the Players in the Tumor MicroenvironmentSachin RawatSachin Rawat*Address correspondence to: Sachin Rawat, Freelance Science Writer. E-mail Address: [email protected]Freelance Science Writer.Search for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29115.sroAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Researchers are using spatial omics to look deeper into the tumor microenvironment and unravel tumor heterogeneity with an eye on gleaning important clinical insights.Tumor immune microenvironment of human colorectal cancer. Cancer cells in green and immune cells in magenta. (Credit: NanoString Technologies)Many hard-to-treat cancers often recur months or years after successful treatment. “You could have one cell that escapes treatment and it's that one cell that will populate and be resistant and allow for a recurrence to happen,” said Jasmine Plummer, founding director of the Center for Spatial Omics at St. Jude Children's Research Hospital.Investigating such tumors with even single-cell omics technologies could miss these resistant cells. Before analysis, single-cell technologies destroy the cancer tissue to look at what's happening in the tissue as a whole. However, a lot of the interesting stuff inside tumors happens at the level of individual cells and depends on the context in which they exist. Single-cell technologies lose this spatial context when the cells are broken up.This is where spatial omics come in.With advances in omics technologies, cancer biologists have extensive information on the genes, proteins, and other metabolites that make up the messy environment of a tumor. Single-cell omics goes further, enabling the identification of all cell types in a tumor sample. This has only deepened our understanding of the extreme heterogeneity of tumor cells. Spatial omics technologies are placing these insights in the spatial context.Jasmine Plummer, Founding Director of the Center for Spatial Omics at St. Jude Children's Research HospitalTake gene expression, for example. Single-cell transcriptomics reveals which genes are being expressed across different cell types. But it doesn't say where these cells are in the tumor. Spatial transcriptomics technologies fill this gap by simultaneously recording spatial coordinates with gene expression data. This is the crux of the growing field of spatial omics: assigning pin codes to omics data.Spatial transcriptomics technologies such as in situ hybridization and in situ sequencing allow researchers to capture transcriptomes without losing spatial information. The former uses fluorescent, gene-specific probes that bind mRNAs, whereas the latter sequences the transcripts directly in a section of a fixed tissue.Complementing these imaging-ba","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion Evolution: New Artificial Intelligence Models Break Barriers in Protein Design 扩散进化:新的人工智能模型打破了蛋白质设计的障碍
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.29114.fli
Fay Lin
GEN BiotechnologyVol. 2, No. 5 News FeaturesFree AccessDiffusion Evolution: New Artificial Intelligence Models Break Barriers in Protein DesignFay LinFay LinE-mail Address: [email protected]Senior Editor, GEN BiotechnologySearch for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29114.fliAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Diffusion models, a form of generative artificial intelligence, are a rising tool for protein design, showing improved experimental success and new potential for biotechnological applications.This protein fold is one of thousands designed from scratch using new machine learning methods. (Credit: Ian C. Haydon/UW Institute for Protein Design)In July 2023, scientists in David Baker's laboratory at the University of Washington (UW) published a report in Nature detailing a new deep-learning framework for de novo protein design called RoseTTAFold diffusion (RFdiffusion), in Nature.1 Since then, the scientific community has been buzzing about RFdiffusion's unprecedented experimental success rate and ease of use.David Juergens, a graduate student in Baker's laboratory and one of seven co-lead authors of the Nature article, shared an anecdote about a scientist working in a lab in China, who posted on social media how “they designed a protein in a browser, ordered the sequence, purified the protein, crystallized it, and then got a crystal structure that was half an angstrom away from the design that was on the computer. It was amazing!” Juergens told me.David Baker, Professor in Biochemistry and Director of the Institute for Protein Design at UWSome of the applications of RFdiffusion, documented with experimental validation in the Nature article, include design of symmetric oligomers for vaccine platforms and delivery vehicles and generation of high-affinity binders for therapeutics.1 In another project, the Baker laboratory has applied RFdiffusion to design proteins that bind peptide hormones—established biomarkers for clinical care and biomedical research—for diagnostic applications.2Box 1. Let's Generate interactionsGenerate: Biomedicines is a Boston-based therapeutics company at the intersection of machine learning, biological engineering, and medicine. Molly Gibson, cofounder and chief strategy and innovation officer, says the company focuses on designing protein–protein interactions for therapeutic applications.“If you think about biologics, the most important function that a protein takes is creating very specific and potent binding with its target. This could be things like an antibody where we know exactly where we want to neutralize a target, or where we want to agonize and potentiate function,” said Gibson.One project at Generate: Biomedicines has worked to create a broadly neutralizing antibody for coronavirus. Gibson notes that the virus activel
创BiotechnologyVol。扩散进化:新的人工智能模型打破了蛋白质设计的障碍fay LinFay LinE-mail地址:[email protected] GEN biotechnology高级编辑搜索本文作者更多论文发布在线:2023年10月16日https://doi.org/10.1089/genbio.2023.29114.fliAboutSectionsPDF/EPUB权限与引用次数下载CitationsTrack引用次数添加到收藏返回发布分享分享在facebook上分享推特链接InRedditEmail扩散模型是一种生成式人工智能,是蛋白质设计的新兴工具。显示出改进的实验成功和生物技术应用的新潜力。这种蛋白质折叠是使用新的机器学习方法从零开始设计的数千种蛋白质折叠之一。2023年7月,华盛顿大学(UW) David Baker实验室的科学家们在《自然》杂志上发表了一篇报告,详细介绍了一种新的深度学习框架,用于从头开始的蛋白质设计,称为RoseTTAFold扩散(RFdiffusion)。从那时起,科学界就一直在谈论RFdiffusion前所未有的实验成功率和易用性。大卫·尤尔根斯(David Juergens)是贝克实验室的研究生,也是《自然》杂志那篇文章的七名共同主要作者之一,他分享了一个在中国实验室工作的科学家的轶事,他在社交媒体上发布了“他们如何在浏览器中设计一种蛋白质,对其排序,纯化蛋白质,使其结晶,然后得到一个晶体结构,与计算机上的设计相差半埃。”太神奇了!”杰庚斯告诉我的。David Baker, uww生物化学教授和蛋白质设计研究所主任,一些RFdiffusion的应用,在Nature文章中得到了实验验证,包括设计用于疫苗平台和递送载体的对称寡聚物,以及用于治疗的高亲和力结合物的生成在另一个项目中,Baker实验室应用射频扩散来设计结合肽激素的蛋白质——已建立的临床护理和生物医学研究的生物标志物——用于诊断应用。2箱1。让我们产生互动产生:生物医药是一家总部位于波士顿的治疗公司,在机器学习,生物工程和医学的交叉点。联合创始人兼首席战略和创新官莫莉·吉布森(Molly Gibson)表示,该公司专注于设计用于治疗用途的蛋白质-蛋白质相互作用。“如果你想到生物制剂,蛋白质最重要的功能是与目标产生非常特定和有效的结合。这可能是像抗体这样的东西,我们确切地知道我们想要在哪里中和一个目标,或者我们想要在哪里痛苦和增强功能,”吉布森说。Generate: Biomedicines的一个项目致力于为冠状病毒创造一种广泛中和的抗体。Gibson指出,病毒在生物制剂靶向的表位上主动变异,导致许多COVID治疗药物失去紧急使用授权(EUA)。“我们知道病毒的某些部分不会突变,但有趣的是,我们的免疫系统和动物的免疫系统,我们传统上获得的抗体通常不会产生针对病毒非突变部分的抗体,”吉布森继续说道。她补充说,针对这些非突变区域使治疗不太可能因未来的病毒突变而无效。今年9月,Generate: Biomedicines宣布了他们对GB-0669的首次临床试验,这是一种针对SARS-CoV-2刺突蛋白高度保守区域的单克隆抗体。该公司还希望在2023年第四季度初为其抗哮喘tslp单克隆抗体提交临床试验申请,预计此后不久将进入临床试验。生物医学有一个多模态的治疗重点项目在传染病,肿瘤学和免疫学。吉布森说:“我们真正专注于建立一套多样化的专业知识,不仅在蛋白质设计方面,而且在临床开发和生产方面。”通过整合不同领域的专业知识,“我们能够以影响人们的方式使用这项技术,”她补充说。其中一个关键工具是新的低温电子显微镜(CryoEM)设备,用于生成大规模结构数据,以补充公司内部的蛋白质设计机器学习工具,并促进药物发现过程。这个位于马萨诸塞州安多弗的70,000平方英尺的场地于6月揭幕,是美国最大的私营CryoEM实验室之一。贝克实验室并不是唯一一个开发所谓扩散模型的团队,扩散模型是一类利用生成式人工智能(AI)进行蛋白质设计的模型。去年12月,该实验室首次在bioRxiv上发布了一篇关于rf扩散的预印本。 与此同时,专注于人工智能的治疗公司Generate: Biomedicines发布了名为Chroma的扩散模型作为预印本一个月后,哥伦比亚大学系统生物学助理教授Mohammed AlQuraishi的实验室发布了他们自己的扩散模型genie的预印本。“所有这些不同的团队几乎在同一时间都在考虑这些模型,”AlQuraishi告诉GEN Biotechnology。“射频扩散效果很好。当然,这是(目前)已发表的方法中最有效的。”虽然Chroma不是公开的,但是Genie的代码是公开的。AlQuraishi还表示,Genie的实验验证正在进行中。RFdiffusion在一个用户友好的在线Google协作笔记本中公开提供尽管许多经验丰富的科学家正在将rf扩散应用于他们的蛋白质设计工作,并在实验室中验证他们的设计,但“任何有浏览器的人”都可以在计算机上设计出自然界从未见过的蛋白质……并在社交媒体上分享。不需要编码知识。哥伦比亚大学系统生物学助理教授Mohammed AlQuraishi在人工智能革命之前,蛋白质设计方法仅限于根据自然界现有的蛋白质生成设计。这些标准方法有局限性,因为大自然只对可能的蛋白质景观中的一小部分进行了采样,而且进化并不一定选择从制药或生物技术的角度来看所需要的属性。从应用和可扩展性的角度来看,溶解度、稳定性、易于生产和低免疫原性是许多至关重要的特性中的一些。相比之下,生成式人工智能方法强调从头开始的蛋白质设计——从头开始设计新的蛋白质——其目标是扩大功能和理想属性的范围,超越自然界已经实现的功能。自从具有里程碑意义的alphafold6发布以来,人工智能驱动的蛋白质设计一直是一股新兴力量,为生物技术应用带来了新的可能性。alphafold6是谷歌DeepMind备受赞誉的人工智能程序,在解决生物学最大的问题之一方面取得了重大飞跃,从序列中确定了蛋白质的3D结构。从历史上看,蛋白质结构的预测和设计是一个耗时的过程,因为计算得出的结构的实验验证率很低。像AlphaFold这样的人工智能工具可以以前所未有的速度和准确性预测蛋白质结构,简化药物发现、工业应用等方面的研究过程。9月,AlphaFold的开发者Demis Hassabis和John Jumper获得了2023年拉斯克奖(Lasker Awards)。这个享有盛誉的奖项旨在表彰对医学科学做出重大贡献的个人。在上个月的The State of Biotech-GEN年度旗舰虚拟活动中,著名的华盛顿大学结构生物学家David Baker讨论了首个获批的新设计药物SKYCovione,这是SK Bioscience和华盛顿大学蛋白质设计研究所(IPD)开发的一种COVID疫苗,于6月在韩国获批用于成人。“这是蛋白质设计的一个激动人心的时刻!Baker强调说,蛋白质设计领域已经看到了一个重大转变,从主要的生物物理方法,基于蛋白质折叠到最低能量结构的想法,到应用深度学习。贝克是生物化学教授、西澳大学生物科学研究所主任、霍华德·休斯医学研
{"title":"Diffusion Evolution: New Artificial Intelligence Models Break Barriers in Protein Design","authors":"Fay Lin","doi":"10.1089/genbio.2023.29114.fli","DOIUrl":"https://doi.org/10.1089/genbio.2023.29114.fli","url":null,"abstract":"GEN BiotechnologyVol. 2, No. 5 News FeaturesFree AccessDiffusion Evolution: New Artificial Intelligence Models Break Barriers in Protein DesignFay LinFay LinE-mail Address: [email protected]Senior Editor, GEN BiotechnologySearch for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29114.fliAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Diffusion models, a form of generative artificial intelligence, are a rising tool for protein design, showing improved experimental success and new potential for biotechnological applications.This protein fold is one of thousands designed from scratch using new machine learning methods. (Credit: Ian C. Haydon/UW Institute for Protein Design)In July 2023, scientists in David Baker's laboratory at the University of Washington (UW) published a report in Nature detailing a new deep-learning framework for de novo protein design called RoseTTAFold diffusion (RFdiffusion), in Nature.1 Since then, the scientific community has been buzzing about RFdiffusion's unprecedented experimental success rate and ease of use.David Juergens, a graduate student in Baker's laboratory and one of seven co-lead authors of the Nature article, shared an anecdote about a scientist working in a lab in China, who posted on social media how “they designed a protein in a browser, ordered the sequence, purified the protein, crystallized it, and then got a crystal structure that was half an angstrom away from the design that was on the computer. It was amazing!” Juergens told me.David Baker, Professor in Biochemistry and Director of the Institute for Protein Design at UWSome of the applications of RFdiffusion, documented with experimental validation in the Nature article, include design of symmetric oligomers for vaccine platforms and delivery vehicles and generation of high-affinity binders for therapeutics.1 In another project, the Baker laboratory has applied RFdiffusion to design proteins that bind peptide hormones—established biomarkers for clinical care and biomedical research—for diagnostic applications.2Box 1. Let's Generate interactionsGenerate: Biomedicines is a Boston-based therapeutics company at the intersection of machine learning, biological engineering, and medicine. Molly Gibson, cofounder and chief strategy and innovation officer, says the company focuses on designing protein–protein interactions for therapeutic applications.“If you think about biologics, the most important function that a protein takes is creating very specific and potent binding with its target. This could be things like an antibody where we know exactly where we want to neutralize a target, or where we want to agonize and potentiate function,” said Gibson.One project at Generate: Biomedicines has worked to create a broadly neutralizing antibody for coronavirus. Gibson notes that the virus activel","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Technical Advances and Applications of Spatial Transcriptomics 空间转录组学的技术进展与应用
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.0032
Guohao Liang, Hong Yin, Fangyuan Ding
Transcriptomics is one of the largest areas of research in biological sciences. Aside from RNA expression levels, the significance of RNA spatial context has also been unveiled in the recent decade, playing a critical role in diverse biological processes, from subcellular kinetic regulation to cell communication, from tissue architecture to tumor microenvironment, and more. To systematically unravel the positional patterns of RNA molecules across subcellular, cellular, and tissue levels, spatial transcriptomics techniques have emerged and rapidly became an irreplaceable tool set. Herein, we review and compare current spatial transcriptomics techniques on their methods, advantages, and limitations, as well as applications across a wide range of biological investigations. This review serves as a comprehensive guide to spatial transcriptomics for researchers interested in adopting this powerful suite of technologies.
转录组学是生物科学中最大的研究领域之一。除了RNA表达水平,近十年来,RNA空间环境的重要性也被揭示出来,在从亚细胞动力学调节到细胞通讯,从组织结构到肿瘤微环境等多种生物过程中发挥着关键作用。为了系统地揭示RNA分子在亚细胞、细胞和组织水平上的位置模式,空间转录组学技术已经出现并迅速成为一种不可替代的工具集。在此,我们回顾和比较了当前的空间转录组学技术的方法、优点和局限性,以及在广泛的生物学研究中的应用。这篇综述为有兴趣采用这一强大技术套件的研究人员提供了空间转录组学的综合指南。
{"title":"Technical Advances and Applications of Spatial Transcriptomics","authors":"Guohao Liang, Hong Yin, Fangyuan Ding","doi":"10.1089/genbio.2023.0032","DOIUrl":"https://doi.org/10.1089/genbio.2023.0032","url":null,"abstract":"Transcriptomics is one of the largest areas of research in biological sciences. Aside from RNA expression levels, the significance of RNA spatial context has also been unveiled in the recent decade, playing a critical role in diverse biological processes, from subcellular kinetic regulation to cell communication, from tissue architecture to tumor microenvironment, and more. To systematically unravel the positional patterns of RNA molecules across subcellular, cellular, and tissue levels, spatial transcriptomics techniques have emerged and rapidly became an irreplaceable tool set. Herein, we review and compare current spatial transcriptomics techniques on their methods, advantages, and limitations, as well as applications across a wide range of biological investigations. This review serves as a comprehensive guide to spatial transcriptomics for researchers interested in adopting this powerful suite of technologies.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135811698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
GEN biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1