首页 > 最新文献

GEN biotechnology最新文献

英文 中文
Beyond the Lab and Into the Hospital: An Outlook on the Clinical Utility of Spatial Omics Technologies 走出实验室,走进医院:空间组学技术的临床应用展望
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.0030
Dean M. Pucciarelli, Benjamin Y. Lu, Inti Zlobec, Marcello DiStasio
Spatial omics technologies, including highly multiplexed histologic protein assays, nucleic acid abundance and/or sequence mapping, and spatial epigenetics assays, offer powerful tools for interrogating the complex biology of human tissues. These technologies have been broadly applied in basic and translational research, which presages deployment in clinical settings as well. In this article, we discuss spatial omics technologies with an emphasis on retrieval of disease-related information in single samples, with potential clinical applications in specialties such as oncology and immunology, and in the development of personalized treatment. Capable of localizing detailed molecular information within histologic structures, spatial omics technologies provide both cell-intrinsic information and microenvironmental interaction context. This will allow more precise diagnostic and prognostic classifications and more accurate predictions about treatment responses to be made. While technical and financial challenges to widespread deployment in clinical laboratories remain, spatial omics technologies are expected to dramatically expand actionable information obtained by human tissue sampling for pathologic analysis.
空间组学技术,包括高度多重的组织蛋白分析,核酸丰度和/或序列定位,以及空间表观遗传学分析,为询问人体组织的复杂生物学提供了强大的工具。这些技术已广泛应用于基础研究和转化研究,这也预示着在临床环境中的部署。在本文中,我们讨论了空间组学技术,重点是在单个样本中检索疾病相关信息,在肿瘤学和免疫学等专业的潜在临床应用,以及个性化治疗的发展。空间组学技术能够在组织结构中定位详细的分子信息,提供细胞内在信息和微环境相互作用背景。这将允许更精确的诊断和预后分类,并对治疗反应作出更准确的预测。虽然在临床实验室广泛部署的技术和财政挑战仍然存在,但空间组学技术有望极大地扩展通过人体组织采样进行病理分析获得的可操作信息。
{"title":"Beyond the Lab and Into the Hospital: An Outlook on the Clinical Utility of Spatial Omics Technologies","authors":"Dean M. Pucciarelli, Benjamin Y. Lu, Inti Zlobec, Marcello DiStasio","doi":"10.1089/genbio.2023.0030","DOIUrl":"https://doi.org/10.1089/genbio.2023.0030","url":null,"abstract":"Spatial omics technologies, including highly multiplexed histologic protein assays, nucleic acid abundance and/or sequence mapping, and spatial epigenetics assays, offer powerful tools for interrogating the complex biology of human tissues. These technologies have been broadly applied in basic and translational research, which presages deployment in clinical settings as well. In this article, we discuss spatial omics technologies with an emphasis on retrieval of disease-related information in single samples, with potential clinical applications in specialties such as oncology and immunology, and in the development of personalized treatment. Capable of localizing detailed molecular information within histologic structures, spatial omics technologies provide both cell-intrinsic information and microenvironmental interaction context. This will allow more precise diagnostic and prognostic classifications and more accurate predictions about treatment responses to be made. While technical and financial challenges to widespread deployment in clinical laboratories remain, spatial omics technologies are expected to dramatically expand actionable information obtained by human tissue sampling for pathologic analysis.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Omics Spotlights the Players in the Tumor Microenvironment 空间组学聚焦肿瘤微环境中的参与者
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.29115.sro
Sachin Rawat
GEN BiotechnologyVol. 2, No. 5 News Feature: Spatial OmicsFree AccessSpatial Omics Spotlights the Players in the Tumor MicroenvironmentSachin RawatSachin Rawat*Address correspondence to: Sachin Rawat, Freelance Science Writer. E-mail Address: [email protected]Freelance Science Writer.Search for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29115.sroAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Researchers are using spatial omics to look deeper into the tumor microenvironment and unravel tumor heterogeneity with an eye on gleaning important clinical insights.Tumor immune microenvironment of human colorectal cancer. Cancer cells in green and immune cells in magenta. (Credit: NanoString Technologies)Many hard-to-treat cancers often recur months or years after successful treatment. “You could have one cell that escapes treatment and it's that one cell that will populate and be resistant and allow for a recurrence to happen,” said Jasmine Plummer, founding director of the Center for Spatial Omics at St. Jude Children's Research Hospital.Investigating such tumors with even single-cell omics technologies could miss these resistant cells. Before analysis, single-cell technologies destroy the cancer tissue to look at what's happening in the tissue as a whole. However, a lot of the interesting stuff inside tumors happens at the level of individual cells and depends on the context in which they exist. Single-cell technologies lose this spatial context when the cells are broken up.This is where spatial omics come in.With advances in omics technologies, cancer biologists have extensive information on the genes, proteins, and other metabolites that make up the messy environment of a tumor. Single-cell omics goes further, enabling the identification of all cell types in a tumor sample. This has only deepened our understanding of the extreme heterogeneity of tumor cells. Spatial omics technologies are placing these insights in the spatial context.Jasmine Plummer, Founding Director of the Center for Spatial Omics at St. Jude Children's Research HospitalTake gene expression, for example. Single-cell transcriptomics reveals which genes are being expressed across different cell types. But it doesn't say where these cells are in the tumor. Spatial transcriptomics technologies fill this gap by simultaneously recording spatial coordinates with gene expression data. This is the crux of the growing field of spatial omics: assigning pin codes to omics data.Spatial transcriptomics technologies such as in situ hybridization and in situ sequencing allow researchers to capture transcriptomes without losing spatial information. The former uses fluorescent, gene-specific probes that bind mRNAs, whereas the latter sequences the transcripts directly in a section of a fixed tissue.Complementing these imaging-ba
创BiotechnologyVol。空间组学聚焦肿瘤微环境中的参与者地址通信:Sachin Rawat,自由科学作家。电子邮件地址:[email protected]自由科学作家。搜索本文作者的更多论文发表在线:2023年10月16日https://doi.org/10.1089/genbio.2023.29115.sroAboutSectionsPDF/EPUB权限和引文下载CitationsTrack引文添加到收藏返回出版物共享分享在facebook上推特链接InRedditEmail研究人员正在使用空间组学来深入研究肿瘤微环境,揭示肿瘤异质性,并着眼于收集重要的临床见解。人类结直肠癌肿瘤免疫微环境的研究。绿色是癌细胞,品红是免疫细胞。许多难以治疗的癌症通常在成功治疗数月或数年后复发。St. Jude儿童研究医院空间组学中心的创始主任Jasmine Plummer说:“你可能有一个细胞逃脱了治疗,这个细胞会繁殖并产生抗药性,并允许复发。”即使用单细胞组学技术来研究这类肿瘤,也可能错过这些耐药细胞。在分析之前,单细胞技术会破坏癌症组织,从整体上观察组织中发生了什么。然而,肿瘤内部的许多有趣的事情发生在单个细胞的水平上,并取决于它们存在的环境。当细胞被分解时,单细胞技术就失去了这种空间背景。这就是空间组学的用武之地。随着组学技术的进步,癌症生物学家对构成肿瘤混乱环境的基因、蛋白质和其他代谢物有了广泛的了解。单细胞组学则更进一步,能够识别肿瘤样本中的所有细胞类型。这只加深了我们对肿瘤细胞极端异质性的理解。空间组学技术将这些见解置于空间环境中。Jasmine Plummer, St. Jude儿童研究医院空间组学中心创始主任,以基因表达为例。单细胞转录组学揭示了哪些基因在不同的细胞类型中被表达。但它没有说明这些细胞在肿瘤中的位置。空间转录组学技术通过同时记录空间坐标和基因表达数据来填补这一空白。这是不断发展的空间组学领域的关键:为组学数据分配pin码。空间转录组学技术,如原位杂交和原位测序,使研究人员能够在不丢失空间信息的情况下捕获转录组。前者使用结合mrna的荧光基因特异性探针,而后者直接在固定组织的一部分中对转录本进行测序。补充这些基于成像的方法是基于下一代测序的其他空间技术。其中包括高清晰度空间转录组学(HDST)和用于空间组学测序的组织确定性条形码(DBiT-Seq)。HDST使用空间条形码头阵列将RNA映射到组织学切片上的位置。DBiT对蛋白质和RNA都做同样的工作,使研究RNA-蛋白质在空间背景下的相互作用成为可能。研究蛋白质和其他代谢物的技术在原则上与研究转录物的技术相似。最近,一次调查多层信息的努力推动了空间多组学工具(如DBiT)的发展。癌细胞必须不断地逃避免疫系统,同时建立基础设施来支持其不受控制的生长。这种基础设施需要与不同的小圈子进行仔细的沟通。它包括宿主组织中的健康细胞、必须被欺骗的免疫细胞、肿瘤扩散所需的血管等。这些构成了一个被称为肿瘤微环境(TME)1的动态生态系统,它在肿瘤的生长和扩散中起着关键作用。Charlotte Stadler是空间和单细胞生物学平台(SSCB)的联合主任,也是sciilifelabby空间蛋白质组学单元的负责人,他整合了单细胞组学和空间组学,研究人员终于找到了一种方法来绘制包括癌症在内的不同组织的详细地图。在《分子系统生物学》上发表的一篇文章中,研究人员创建了人类肝脏tme的单细胞图谱。2研究人员发现癌细胞和周围的基质细胞之间反复发生相互作用,这表明针对这些相互作用的药物可能更广泛地适用。在《细胞》杂志发表的另一项研究中,科学家发现免疫T细胞在乳腺TME中表现出显著的表型多样性。 它们不仅在数量上远远超过健康乳腺组织中的T细胞类型,而且肿瘤T细胞类型的激活状态也是连续的。此外,该研究表明,免疫细胞的多样性是肿瘤内局部微环境多样性的结果。法裔美国人工智能生物技术初创公司Owkin的研发战略高级副总裁约瑟夫·勒哈尔(Joseph Lehar)说,肿瘤具有复杂的免疫生态,可以帮助它们“变得对免疫系统不透明,或者告诉免疫系统停止嗅探,让它找不到它,或者告诉T细胞不要试图杀死肿瘤细胞”。在肿瘤免疫生物学中,细胞关于是否杀死疑似肿瘤细胞的决定是高度局部化的。Lehar补充说:“这都是关于一个特定的肿瘤细胞或一组细胞的样子,免疫细胞感知到它,然后以一种特定的方式对它做出反应。”对肿瘤免疫微环境的空间理解对于治疗无法治愈的癌症至关重要。这是因为肿瘤逃避免疫系统的能力是它如何建立生长所需结构和如何抵抗治疗的核心。TME的另一个关键方面是缺氧生态位的存在。这是恶性肿瘤的标志,这是一种低于生理水平的氧气,是肿瘤内不同细胞信号结构的基础。在发表在《免疫》杂志上的一项研究中,研究人员表明,缺氧生态位吸引并隐藏了肿瘤免疫细胞结合空间信息和单细胞转录组学,他们证明了胶质母细胞瘤和免疫细胞在缺氧生态位中的串音在抑制免疫系统中是至关重要的。TME还包括其他机制,通过与癌症细胞和健康细胞的相互作用来塑造肿瘤的命运。这些包括细胞外基质,游离脂质和机械线索,仅举几例。为了沿着肿瘤绘制这些成分,研究人员利用了其他空间分析技术,这些技术通常与空间组学结合使用,如多路成像和细胞计数。在多路成像中,“我们使用抗体在同一组织切片中检测大量不同的蛋白质,”Charlotte Stadler说,她是空间和单细胞生物学平台的联合主任,也是瑞典国家研究中心SciLifeLab空间蛋白质组学部门的负责人(图1)。这使得研究人员能够进行“深度表型分析,并了解哪些细胞类型在空间上接近,并且可能相互作用。”深度表型是一个在精准医学领域日益受到关注的术语,它指的是组学数据在多个层面上的表型。1. Charlotte Stadler在SciLifeLab的研究小组开发并使用空间蛋白质组学方法用于癌症的临床应用。同样,与传统的细胞计数技术相比,大规模细胞计数技术可以让研究人员追踪到更多的代谢物。这种空间剖面技术对于实现三维(3D)空间组学也是至关重要的。虽然空间组学获得的肿瘤地图通常是二维(2D),但肿瘤本身存在于3D中。3D空间组学提供了肿瘤内部发生情况的完整图像,从而提供了更好的见解。肿瘤具有高度的异质性肿瘤内不同的细胞具有不同的基因型和表型组成。即使在肿瘤内基因纯合的癌细胞群中,细胞在表型上也有相当大的差异基因组不稳定性被认为是肿瘤发展的一个重要标志,是肿瘤中高细胞多样性的主要驱动因素。伊拉斯谟大学医学中心(Erasmus University Medical Center)的癌症研究员达纳·阿德尔·穆斯塔法(Dana Adel Mustafa)说,肿瘤内细胞的高度多样性“对于理解肿瘤细胞的多方面功能及其与微环境的复杂关系至关重要”。通过将空间组学技术应用于癌症组织,生物学家正在更多地了解不同肿瘤的异质性。空间组学技术通过产生关于肿瘤异质性的假设数据,正在迅速推进癌症研究。例如,在《癌细胞》杂志上发表的一项研究中,研究人员使用空间转录组学研究肾细胞癌的异质性。他们观察到,在肾癌中,肿瘤内的异质性远远超过了体细胞突变。更具体地说,免疫T细胞在组织中的位置,而不是它们积累的突变,主要决定了它们功能障碍的
{"title":"Spatial Omics Spotlights the Players in the Tumor Microenvironment","authors":"Sachin Rawat","doi":"10.1089/genbio.2023.29115.sro","DOIUrl":"https://doi.org/10.1089/genbio.2023.29115.sro","url":null,"abstract":"GEN BiotechnologyVol. 2, No. 5 News Feature: Spatial OmicsFree AccessSpatial Omics Spotlights the Players in the Tumor MicroenvironmentSachin RawatSachin Rawat*Address correspondence to: Sachin Rawat, Freelance Science Writer. E-mail Address: [email protected]Freelance Science Writer.Search for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29115.sroAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Researchers are using spatial omics to look deeper into the tumor microenvironment and unravel tumor heterogeneity with an eye on gleaning important clinical insights.Tumor immune microenvironment of human colorectal cancer. Cancer cells in green and immune cells in magenta. (Credit: NanoString Technologies)Many hard-to-treat cancers often recur months or years after successful treatment. “You could have one cell that escapes treatment and it's that one cell that will populate and be resistant and allow for a recurrence to happen,” said Jasmine Plummer, founding director of the Center for Spatial Omics at St. Jude Children's Research Hospital.Investigating such tumors with even single-cell omics technologies could miss these resistant cells. Before analysis, single-cell technologies destroy the cancer tissue to look at what's happening in the tissue as a whole. However, a lot of the interesting stuff inside tumors happens at the level of individual cells and depends on the context in which they exist. Single-cell technologies lose this spatial context when the cells are broken up.This is where spatial omics come in.With advances in omics technologies, cancer biologists have extensive information on the genes, proteins, and other metabolites that make up the messy environment of a tumor. Single-cell omics goes further, enabling the identification of all cell types in a tumor sample. This has only deepened our understanding of the extreme heterogeneity of tumor cells. Spatial omics technologies are placing these insights in the spatial context.Jasmine Plummer, Founding Director of the Center for Spatial Omics at St. Jude Children's Research HospitalTake gene expression, for example. Single-cell transcriptomics reveals which genes are being expressed across different cell types. But it doesn't say where these cells are in the tumor. Spatial transcriptomics technologies fill this gap by simultaneously recording spatial coordinates with gene expression data. This is the crux of the growing field of spatial omics: assigning pin codes to omics data.Spatial transcriptomics technologies such as in situ hybridization and in situ sequencing allow researchers to capture transcriptomes without losing spatial information. The former uses fluorescent, gene-specific probes that bind mRNAs, whereas the latter sequences the transcripts directly in a section of a fixed tissue.Complementing these imaging-ba","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion Evolution: New Artificial Intelligence Models Break Barriers in Protein Design 扩散进化:新的人工智能模型打破了蛋白质设计的障碍
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.29114.fli
Fay Lin
GEN BiotechnologyVol. 2, No. 5 News FeaturesFree AccessDiffusion Evolution: New Artificial Intelligence Models Break Barriers in Protein DesignFay LinFay LinE-mail Address: [email protected]Senior Editor, GEN BiotechnologySearch for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29114.fliAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Diffusion models, a form of generative artificial intelligence, are a rising tool for protein design, showing improved experimental success and new potential for biotechnological applications.This protein fold is one of thousands designed from scratch using new machine learning methods. (Credit: Ian C. Haydon/UW Institute for Protein Design)In July 2023, scientists in David Baker's laboratory at the University of Washington (UW) published a report in Nature detailing a new deep-learning framework for de novo protein design called RoseTTAFold diffusion (RFdiffusion), in Nature.1 Since then, the scientific community has been buzzing about RFdiffusion's unprecedented experimental success rate and ease of use.David Juergens, a graduate student in Baker's laboratory and one of seven co-lead authors of the Nature article, shared an anecdote about a scientist working in a lab in China, who posted on social media how “they designed a protein in a browser, ordered the sequence, purified the protein, crystallized it, and then got a crystal structure that was half an angstrom away from the design that was on the computer. It was amazing!” Juergens told me.David Baker, Professor in Biochemistry and Director of the Institute for Protein Design at UWSome of the applications of RFdiffusion, documented with experimental validation in the Nature article, include design of symmetric oligomers for vaccine platforms and delivery vehicles and generation of high-affinity binders for therapeutics.1 In another project, the Baker laboratory has applied RFdiffusion to design proteins that bind peptide hormones—established biomarkers for clinical care and biomedical research—for diagnostic applications.2Box 1. Let's Generate interactionsGenerate: Biomedicines is a Boston-based therapeutics company at the intersection of machine learning, biological engineering, and medicine. Molly Gibson, cofounder and chief strategy and innovation officer, says the company focuses on designing protein–protein interactions for therapeutic applications.“If you think about biologics, the most important function that a protein takes is creating very specific and potent binding with its target. This could be things like an antibody where we know exactly where we want to neutralize a target, or where we want to agonize and potentiate function,” said Gibson.One project at Generate: Biomedicines has worked to create a broadly neutralizing antibody for coronavirus. Gibson notes that the virus activel
创BiotechnologyVol。扩散进化:新的人工智能模型打破了蛋白质设计的障碍fay LinFay LinE-mail地址:[email protected] GEN biotechnology高级编辑搜索本文作者更多论文发布在线:2023年10月16日https://doi.org/10.1089/genbio.2023.29114.fliAboutSectionsPDF/EPUB权限与引用次数下载CitationsTrack引用次数添加到收藏返回发布分享分享在facebook上分享推特链接InRedditEmail扩散模型是一种生成式人工智能,是蛋白质设计的新兴工具。显示出改进的实验成功和生物技术应用的新潜力。这种蛋白质折叠是使用新的机器学习方法从零开始设计的数千种蛋白质折叠之一。2023年7月,华盛顿大学(UW) David Baker实验室的科学家们在《自然》杂志上发表了一篇报告,详细介绍了一种新的深度学习框架,用于从头开始的蛋白质设计,称为RoseTTAFold扩散(RFdiffusion)。从那时起,科学界就一直在谈论RFdiffusion前所未有的实验成功率和易用性。大卫·尤尔根斯(David Juergens)是贝克实验室的研究生,也是《自然》杂志那篇文章的七名共同主要作者之一,他分享了一个在中国实验室工作的科学家的轶事,他在社交媒体上发布了“他们如何在浏览器中设计一种蛋白质,对其排序,纯化蛋白质,使其结晶,然后得到一个晶体结构,与计算机上的设计相差半埃。”太神奇了!”杰庚斯告诉我的。David Baker, uww生物化学教授和蛋白质设计研究所主任,一些RFdiffusion的应用,在Nature文章中得到了实验验证,包括设计用于疫苗平台和递送载体的对称寡聚物,以及用于治疗的高亲和力结合物的生成在另一个项目中,Baker实验室应用射频扩散来设计结合肽激素的蛋白质——已建立的临床护理和生物医学研究的生物标志物——用于诊断应用。2箱1。让我们产生互动产生:生物医药是一家总部位于波士顿的治疗公司,在机器学习,生物工程和医学的交叉点。联合创始人兼首席战略和创新官莫莉·吉布森(Molly Gibson)表示,该公司专注于设计用于治疗用途的蛋白质-蛋白质相互作用。“如果你想到生物制剂,蛋白质最重要的功能是与目标产生非常特定和有效的结合。这可能是像抗体这样的东西,我们确切地知道我们想要在哪里中和一个目标,或者我们想要在哪里痛苦和增强功能,”吉布森说。Generate: Biomedicines的一个项目致力于为冠状病毒创造一种广泛中和的抗体。Gibson指出,病毒在生物制剂靶向的表位上主动变异,导致许多COVID治疗药物失去紧急使用授权(EUA)。“我们知道病毒的某些部分不会突变,但有趣的是,我们的免疫系统和动物的免疫系统,我们传统上获得的抗体通常不会产生针对病毒非突变部分的抗体,”吉布森继续说道。她补充说,针对这些非突变区域使治疗不太可能因未来的病毒突变而无效。今年9月,Generate: Biomedicines宣布了他们对GB-0669的首次临床试验,这是一种针对SARS-CoV-2刺突蛋白高度保守区域的单克隆抗体。该公司还希望在2023年第四季度初为其抗哮喘tslp单克隆抗体提交临床试验申请,预计此后不久将进入临床试验。生物医学有一个多模态的治疗重点项目在传染病,肿瘤学和免疫学。吉布森说:“我们真正专注于建立一套多样化的专业知识,不仅在蛋白质设计方面,而且在临床开发和生产方面。”通过整合不同领域的专业知识,“我们能够以影响人们的方式使用这项技术,”她补充说。其中一个关键工具是新的低温电子显微镜(CryoEM)设备,用于生成大规模结构数据,以补充公司内部的蛋白质设计机器学习工具,并促进药物发现过程。这个位于马萨诸塞州安多弗的70,000平方英尺的场地于6月揭幕,是美国最大的私营CryoEM实验室之一。贝克实验室并不是唯一一个开发所谓扩散模型的团队,扩散模型是一类利用生成式人工智能(AI)进行蛋白质设计的模型。去年12月,该实验室首次在bioRxiv上发布了一篇关于rf扩散的预印本。 与此同时,专注于人工智能的治疗公司Generate: Biomedicines发布了名为Chroma的扩散模型作为预印本一个月后,哥伦比亚大学系统生物学助理教授Mohammed AlQuraishi的实验室发布了他们自己的扩散模型genie的预印本。“所有这些不同的团队几乎在同一时间都在考虑这些模型,”AlQuraishi告诉GEN Biotechnology。“射频扩散效果很好。当然,这是(目前)已发表的方法中最有效的。”虽然Chroma不是公开的,但是Genie的代码是公开的。AlQuraishi还表示,Genie的实验验证正在进行中。RFdiffusion在一个用户友好的在线Google协作笔记本中公开提供尽管许多经验丰富的科学家正在将rf扩散应用于他们的蛋白质设计工作,并在实验室中验证他们的设计,但“任何有浏览器的人”都可以在计算机上设计出自然界从未见过的蛋白质……并在社交媒体上分享。不需要编码知识。哥伦比亚大学系统生物学助理教授Mohammed AlQuraishi在人工智能革命之前,蛋白质设计方法仅限于根据自然界现有的蛋白质生成设计。这些标准方法有局限性,因为大自然只对可能的蛋白质景观中的一小部分进行了采样,而且进化并不一定选择从制药或生物技术的角度来看所需要的属性。从应用和可扩展性的角度来看,溶解度、稳定性、易于生产和低免疫原性是许多至关重要的特性中的一些。相比之下,生成式人工智能方法强调从头开始的蛋白质设计——从头开始设计新的蛋白质——其目标是扩大功能和理想属性的范围,超越自然界已经实现的功能。自从具有里程碑意义的alphafold6发布以来,人工智能驱动的蛋白质设计一直是一股新兴力量,为生物技术应用带来了新的可能性。alphafold6是谷歌DeepMind备受赞誉的人工智能程序,在解决生物学最大的问题之一方面取得了重大飞跃,从序列中确定了蛋白质的3D结构。从历史上看,蛋白质结构的预测和设计是一个耗时的过程,因为计算得出的结构的实验验证率很低。像AlphaFold这样的人工智能工具可以以前所未有的速度和准确性预测蛋白质结构,简化药物发现、工业应用等方面的研究过程。9月,AlphaFold的开发者Demis Hassabis和John Jumper获得了2023年拉斯克奖(Lasker Awards)。这个享有盛誉的奖项旨在表彰对医学科学做出重大贡献的个人。在上个月的The State of Biotech-GEN年度旗舰虚拟活动中,著名的华盛顿大学结构生物学家David Baker讨论了首个获批的新设计药物SKYCovione,这是SK Bioscience和华盛顿大学蛋白质设计研究所(IPD)开发的一种COVID疫苗,于6月在韩国获批用于成人。“这是蛋白质设计的一个激动人心的时刻!Baker强调说,蛋白质设计领域已经看到了一个重大转变,从主要的生物物理方法,基于蛋白质折叠到最低能量结构的想法,到应用深度学习。贝克是生物化学教授、西澳大学生物科学研究所主任、霍华德·休斯医学研
{"title":"Diffusion Evolution: New Artificial Intelligence Models Break Barriers in Protein Design","authors":"Fay Lin","doi":"10.1089/genbio.2023.29114.fli","DOIUrl":"https://doi.org/10.1089/genbio.2023.29114.fli","url":null,"abstract":"GEN BiotechnologyVol. 2, No. 5 News FeaturesFree AccessDiffusion Evolution: New Artificial Intelligence Models Break Barriers in Protein DesignFay LinFay LinE-mail Address: [email protected]Senior Editor, GEN BiotechnologySearch for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29114.fliAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Diffusion models, a form of generative artificial intelligence, are a rising tool for protein design, showing improved experimental success and new potential for biotechnological applications.This protein fold is one of thousands designed from scratch using new machine learning methods. (Credit: Ian C. Haydon/UW Institute for Protein Design)In July 2023, scientists in David Baker's laboratory at the University of Washington (UW) published a report in Nature detailing a new deep-learning framework for de novo protein design called RoseTTAFold diffusion (RFdiffusion), in Nature.1 Since then, the scientific community has been buzzing about RFdiffusion's unprecedented experimental success rate and ease of use.David Juergens, a graduate student in Baker's laboratory and one of seven co-lead authors of the Nature article, shared an anecdote about a scientist working in a lab in China, who posted on social media how “they designed a protein in a browser, ordered the sequence, purified the protein, crystallized it, and then got a crystal structure that was half an angstrom away from the design that was on the computer. It was amazing!” Juergens told me.David Baker, Professor in Biochemistry and Director of the Institute for Protein Design at UWSome of the applications of RFdiffusion, documented with experimental validation in the Nature article, include design of symmetric oligomers for vaccine platforms and delivery vehicles and generation of high-affinity binders for therapeutics.1 In another project, the Baker laboratory has applied RFdiffusion to design proteins that bind peptide hormones—established biomarkers for clinical care and biomedical research—for diagnostic applications.2Box 1. Let's Generate interactionsGenerate: Biomedicines is a Boston-based therapeutics company at the intersection of machine learning, biological engineering, and medicine. Molly Gibson, cofounder and chief strategy and innovation officer, says the company focuses on designing protein–protein interactions for therapeutic applications.“If you think about biologics, the most important function that a protein takes is creating very specific and potent binding with its target. This could be things like an antibody where we know exactly where we want to neutralize a target, or where we want to agonize and potentiate function,” said Gibson.One project at Generate: Biomedicines has worked to create a broadly neutralizing antibody for coronavirus. Gibson notes that the virus activel","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Technical Advances and Applications of Spatial Transcriptomics 空间转录组学的技术进展与应用
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.0032
Guohao Liang, Hong Yin, Fangyuan Ding
Transcriptomics is one of the largest areas of research in biological sciences. Aside from RNA expression levels, the significance of RNA spatial context has also been unveiled in the recent decade, playing a critical role in diverse biological processes, from subcellular kinetic regulation to cell communication, from tissue architecture to tumor microenvironment, and more. To systematically unravel the positional patterns of RNA molecules across subcellular, cellular, and tissue levels, spatial transcriptomics techniques have emerged and rapidly became an irreplaceable tool set. Herein, we review and compare current spatial transcriptomics techniques on their methods, advantages, and limitations, as well as applications across a wide range of biological investigations. This review serves as a comprehensive guide to spatial transcriptomics for researchers interested in adopting this powerful suite of technologies.
转录组学是生物科学中最大的研究领域之一。除了RNA表达水平,近十年来,RNA空间环境的重要性也被揭示出来,在从亚细胞动力学调节到细胞通讯,从组织结构到肿瘤微环境等多种生物过程中发挥着关键作用。为了系统地揭示RNA分子在亚细胞、细胞和组织水平上的位置模式,空间转录组学技术已经出现并迅速成为一种不可替代的工具集。在此,我们回顾和比较了当前的空间转录组学技术的方法、优点和局限性,以及在广泛的生物学研究中的应用。这篇综述为有兴趣采用这一强大技术套件的研究人员提供了空间转录组学的综合指南。
{"title":"Technical Advances and Applications of Spatial Transcriptomics","authors":"Guohao Liang, Hong Yin, Fangyuan Ding","doi":"10.1089/genbio.2023.0032","DOIUrl":"https://doi.org/10.1089/genbio.2023.0032","url":null,"abstract":"Transcriptomics is one of the largest areas of research in biological sciences. Aside from RNA expression levels, the significance of RNA spatial context has also been unveiled in the recent decade, playing a critical role in diverse biological processes, from subcellular kinetic regulation to cell communication, from tissue architecture to tumor microenvironment, and more. To systematically unravel the positional patterns of RNA molecules across subcellular, cellular, and tissue levels, spatial transcriptomics techniques have emerged and rapidly became an irreplaceable tool set. Herein, we review and compare current spatial transcriptomics techniques on their methods, advantages, and limitations, as well as applications across a wide range of biological investigations. This review serves as a comprehensive guide to spatial transcriptomics for researchers interested in adopting this powerful suite of technologies.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135811698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Alzheimer's Disease Related Neuropathology on Local Microenvironment Gene Expression in the Human Inferior Temporal Cortex 阿尔茨海默病相关神经病理对人类下颞叶皮层局部微环境基因表达的影响
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.0019
Sang Ho Kwon, Sowmya Parthiban, Madhavi Tippani, Heena R. Divecha, Nicholas J. Eagles, Jashandeep S. Lobana, Stephen R. Williams, Michelle Mak, Rahul A. Bharadwaj, Joel E. Kleinman, Thomas M. Hyde, Stephanie C. Page, Stephanie C. Hicks, Keri Martinowich, Kristen R. Maynard, Leonardo Collado-Torres
Neuropathological lesions in the brains of individuals affected with neurodegenerative disorders are hypothesized to trigger molecular and cellular processes that disturb the homeostasis of local microenvironments. Here, we applied the 10x Genomics Visium Spatial Proteogenomics (Visium-SPG) platform, which couples spatial gene expression with immunofluorescence (IF) protein co-detection, to evaluate its ability to quantify changes in spatial gene expression with respect to amyloid-beta (Aβ) and hyperphosphorylated tau (pTau) pathology in post-mortem human brain tissue from individuals with Alzheimer's disease (AD). We identified transcriptomic signatures associated with proximity to Aβ in the human inferior temporal cortex during late-stage AD, which we further investigated at cellular resolution with combined IF and single-molecule fluorescent in situ hybridization (smFISH). The study provides a data analysis workflow for Visium-SPG, and the data represent a proof-of-principle for the power of multi-omic profiling in identifying changes in molecular dynamics that are spatially associated with pathology in the human brain. We provide the scientific community with web-based, interactive resources to access the datasets of the spatially resolved AD-related transcriptomes.
神经退行性疾病患者大脑中的神经病理病变被认为会触发扰乱局部微环境稳态的分子和细胞过程。在这里,我们应用10x Genomics Visium Spatial Proteogenomics (Visium- spg)平台,该平台将空间基因表达与免疫荧光(IF)蛋白联合检测相结合,以评估其量化阿尔茨海默病(AD)患者死后脑组织中淀粉样蛋白- β (Aβ)和过度磷酸化tau (pTau)病理的空间基因表达变化的能力。我们在晚期阿尔茨海默病的人类下颞叶皮层中发现了与Aβ接近相关的转录组特征,并利用IF和单分子荧光原位杂交(smFISH)在细胞分辨率上进一步研究了这些特征。该研究为Visium-SPG提供了一个数据分析工作流程,这些数据代表了多组学分析在识别与人类大脑病理在空间上相关的分子动力学变化方面的能力的原理证明。我们为科学界提供基于网络的交互式资源,以访问空间解析ad相关转录组的数据集。
{"title":"Influence of Alzheimer's Disease Related Neuropathology on Local Microenvironment Gene Expression in the Human Inferior Temporal Cortex","authors":"Sang Ho Kwon, Sowmya Parthiban, Madhavi Tippani, Heena R. Divecha, Nicholas J. Eagles, Jashandeep S. Lobana, Stephen R. Williams, Michelle Mak, Rahul A. Bharadwaj, Joel E. Kleinman, Thomas M. Hyde, Stephanie C. Page, Stephanie C. Hicks, Keri Martinowich, Kristen R. Maynard, Leonardo Collado-Torres","doi":"10.1089/genbio.2023.0019","DOIUrl":"https://doi.org/10.1089/genbio.2023.0019","url":null,"abstract":"Neuropathological lesions in the brains of individuals affected with neurodegenerative disorders are hypothesized to trigger molecular and cellular processes that disturb the homeostasis of local microenvironments. Here, we applied the 10x Genomics Visium Spatial Proteogenomics (Visium-SPG) platform, which couples spatial gene expression with immunofluorescence (IF) protein co-detection, to evaluate its ability to quantify changes in spatial gene expression with respect to amyloid-beta (Aβ) and hyperphosphorylated tau (pTau) pathology in post-mortem human brain tissue from individuals with Alzheimer's disease (AD). We identified transcriptomic signatures associated with proximity to Aβ in the human inferior temporal cortex during late-stage AD, which we further investigated at cellular resolution with combined IF and single-molecule fluorescent in situ hybridization (smFISH). The study provides a data analysis workflow for Visium-SPG, and the data represent a proof-of-principle for the power of multi-omic profiling in identifying changes in molecular dynamics that are spatially associated with pathology in the human brain. We provide the scientific community with web-based, interactive resources to access the datasets of the spatially resolved AD-related transcriptomes.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"135 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue Spatial Omics Dissects Organoid Biomimicry 组织空间组学解剖类器官仿生学
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.0039
Nicholas Zhang, Denis Ohlstrom, Sicheng Pang, Nivik Sanjay Bharadwaj, Aaron Qu, Hans Grossniklaus, Ahmet F. Coskun
Recently, organoids, or three-dimensional (3D) cellular assemblies, have demonstrated promise as viable models for organ development and disease study. In contrast to challenging preclinical models, organoids are advantageous due to rapid fabrication times and greater patient specificity. The advent of spatial transcriptomics and single cell technologies has also enhanced the characterization of intraorganoid heterogeneity, thus highlighting 3D cell signaling and organ development at micro scales. In this study, we describe ongoing and future directions in spatial omics integrated with various imaging technologies for two-dimensional/3D organoid characterization. Utilizing both retinal organoids and native retinal tissues, we undertook an analysis to deconstruct the cellular compositions and structural attributes of their respective cell layers. Our findings indicate that the spatial organization of cell phenotypes is similar between organoids and native retinal tissue. However, it is noteworthy that native retinal tissue possesses thinner yet distinctly separated cell layers compared with the organoids.
最近,类器官或三维(3D)细胞组件已被证明有望作为器官发育和疾病研究的可行模型。与具有挑战性的临床前模型相比,类器官由于制造时间短和更大的患者特异性而具有优势。空间转录组学和单细胞技术的出现也增强了类器官内异质性的表征,从而在微观尺度上突出了三维细胞信号传导和器官发育。在这项研究中,我们描述了空间组学与各种二维/三维类器官表征成像技术相结合的当前和未来方向。利用视网膜类器官和天然视网膜组织,我们进行了分析,解构了它们各自细胞层的细胞组成和结构属性。我们的研究结果表明,细胞表型的空间组织在类器官和天然视网膜组织之间是相似的。然而,值得注意的是,与类器官相比,天然视网膜组织具有更薄但明显分离的细胞层。
{"title":"Tissue Spatial Omics Dissects Organoid Biomimicry","authors":"Nicholas Zhang, Denis Ohlstrom, Sicheng Pang, Nivik Sanjay Bharadwaj, Aaron Qu, Hans Grossniklaus, Ahmet F. Coskun","doi":"10.1089/genbio.2023.0039","DOIUrl":"https://doi.org/10.1089/genbio.2023.0039","url":null,"abstract":"Recently, organoids, or three-dimensional (3D) cellular assemblies, have demonstrated promise as viable models for organ development and disease study. In contrast to challenging preclinical models, organoids are advantageous due to rapid fabrication times and greater patient specificity. The advent of spatial transcriptomics and single cell technologies has also enhanced the characterization of intraorganoid heterogeneity, thus highlighting 3D cell signaling and organ development at micro scales. In this study, we describe ongoing and future directions in spatial omics integrated with various imaging technologies for two-dimensional/3D organoid characterization. Utilizing both retinal organoids and native retinal tissues, we undertook an analysis to deconstruct the cellular compositions and structural attributes of their respective cell layers. Our findings indicate that the spatial organization of cell phenotypes is similar between organoids and native retinal tissue. However, it is noteworthy that native retinal tissue possesses thinner yet distinctly separated cell layers compared with the organoids.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135810501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Delivery 空间交付
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.29117.editorial
Rong Fan, Fay Lin
GEN BiotechnologyVol. 2, No. 5 Guest Editorial: Spatial OmicsFree AccessSpatial DeliveryRong Fan and Fay LinRong Fan*Address correspondence to: Rong Fan E-mail Address: [email protected]Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.Guest Editor, GEN Biotechnology.Search for more papers by this author and Fay Lin*Address correspondence to: Fay Lin E-mail Address: [email protected]Senior Editor, GEN Biotechnology.Search for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29117.editorialAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Spatial omics enables the profiling of a variety of biomolecules with high spatial resolution across the central dogma of molecular biology directly in the natural tissue context. It has emerged as a powerful tool to analyze clinical samples for human biology research, therapeutic discovery, and translational medicine. As one of the fastest growing areas in the biotech industry, spatial omics is poised to drive the next biology revolution with broad impact across life science and medicine.In this debut special issue of GEN Biotechnology, we are delighted to feature a collection of spatial omics perspectives, reviews, and original research articles capturing the breadth of the field from cancer research to the newest advances in imaging methods.Lift OffThe historical roots of visualizing biological function date back 300 years with the invention of the compound microscope by Robert Hooke. Individual cells were seen for the first time in a plant leaf, and researchers could already visualize highly heterogeneous cell morphology implicated in distinct functions in various tissue regions. While the modern era of molecular and cell biology associates morphological heterogeneity with differential gene expression, it was the rise of single-cell genomewide gene expression measured by next-generation sequencing (NGS) platforms that allowed for detailed quantification of cellular heterogeneity in gene expression. Further breakthroughs in massively parallel single-cell sequencing via cellular barcoding enabled the gene expression profiling of thousands of single cells, thereby dissecting cell types and states in large cell populations. But despite these major breakthroughs in single-cell omics, analyzing cellular heterogeneity in the tissue context remained a challenge.Over the past decade, we have witnessed the exponential growth of an emerging field—spatial omics. The goal is to map genomewide biomolecular information pixel-by-pixel in undissociated tissue to yield a holistic view of cell type, state, and function in the native tissue context. Broadly speaking, there are two avenues to achieve this goal—one based on imaging, and the other based on NGS.Imaging-based spatial omicsAlthough single-molecule imaging and fluorescence
创BiotechnologyVol。2、第5期客座编辑:Spatial OmicsFree AccessSpatial delivery范荣、林菲范荣*通讯地址:范荣E-mail Address: [email protected]美国康涅狄格州纽黑文耶鲁大学生物医学工程系。GEN生物技术客座编辑。*通讯地址:Fay Lin E-mail Address: [email protected] GEN Biotechnology高级编辑。搜索本文作者的更多论文发表在线:2023年10月16日https://doi.org/10.1089/genbio.2023.29117.editorialAboutSectionsPDF/EPUB权限和引文spermissionsdownload引文strack引文添加到收藏返回出版物共享分享在facebook上推特链接InRedditEmail空间组学使各种生物分子的分析具有高空间分辨率跨越分子生物学的中心法则直接在自然组织的背景下。它已成为分析人类生物学研究、治疗发现和转化医学的临床样本的强大工具。空间组学是生物技术产业中发展最快的领域之一,它将在生命科学和医学领域产生广泛的影响,推动下一次生物学革命。在《GEN生物技术》的首期特刊中,我们很高兴为您呈现一系列空间组学的观点、评论和原创研究文章,这些文章涵盖了从癌症研究到成像方法的最新进展的广泛领域。可视化生物功能的历史根源可以追溯到300年前罗伯特·胡克发明的复合显微镜。单个细胞首次在植物叶片中被观察到,研究人员已经可以看到在不同组织区域中涉及不同功能的高度异质的细胞形态。虽然分子和细胞生物学的现代时代将形态异质性与差异基因表达联系起来,但通过下一代测序(NGS)平台测量单细胞全基因组基因表达的兴起,允许详细量化基因表达的细胞异质性。通过细胞条形码技术在大规模平行单细胞测序方面的进一步突破,使数千个单细胞的基因表达谱得以实现,从而在大细胞群体中剖析细胞类型和状态。但是,尽管单细胞组学取得了这些重大突破,但在组织背景下分析细胞异质性仍然是一个挑战。在过去的十年中,我们见证了空间组学这一新兴领域的指数级增长。目标是在未解离组织中逐像素绘制全基因组生物分子信息,以产生细胞类型,状态和功能在天然组织背景下的整体视图。一般来说,实现这一目标有两种途径,一种是基于成像,另一种是基于NGS。基于成像的空间组学虽然单分子成像和荧光原位杂交(FISH)是成熟的技术,但如何将它们扩展到全基因组表达成像还不是很直观。结合FISH探针是概念上的突破,正如多重误差-鲁棒性荧光原位杂交(MERFISH)和序列FISH所证明的那样,重复杂交和成像最终导致单分子FISH全基因组空间基因表达谱。单细胞分辨率的空间表型分析已成为分析肿瘤和肿瘤微环境(TME)的重要手段。虽然大多数高复杂性空间研究都集中在转录组学分析上(见第384页的评论文章),但Akoya Biosciences的研究人员提出了一个单细胞蛋白质空间分析框架,用于分析头颈部鳞状细胞癌,这是第七大常见癌症(见第419页)。作者指出,这种蛋白质组在体内平衡和疾病中的空间定位为识别新的生物标志物、疾病分层和理解可变临床反应的基础提供了应用。(有关空间组学和TME最新进展的更多新闻报道,请参阅Sachin Rawat在第342页的新闻特写。)Joakim Lundeberg及其同事于2016年发表在《科学》杂志上的一篇具有里程碑意义的论文展示了使用DNA微阵列(斑点大小为100 μm)来捕获从组织切片中释放的mRNA分子,该组织切片被放置在载片上并经渗透使mRNA分子逃逸。然后,载玻片上的逆转录生成空间条形码cDNA,可以使用配对端NGS进行汇总、扩增和分析,以逐点读取组织切片中空间分辨的无偏倚全基因组基因表达。该技术于2019年被10 ×基因组公司商业化,成为Visium空间平台,在各种生物和生物医学领域得到了迅速而广泛的应用。 这期的封面由才华横溢的艺术家monoo Yee精心设计,以研究最多的人体器官之一-大脑为特色,并说明空间组学如何为了解阿尔茨海默病(AD)等神经退行性疾病提供了强大的工具。在第399页,来自约翰霍普金斯大学的研究人员提出了一个路线图,用于识别AD患者死后脑组织中与淀粉样蛋白病理相关的空间分解转录特征。作者指出,他们的数据分析工作流程,使用10 × Visium空间蛋白质基因组学平台,代表了多组学分析在与脑病理相关的分子动力学空间表征中的力量的原理证明。在过去的三年中,用于空间转录组学分析的条形码固相RNA捕获的一般基础方法已经进一步改进,以展示亚细胞空间基因表达定位(例如,SeqScope, Stereo-seq和Pixel-seq)。尽管如此,它们都遵循伦德伯格提出的“用于mRNA捕获和空间转录组学的条形码固体表面”的基本原则。自2019年以来,出现了一种技术上截然不同的空间组学方法,一种基于空间定义的DNA条形码递送到固定和渗透组织中,在组织中执行确定性条形码以进行空间组学测序(DBiT-seq)。该方法具有高度的通用性,不仅首次展示了空间多组学测序(转录组和蛋白质),而且还进一步发展为空间分辨表观基因组测序(即空间- atac -seq和空间- cut&tag)以及空间表观基因组-转录组共测序。这在空间生物学领域开辟了一个全新的领域。鉴于基因表达谱在确定细胞类型或状态方面的重要作用,空间转录组学在很大程度上与空间基因表达图谱同义。但在空间基因表达之外出现的东西代表了这一领域最令人兴奋的前沿。如上所述,DBiT具有独特的多功能性,为空间表观基因组学开辟了一个全新的方向。最近,MERFISH等基于图像的方法也证明了与特定组蛋白标记相关的表观遗传位点的靶向检测。空间代谢组学是另一个分支,它准备提供与饮食、衰老和疾病有关的细胞功能的不可或缺的信息。质谱成像允许以无偏倚的方式对代谢物(如脂质组)进行近单细胞分辨率分析,以区分不同的脂质种类。包括红外和受激拉曼散射(SRS)成像在内的光学化学成像的独特之处在于,它可以以前所未有的亚细胞甚至纳米尺度的分辨率检测选定的代谢物,而且它是无损的和无标签的。在435页上,杜克大学的研究人员提出了一种无标签反射模式高光谱光声显微镜(RHS-PAM)系统,以克服传统高光谱成像方法的局限性,传统高光谱成像方法主要依赖于荧光特征,限制了它们在非荧光样品中的应用。该报告说明了RHS-PAM在一系列模式生物(包括秀丽隐杆线虫、斑马鱼和小鼠)中利用核酸、蛋白质、血红蛋白、黑色素和脂质的光学吸收对比的能力。RHS-PAM可以为临床医生提供一种更无创的方法来获得细胞水平的空间组学,从而为诊断和治疗打开新的大门。回到RNA分子的空间作图,一个RNA分子的生命是丰富而动态的,远远超出了空间基因表达所能揭示的能力。因此,研究人员仍在努力研究如何绘制RNA分子在其生命周期的不同阶段,它们的剪接变异,它们与蛋白质的相互作用,以及非编码RNA的调节机制——这些都是细胞和组织生物学中的重要问题。最后,我们想知道如何绘制生物分子和细胞的时间动态,以及如何在基因组尺度上绘制大型3D组织结构。这些是空间组学的下一个前沿领域,可能在未来几年出现。关
{"title":"Spatial Delivery","authors":"Rong Fan, Fay Lin","doi":"10.1089/genbio.2023.29117.editorial","DOIUrl":"https://doi.org/10.1089/genbio.2023.29117.editorial","url":null,"abstract":"GEN BiotechnologyVol. 2, No. 5 Guest Editorial: Spatial OmicsFree AccessSpatial DeliveryRong Fan and Fay LinRong Fan*Address correspondence to: Rong Fan E-mail Address: [email protected]Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.Guest Editor, GEN Biotechnology.Search for more papers by this author and Fay Lin*Address correspondence to: Fay Lin E-mail Address: [email protected]Senior Editor, GEN Biotechnology.Search for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29117.editorialAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Spatial omics enables the profiling of a variety of biomolecules with high spatial resolution across the central dogma of molecular biology directly in the natural tissue context. It has emerged as a powerful tool to analyze clinical samples for human biology research, therapeutic discovery, and translational medicine. As one of the fastest growing areas in the biotech industry, spatial omics is poised to drive the next biology revolution with broad impact across life science and medicine.In this debut special issue of GEN Biotechnology, we are delighted to feature a collection of spatial omics perspectives, reviews, and original research articles capturing the breadth of the field from cancer research to the newest advances in imaging methods.Lift OffThe historical roots of visualizing biological function date back 300 years with the invention of the compound microscope by Robert Hooke. Individual cells were seen for the first time in a plant leaf, and researchers could already visualize highly heterogeneous cell morphology implicated in distinct functions in various tissue regions. While the modern era of molecular and cell biology associates morphological heterogeneity with differential gene expression, it was the rise of single-cell genomewide gene expression measured by next-generation sequencing (NGS) platforms that allowed for detailed quantification of cellular heterogeneity in gene expression. Further breakthroughs in massively parallel single-cell sequencing via cellular barcoding enabled the gene expression profiling of thousands of single cells, thereby dissecting cell types and states in large cell populations. But despite these major breakthroughs in single-cell omics, analyzing cellular heterogeneity in the tissue context remained a challenge.Over the past decade, we have witnessed the exponential growth of an emerging field—spatial omics. The goal is to map genomewide biomolecular information pixel-by-pixel in undissociated tissue to yield a holistic view of cell type, state, and function in the native tissue context. Broadly speaking, there are two avenues to achieve this goal—one based on imaging, and the other based on NGS.Imaging-based spatial omicsAlthough single-molecule imaging and fluorescence ","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135811665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kallyope Is Digesting Gut–Brain Biology into Medicines Kallyope正在将肠道-大脑生物学转化为药物
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.29116.jgr
Jonathan D. Grinstein
GEN BiotechnologyVol. 2, No. 5 News FeaturesFree AccessKallyope Is Digesting Gut–Brain Biology into MedicinesJonathan D. GrinsteinJonathan D. GrinsteinE-mail Address: [email protected]Senior Editor, GEN Media Group.Search for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29116.jgrAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Founded by Columbia University stalwarts Charles Zuker, Richard Axel, and Tom Maniatis, the New York City company is advancing a portfolio of oral small-molecule therapies across metabolism, gastrointestinal disease, and neurological disorders.Charles Zuker, Professor of Biochemistry & Molecular Biophysics and a Professor of Neuroscience at Columbia UniversityCharles Zuker had been studying taste for decades when his lab performed an experiment knocking out the receptor for sweetness in mice to test whether it would be able to distinguish sugar water from plain old water.At first, the mice lacking sweet receptors drink equal amounts of each type of water, whereas a wild-type mouse soon figures out that one of the two is sugar-laden and consequently favor the sweet one. But return 2 days later, the mice are drinking exclusively from the sugar-rich water, even if they lack the receptor for sweetness.1“We figured that there has to be some post-ingestive effect that's triggering this preference. We discovered that this maniacal desire to consume sugar—not sweet, but sugar in particular—was driven by the activation of the gut-brain circuit,” said Zuker when describing the discovery that was the basis for his a-ha moment.“That led to the idea that, my goodness, if activating the circuit can so dramatically transform an animal's behavior, then maybe accessing the gut-brain circuit could also be used to change physiology, metabolism, and so forth,” said Zuker, who is a Professor of Biochemistry and Molecular Biophysics and a Professor of Neuroscience at Columbia University and a Howard Hughes Medical Institute Investigator (Box 1).Box 1. The gut–brain axis: a critical conduit for neural signals informing the brain of the body's metabolic and physiologic stateSurvival requires the integration of external information from senses such as sight, smell, sound, touch, and taste as well as internal sensory cues from the digestive tract.2 To guarantee proper regulation of body physiological processes and behaviors and to promote overall health, informational elements, such as ingested food, energy homeostasis, inflammatory signals, and digestive progress, need to be monitored from the gut.3 The intricate network of neural, sympathetic, endocrine, immune, humoral, and gut microbiota connections—also known as the “brain–gut axis”—controls gastrointestinal homeostasis and connects the brain's emotional and cognitive centers to the gut's functions. This network enables two-wa
创BiotechnologyVol。2、5号新闻特稿免费访问kallyope正在将肠道-大脑生物学转化为医学乔纳森·d·格林斯坦乔纳森·d·格林斯坦电子邮件地址:[email protected] GEN传媒集团高级编辑。搜索本文作者的更多论文出版在线:2023年10月16日https://doi.org/10.1089/genbio.2023.29116.jgrAboutSectionsPDF/EPUB权限和引文目录下载引文目录添加收藏返回出版分享分享在facebook上推特链接在redditemail这家位于纽约的公司由哥伦比亚大学的忠实支持者Charles Zuker, Richard Axel和Tom Maniatis创立,正在推进一种跨代谢的口服小分子疗法组合。胃肠道疾病和神经系统疾病查尔斯·祖克,哥伦比亚大学生物化学和分子生物物理学教授,神经科学教授查尔斯·祖克几十年来一直在研究味觉,他的实验室进行了一项实验,敲除了老鼠的甜味受体,以测试它是否能够区分糖水和普通的老水。起初,缺乏甜味受体的老鼠会喝等量的两种水,而野生型老鼠很快就能分辨出其中一种是含糖的,因此更喜欢甜味的那一种。但两天后,即使小鼠缺乏甜味感受器,它们也只喝富含糖的水。“我们认为一定有一些摄取后的影响触发了这种偏好。我们发现,这种疯狂的吃糖的欲望——不是甜的,尤其是糖——是由肠道-大脑回路的激活驱动的,”祖克在描述这一发现时说,这是他顿悟时刻的基础。祖克是哥伦比亚大学生物化学和分子生物物理学教授、神经科学教授、霍华德休斯医学研究所研究员,他说:“这导致了这样一个想法,我的天哪,如果激活这个回路可以如此戏剧性地改变动物的行为,那么进入肠脑回路也可以用来改变生理、新陈代谢等等。”肠脑轴:神经信号向大脑传递身体代谢和生理状态的关键通道。生存需要整合来自视觉、嗅觉、听觉、触觉和味觉等感官的外部信息,以及来自消化道的内部感官信号为了保证身体生理过程和行为的适当调节,促进整体健康,需要从肠道监测信息元素,如摄入的食物、能量稳态、炎症信号和消化过程神经、交感神经、内分泌、免疫、体液和肠道微生物群连接的复杂网络——也被称为“脑肠轴”——控制胃肠道稳态,并将大脑的情感和认知中心与肠道功能联系起来。这个网络使大脑和胃肠道之间的双向通信成为可能,胃肠道是5亿个神经元、100多万亿个微生物和大多数人体免疫细胞的家园脑肠轴作为胃肠道和精神疾病(如炎症性肠病(IBD),抑郁症,6和创伤后应激障碍)的治疗靶点正变得越来越重要。排列在胃肠道上的被称为肠内分泌细胞的特殊上皮细胞总是监测食物的内容物,胃肠道壁内的感觉神经末梢、肠神经元和肠内分泌细胞检测与摄入和消化有关的机械变化半自主的肠神经系统有时被称为“第二大脑”,具有多种作用,包括胃肠道的运动,改变局部血液流动,修改营养处理,并与肠道的免疫和内分泌系统相互作用。9,10有趣的是,在早期的研究中,人们注意到许多神经系统疾病与人类患者的消化问题之间存在明确的联系,并广泛证明了这一点,11表明肠-脑轴不仅对食欲控制和肠道免疫很重要,而且对大脑认知功能也很重要。迷走神经是连接胃肠系统和中枢神经系统的重要神经中枢,是脑肠轴的重要组成部分,在能量平衡、食物摄入、体液平衡、消化、免疫反应、奖赏、记忆和认知等多种功能中起着重要作用迷走神经还在营养和精神疾病(包括情绪和焦虑症)以及炎症性疾病(如炎症性肠病)之间起着重要的联系作用。 通过肠道进入大脑是革命性的,因为它可以绕过一些最大的挑战,如脱靶效应、大脑可达性和血脑屏障。更重要的是,这种药理操作可以系统地影响人体生物学,改变生理和代谢。但是了解肠脑轴——肠道和大脑之间的双向交流——提供的不仅仅是与大脑的直接联系。它还为大脑、肠道和身体之间的交流提供了接入点,这可以影响各种硬连线的系统电路。这些概念导致Zuker发现了Kallyope,智利神经遗传学家通过瞄准肠-脑轴的自然回路来改变药物范例。“当我们想到药物发现时,我们通常会想到分子、蛋白质或受体,”Zuker说。“这些都是至关重要的参与者,但我们试图改变的是自然回路发出信号的方式,这大大拓宽了我们找到合适目标的方式,因为现在我们必须调整的不是这个有缺陷的蛋白质或这个分子。”我们的目标是:我们能否改变交流的方式,让大脑做出适当的调整?这是一个非凡的机会,通过简单地利用自然生物学来改变身体生理、新陈代谢、免疫和器官功能,而不必真的把一个分子送入大脑。”2015年,在Lux Capital的支持下,Zuker找到了他在哥伦比亚大学的“两位最亲密的朋友和同事”,诺贝尔奖得主Richard Axel和著名分子生物学家Tom Maniatis,以这个以肠脑轴为平台的前提下,形成了Kallyope。迄今为止,kallyope(在希腊语中意味着美丽的声音,也是希腊史诗和口才女神的名字)已经筹集了近4.8亿美元,包括2020年3月的1.12亿美元C轮融资和2022年2月的2.36亿美元D轮融资,并在诊所有两个牵头项目。大约在祖克推出Kallyope的时候,南希·索恩伯里(Nancy Thornberry)离开了她在默克公司的长期职位,在那里她是糖尿病和内分泌学研究的负责人。她并不一定要找一个手术方面的工作,但祖克利用肠脑轴来治疗未满足需求的疾病区域(包括各种神经系统疾病)的概念吸引了她。索恩伯里是Kallyope的创始首席执行官兼研发主席。反过来,Thornberry从默克公司吸引了一批人才,包括现任首席执行官兼总裁Jay Galeota,他在默克公司工作了28年,以及Ann Weber,她为40多个开发候选药物做出了贡献,包括治疗2型糖尿病(T2D)的JANUVIA(西格列汀)。在他们的监督下,Kallyope正在利用许多在系统神经科学研究中出现的先进技术,对肠-脑轴基础的神经和激素回路进行更全面的分子理解,并确定新的治疗方法。这个平台被称为Klarity。Kallyope平台的核心技术之一是单细胞测序,这是该公司2015年成立时的一项新技术。Thornberry说,在过去的8年里,Kallyope对小鼠和人类肠道-脑轴的每个主要组成部分的每种特化细胞类型都有了全面的了解,包括肠道上皮、肠神经系统和免疫细胞。“这是一次非常英勇的努力,我们可能是唯一拥有这些全面地图集的人,”索恩伯里说。“这让你开始思考这些特殊的细胞类型是做什么的,以及它们是如何在一个回路中工作来调节生理的。”Kallyope还利用电路映射技术,如光遗传学、化学遗传学、解剖追踪和计算映射来描绘神经回路的功能。Kallyope平台的另一个关键部分是肠道类器官,这在公司成立时也是一项新技术,这促使汉斯·克莱弗斯(Hans Clevers)加入了科学顾问委员会。索恩伯里说,他们已经能够创建一个可能是肠道类器官行业领先的平台,来观察激素分泌和肠道屏障功能。他说:“Kallyope取得的成就是取得了基本的、基本的发现,这些发现广泛地定义了身体和大脑之间的整个通信线路,并将它们分解成基本的组成部分,以一种他们现在可以探测或排列的方式,我认为这是非常令人兴奋的。”治疗管道在Klarity平台的背后,Kallyope已经建立了两个临床试验项目的投资组合,还有几个项目即将进行。
{"title":"Kallyope Is Digesting Gut–Brain Biology into Medicines","authors":"Jonathan D. Grinstein","doi":"10.1089/genbio.2023.29116.jgr","DOIUrl":"https://doi.org/10.1089/genbio.2023.29116.jgr","url":null,"abstract":"GEN BiotechnologyVol. 2, No. 5 News FeaturesFree AccessKallyope Is Digesting Gut–Brain Biology into MedicinesJonathan D. GrinsteinJonathan D. GrinsteinE-mail Address: [email protected]Senior Editor, GEN Media Group.Search for more papers by this authorPublished Online:16 Oct 2023https://doi.org/10.1089/genbio.2023.29116.jgrAboutSectionsPDF/EPUB Permissions & CitationsPermissionsDownload CitationsTrack CitationsAdd to favorites Back To Publication ShareShare onFacebookTwitterLinked InRedditEmail Founded by Columbia University stalwarts Charles Zuker, Richard Axel, and Tom Maniatis, the New York City company is advancing a portfolio of oral small-molecule therapies across metabolism, gastrointestinal disease, and neurological disorders.Charles Zuker, Professor of Biochemistry & Molecular Biophysics and a Professor of Neuroscience at Columbia UniversityCharles Zuker had been studying taste for decades when his lab performed an experiment knocking out the receptor for sweetness in mice to test whether it would be able to distinguish sugar water from plain old water.At first, the mice lacking sweet receptors drink equal amounts of each type of water, whereas a wild-type mouse soon figures out that one of the two is sugar-laden and consequently favor the sweet one. But return 2 days later, the mice are drinking exclusively from the sugar-rich water, even if they lack the receptor for sweetness.1“We figured that there has to be some post-ingestive effect that's triggering this preference. We discovered that this maniacal desire to consume sugar—not sweet, but sugar in particular—was driven by the activation of the gut-brain circuit,” said Zuker when describing the discovery that was the basis for his a-ha moment.“That led to the idea that, my goodness, if activating the circuit can so dramatically transform an animal's behavior, then maybe accessing the gut-brain circuit could also be used to change physiology, metabolism, and so forth,” said Zuker, who is a Professor of Biochemistry and Molecular Biophysics and a Professor of Neuroscience at Columbia University and a Howard Hughes Medical Institute Investigator (Box 1).Box 1. The gut–brain axis: a critical conduit for neural signals informing the brain of the body's metabolic and physiologic stateSurvival requires the integration of external information from senses such as sight, smell, sound, touch, and taste as well as internal sensory cues from the digestive tract.2 To guarantee proper regulation of body physiological processes and behaviors and to promote overall health, informational elements, such as ingested food, energy homeostasis, inflammatory signals, and digestive progress, need to be monitored from the gut.3 The intricate network of neural, sympathetic, endocrine, immune, humoral, and gut microbiota connections—also known as the “brain–gut axis”—controls gastrointestinal homeostasis and connects the brain's emotional and cognitive centers to the gut's functions. This network enables two-wa","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135811830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing Treatments for Rare Diseases on a Shoestring 小成本开发罕见疾病的治疗方法
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.0033
Ana C. Puhl, Sarah Negri, Maggie A.Z. Hupcey, Sean Ekins
There are thousands of rare genetic diseases lacking an approved treatment, many of which are life limiting to children. Those caused by a missing protein may represent a target for protein replacement either by enzyme replacement therapy or by gene therapy. One of the many challenges working on these types of genetic diseases is the availability of funding, as these diseases typically affect very small number of patients. Here we offer a novel case study of our approach to developing a treatment for one such rare disease, which has not required venture capital, angel investment, or funding by foundations to date. We have instead pursued NIH small business grants to fund the early preclinical work performed by our academic collaborators and ourselves. Our approach to developing a treatment for a rare disease on a shoestring budget is unlike any of the alternative approaches to funding.
有数千种罕见的遗传疾病缺乏经批准的治疗方法,其中许多是儿童的生命限制。那些由缺失蛋白质引起的疾病可能是通过酶替代疗法或基因疗法替代蛋白质的目标。研究这类遗传病的诸多挑战之一是资金的可得性,因为这些疾病通常只影响极少数患者。在这里,我们提供了一个新的案例研究,说明我们开发一种治疗这种罕见疾病的方法,迄今为止,这种方法不需要风险资本、天使投资或基金会的资助。我们转而寻求NIH的小企业资助,以资助我们的学术合作者和我们自己进行的早期临床前工作。我们以有限的预算开发一种罕见疾病的治疗方法,与其他任何筹资方法都不同。
{"title":"Developing Treatments for Rare Diseases on a Shoestring","authors":"Ana C. Puhl, Sarah Negri, Maggie A.Z. Hupcey, Sean Ekins","doi":"10.1089/genbio.2023.0033","DOIUrl":"https://doi.org/10.1089/genbio.2023.0033","url":null,"abstract":"There are thousands of rare genetic diseases lacking an approved treatment, many of which are life limiting to children. Those caused by a missing protein may represent a target for protein replacement either by enzyme replacement therapy or by gene therapy. One of the many challenges working on these types of genetic diseases is the availability of funding, as these diseases typically affect very small number of patients. Here we offer a novel case study of our approach to developing a treatment for one such rare disease, which has not required venture capital, angel investment, or funding by foundations to date. We have instead pursued NIH small business grants to fund the early preclinical work performed by our academic collaborators and ourselves. Our approach to developing a treatment for a rare disease on a shoestring budget is unlike any of the alternative approaches to funding.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135273147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Ultraviolet to Near-Infrared: Label-Free Reflection-Mode Hyperspectral Photoacoustic Microscopy for Single-Cell Biochemical Mapping 从紫外到近红外:用于单细胞生化制图的无标签反射模式高光谱光声显微镜
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-01 DOI: 10.1089/genbio.2023.0035
Qiangzhou Rong, Carlos Taboada, Ángela del Águila, Ilaria Merutka, Nishad Jayasundara, Yushun Zeng, Wei Yang, Qifa Zhou, Junjie Yao
Hyperspectral imaging has emerged as a valuable technique for analyzing biological tissue compositions by probing intrinsic or exogenous biomolecules. However, conventional hyperspectral imaging methods predominantly rely on fluorescent signatures, limiting their application to nonfluorescent samples. To overcome this limitation, a label-free reflection-mode hyperspectral photoacoustic microscopy (RHS-PAM) system has been developed. RHS-PAM enables the imaging of thick biological samples with a wide range of intrinsic contrasts using excitation wavelengths ranging from ultraviolet to near infrared. RHS-PAM eliminates the need for tissue staining, and has achieved cellular-level spatial resolution and automatic image coregistrations at all wavelengths. Proof-of-concept applications of RHS-PAM have been demonstrated on various model organisms, including Caenorhabditis elegans, frog tadpole, zebrafish, and mouse. The technique has successfully imaged a wealth of structural and molecular features in these organisms, utilizing the optical absorption contrast of nucleic acids, proteins, hemoglobin, melanin, and lipids. The results highlight the capability of RHS-PAM to provide rich optical contrast, high spatial resolution, and an extended spectral range for label-free imaging. We believe that RHS-PAM represents a highly promising tool for single-cell biochemical mapping of diverse biological tissues.
高光谱成像已成为一种有价值的技术,用于分析生物组织组成的探测内在或外源的生物分子。然而,传统的高光谱成像方法主要依赖于荧光特征,限制了它们在非荧光样品中的应用。为了克服这一限制,开发了一种无标记反射模式高光谱光声显微镜(RHS-PAM)系统。RHS-PAM能够使用从紫外到近红外的激发波长对具有宽范围内禀对比度的厚生物样品进行成像。RHS-PAM消除了对组织染色的需要,并在所有波长下实现了细胞级空间分辨率和自动图像共配准。RHS-PAM的概念验证应用已经在多种模式生物上得到证实,包括秀丽隐杆线虫、青蛙蝌蚪、斑马鱼和小鼠。该技术利用核酸、蛋白质、血红蛋白、黑色素和脂质的光学吸收对比,成功地对这些生物的丰富结构和分子特征进行了成像。结果表明,RHS-PAM能够提供丰富的光学对比度、高空间分辨率和扩展的无标签成像光谱范围。我们相信RHS-PAM是一种非常有前途的工具,可以用于多种生物组织的单细胞生化制图。
{"title":"From Ultraviolet to Near-Infrared: Label-Free Reflection-Mode Hyperspectral Photoacoustic Microscopy for Single-Cell Biochemical Mapping","authors":"Qiangzhou Rong, Carlos Taboada, Ángela del Águila, Ilaria Merutka, Nishad Jayasundara, Yushun Zeng, Wei Yang, Qifa Zhou, Junjie Yao","doi":"10.1089/genbio.2023.0035","DOIUrl":"https://doi.org/10.1089/genbio.2023.0035","url":null,"abstract":"Hyperspectral imaging has emerged as a valuable technique for analyzing biological tissue compositions by probing intrinsic or exogenous biomolecules. However, conventional hyperspectral imaging methods predominantly rely on fluorescent signatures, limiting their application to nonfluorescent samples. To overcome this limitation, a label-free reflection-mode hyperspectral photoacoustic microscopy (RHS-PAM) system has been developed. RHS-PAM enables the imaging of thick biological samples with a wide range of intrinsic contrasts using excitation wavelengths ranging from ultraviolet to near infrared. RHS-PAM eliminates the need for tissue staining, and has achieved cellular-level spatial resolution and automatic image coregistrations at all wavelengths. Proof-of-concept applications of RHS-PAM have been demonstrated on various model organisms, including Caenorhabditis elegans, frog tadpole, zebrafish, and mouse. The technique has successfully imaged a wealth of structural and molecular features in these organisms, utilizing the optical absorption contrast of nucleic acids, proteins, hemoglobin, melanin, and lipids. The results highlight the capability of RHS-PAM to provide rich optical contrast, high spatial resolution, and an extended spectral range for label-free imaging. We believe that RHS-PAM represents a highly promising tool for single-cell biochemical mapping of diverse biological tissues.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
GEN biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1