首页 > 最新文献

Health data science最新文献

英文 中文
Building a Machine Learning-based Ambulance Dispatch Triage Model for Emergency Medical Services. 基于机器学习的急救医疗救护车调度分类模型的构建
Pub Date : 2023-03-15 eCollection Date: 2023-01-01 DOI: 10.34133/hds.0008
Han Wang, Qin Xiang Ng, Shalini Arulanandam, Colin Tan, Marcus E H Ong, Mengling Feng

Background: In charge of dispatching the ambulances, Emergency Medical Services (EMS) call center specialists often have difficulty deciding the acuity of a case given the information they can gather within a limited time. Although there are protocols to guide their decision-making, observed performance can still lack sensitivity and specificity. Machine learning models have been known to capture complex relationships that are subtle, and well-trained data models can yield accurate predictions in a split of a second.

Methods: In this study, we proposed a proof-of-concept approach to construct a machine learning model to better predict the acuity of emergency cases. We used more than 360,000 structured emergency call center records of cases received by the national emergency call center in Singapore from 2018 to 2020. Features were created using call records, and multiple machine learning models were trained.

Results: A Random Forest model achieved the best performance, reducing the over-triage rate by an absolute margin of 15% compared to the call center specialists while maintaining a similar level of under-triage rate.

Conclusions: The model has the potential to be deployed as a decision support tool for dispatchers alongside current protocols to optimize ambulance dispatch triage and the utilization of emergency ambulance resources.

背景:紧急医疗服务(EMS)呼叫中心的专家负责调度救护车,他们往往难以在有限的时间内收集到的信息来判断病例的严重程度。虽然有一些协议可以指导他们做出决策,但观察到的表现仍可能缺乏灵敏度和特异性。众所周知,机器学习模型可以捕捉微妙的复杂关系,训练有素的数据模型可以在一瞬间做出准确的预测:在本研究中,我们提出了一种概念验证方法来构建机器学习模型,以更好地预测急诊病例的严重程度。我们使用了新加坡国家紧急呼叫中心在 2018 年至 2020 年期间接收的超过 36 万条结构化紧急呼叫中心病例记录。我们利用呼叫记录创建了特征,并训练了多个机器学习模型:随机森林模型取得了最佳性能,与呼叫中心专家相比,过度分流率绝对值降低了 15%,同时保持了类似水平的分流不足率:该模型可作为调度员的决策支持工具,与当前协议一起优化救护车调度分流和急救资源的利用。
{"title":"Building a Machine Learning-based Ambulance Dispatch Triage Model for Emergency Medical Services.","authors":"Han Wang, Qin Xiang Ng, Shalini Arulanandam, Colin Tan, Marcus E H Ong, Mengling Feng","doi":"10.34133/hds.0008","DOIUrl":"10.34133/hds.0008","url":null,"abstract":"<p><strong>Background: </strong>In charge of dispatching the ambulances, Emergency Medical Services (EMS) call center specialists often have difficulty deciding the acuity of a case given the information they can gather within a limited time. Although there are protocols to guide their decision-making, observed performance can still lack sensitivity and specificity. Machine learning models have been known to capture complex relationships that are subtle, and well-trained data models can yield accurate predictions in a split of a second.</p><p><strong>Methods: </strong>In this study, we proposed a proof-of-concept approach to construct a machine learning model to better predict the acuity of emergency cases. We used more than 360,000 structured emergency call center records of cases received by the national emergency call center in Singapore from 2018 to 2020. Features were created using call records, and multiple machine learning models were trained.</p><p><strong>Results: </strong>A Random Forest model achieved the best performance, reducing the over-triage rate by an absolute margin of 15% compared to the call center specialists while maintaining a similar level of under-triage rate.</p><p><strong>Conclusions: </strong>The model has the potential to be deployed as a decision support tool for dispatchers alongside current protocols to optimize ambulance dispatch triage and the utilization of emergency ambulance resources.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":" ","pages":"0008"},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47990713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Applications of Artificial Intelligence in Digestive System Neoplasms: A Review. 人工智能在消化系统肿瘤中的应用综述
Pub Date : 2023-02-06 eCollection Date: 2023-01-01 DOI: 10.34133/hds.0005
Shuaitong Zhang, Wei Mu, Di Dong, Jingwei Wei, Mengjie Fang, Lizhi Shao, Yu Zhou, Bingxi He, Song Zhang, Zhenyu Liu, Jianhua Liu, Jie Tian

Importance: Digestive system neoplasms (DSNs) are the leading cause of cancer-related mortality with a 5-year survival rate of less than 20%. Subjective evaluation of medical images including endoscopic images, whole slide images, computed tomography images, and magnetic resonance images plays a vital role in the clinical practice of DSNs, but with limited performance and increased workload of radiologists or pathologists. The application of artificial intelligence (AI) in medical image analysis holds promise to augment the visual interpretation of medical images, which could not only automate the complicated evaluation process but also convert medical images into quantitative imaging features that associated with tumor heterogeneity.

Highlights: We briefly introduce the methodology of AI for medical image analysis and then review its clinical applications including clinical auxiliary diagnosis, assessment of treatment response, and prognosis prediction on 4 typical DSNs including esophageal cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.

Conclusion: AI technology has great potential in supporting the clinical diagnosis and treatment decision-making of DSNs. Several technical issues should be overcome before its application into clinical practice of DSNs.

重要性:消化系统肿瘤(DSN)是导致癌症相关死亡的主要原因,其 5 年生存率不到 20%。内窥镜图像、全切片图像、计算机断层扫描图像和磁共振图像等医学图像的主观评估在消化系统肿瘤的临床实践中发挥着重要作用,但其性能有限,且增加了放射科医生或病理科医生的工作量。人工智能(AI)在医学影像分析中的应用有望增强医学影像的可视化解读,它不仅能将复杂的评估过程自动化,还能将医学影像转化为与肿瘤异质性相关的定量成像特征:我们简要介绍了人工智能医学图像分析的方法,然后回顾了其在食管癌、胃癌、结直肠癌和肝细胞癌等 4 种典型 DSN 上的临床辅助诊断、治疗反应评估和预后预测等临床应用:结论:人工智能技术在支持DSN的临床诊断和治疗决策方面具有巨大潜力。结论:人工智能技术在支持 DSN 临床诊断和治疗决策方面具有巨大潜力,但在将其应用于 DSN 临床实践之前,还需要克服一些技术问题。
{"title":"The Applications of Artificial Intelligence in Digestive System Neoplasms: A Review.","authors":"Shuaitong Zhang, Wei Mu, Di Dong, Jingwei Wei, Mengjie Fang, Lizhi Shao, Yu Zhou, Bingxi He, Song Zhang, Zhenyu Liu, Jianhua Liu, Jie Tian","doi":"10.34133/hds.0005","DOIUrl":"10.34133/hds.0005","url":null,"abstract":"<p><strong>Importance: </strong>Digestive system neoplasms (DSNs) are the leading cause of cancer-related mortality with a 5-year survival rate of less than 20%. Subjective evaluation of medical images including endoscopic images, whole slide images, computed tomography images, and magnetic resonance images plays a vital role in the clinical practice of DSNs, but with limited performance and increased workload of radiologists or pathologists. The application of artificial intelligence (AI) in medical image analysis holds promise to augment the visual interpretation of medical images, which could not only automate the complicated evaluation process but also convert medical images into quantitative imaging features that associated with tumor heterogeneity.</p><p><strong>Highlights: </strong>We briefly introduce the methodology of AI for medical image analysis and then review its clinical applications including clinical auxiliary diagnosis, assessment of treatment response, and prognosis prediction on 4 typical DSNs including esophageal cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.</p><p><strong>Conclusion: </strong>AI technology has great potential in supporting the clinical diagnosis and treatment decision-making of DSNs. Several technical issues should be overcome before its application into clinical practice of DSNs.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":" ","pages":"0005"},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42646773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Trends and Challenges in Drug-likeness Prediction: Are They Generalizable and Interpretable? 药物相似性预测的当前趋势和挑战:它们是否具有普遍性和可解释性?
Pub Date : 2023-01-01 DOI: 10.34133/hds.0098
Wenyu Zhu, Yanxing Wang, Yan Niu, Liangren Zhang, Zhenming Liu
Importance : Drug-likeness of a compound is an overall assessment of its potential to succeed in clinical trials, and is essential for economizing research expenditures by filtering compounds with unfavorable properties and poor development potential. To this end, a robust drug-likeness prediction method is indispensable. Various approaches, including discriminative rules, statistical models, and machine learning models, have been developed to predict drug-likeness based on physiochemical properties and structural features. Notably, recent advancements in novel deep learning techniques have significantly advanced drug-likeness prediction, especially in classification performance. Highlights : In this review, we addressed the evolving landscape of drug-likeness prediction, with emphasis on methods employing novel deep learning techniques, and highlighted the current challenges in drug-likeness prediction, specifically regarding the aspects of generalization and interpretability. Moreover, we explored potential remedies and outlined promising avenues for future research. Conclusion : Despite the hurdles of generalization and interpretability, novel deep learning techniques have great potential in drug-likeness prediction and are worthy of further research efforts.
重要性:化合物的药物相似性是对其在临床试验中取得成功的潜力的全面评估,并且通过过滤不利性质和不良开发潜力的化合物来节省研究支出是必不可少的。为此,一种鲁棒的药物相似性预测方法必不可少。各种方法,包括判别规则、统计模型和机器学习模型,已经开发出基于物理化学性质和结构特征来预测药物相似性。值得注意的是,新型深度学习技术的最新进展显著提高了药物相似性预测,特别是在分类性能方面。在这篇综述中,我们讨论了药物相似性预测的发展前景,重点介绍了采用新型深度学习技术的方法,并强调了药物相似性预测目前面临的挑战,特别是在泛化和可解释性方面。此外,我们还探索了潜在的补救措施,并概述了未来研究的有希望的途径。结论:尽管存在一般化和可解释性方面的障碍,但新的深度学习技术在药物相似性预测方面具有巨大的潜力,值得进一步研究。
{"title":"Current Trends and Challenges in Drug-likeness Prediction: Are They Generalizable and Interpretable?","authors":"Wenyu Zhu, Yanxing Wang, Yan Niu, Liangren Zhang, Zhenming Liu","doi":"10.34133/hds.0098","DOIUrl":"https://doi.org/10.34133/hds.0098","url":null,"abstract":"Importance : Drug-likeness of a compound is an overall assessment of its potential to succeed in clinical trials, and is essential for economizing research expenditures by filtering compounds with unfavorable properties and poor development potential. To this end, a robust drug-likeness prediction method is indispensable. Various approaches, including discriminative rules, statistical models, and machine learning models, have been developed to predict drug-likeness based on physiochemical properties and structural features. Notably, recent advancements in novel deep learning techniques have significantly advanced drug-likeness prediction, especially in classification performance. Highlights : In this review, we addressed the evolving landscape of drug-likeness prediction, with emphasis on methods employing novel deep learning techniques, and highlighted the current challenges in drug-likeness prediction, specifically regarding the aspects of generalization and interpretability. Moreover, we explored potential remedies and outlined promising avenues for future research. Conclusion : Despite the hurdles of generalization and interpretability, novel deep learning techniques have great potential in drug-likeness prediction and are worthy of further research efforts.","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135104665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plug-in Models: A Promising Direction for Molecular Generation 插入式模型:分子生成的一个有前途的方向
Pub Date : 2023-01-01 DOI: 10.34133/hds.0092
Ningfeng Liu, Hongwei Jin, Liangren Zhang, Zhenming Liu
{"title":"Plug-in Models: A Promising Direction for Molecular Generation","authors":"Ningfeng Liu, Hongwei Jin, Liangren Zhang, Zhenming Liu","doi":"10.34133/hds.0092","DOIUrl":"https://doi.org/10.34133/hds.0092","url":null,"abstract":"","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135843241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationships of Residential Distance to Major Traffic Roads with Dementia Incidence and Brain Structure Measures: Mediation Role of Air Pollution 居住距离主要交通道路与痴呆发病率和脑结构测量的关系:空气污染的中介作用
Pub Date : 2023-01-01 DOI: 10.34133/hds.0091
Chenglong Li, Darui Gao, Yutong Samuel Cai, Jie Liang, Yongqian Wang, Yang Pan, Wenya Zhang, Fanfan Zheng, Wuxiang Xie
Background: Uncertainty exists regarding the operating pathways between near-roadway exposure and dementia incidence. We intend to examine relationships between proximity to major roadways with dementia incidence and brain MRI structure measures, and potential mediation roles of air and noise pollution. Methods: The cohort study was based on the UK Biobank. Baseline survey was conducted from 2006 to 2010, with linkage to electronic health records conducted for follow-up. Residential distance to major roadways was ascertained residential address postcode. A land use regression model was applied for estimating traffic-related air pollution at residence. Dementia incidence was ascertained using national administrative databases. Brain MRI measures were derived as image-derived phenotypes, including total brain, white matter, gray matter, and peripheral cortical gray matter. Results: We included 460,901 participants [mean (SD) age: 57.1 (8.1) years; men: 45.7%]. Compared with individuals living >1,000 m from major traffic roads, living ≤1,000 m was associated with a 13% to 14% higher dementia risk, accounting for 10% of dementia cases. Observed association between residential distance and dementia was substantially mediated by traffic-related air pollution, mainly nitrogen dioxide (proportion mediated: 63.6%; 95% CI, 27.0 to 89.2%) and PM 2.5 (60.9%, 26.8 to 87.0%). The shorter residential distance was associated with smaller volumes of brain structures, which was also mediated by traffic-related air pollutants. No significant mediation role was observed of noise pollution. Conclusions: The shorter residential distance to major roads was associated with elevated dementia incidence and smaller brain structure volumes, which was mainly mediated by traffic-related air pollution.
背景:近道路暴露与痴呆发病之间的作用途径存在不确定性。我们打算研究靠近主要道路与痴呆发病率和脑MRI结构测量之间的关系,以及空气和噪音污染的潜在中介作用。方法:队列研究基于UK Biobank。2006年至2010年进行了基线调查,并与电子健康记录联系起来进行后续调查。确定了住宅与主要道路的距离,确定了住宅地址和邮政编码。采用土地利用回归模型对住宅交通相关空气污染进行估算。使用国家行政数据库确定痴呆发病率。脑MRI测量结果衍生为图像衍生表型,包括全脑、白质、灰质和外周皮层灰质。结果:我们纳入了460,901名参与者[平均(SD)年龄:57.1(8.1)岁;男性:45.7%)。与居住距离主要交通道路1000米的人群相比,居住距离≤1000米的人群痴呆风险增加13% - 14%,占痴呆病例的10%。已观察到的居住距离与痴呆之间的关联基本上由交通相关的空气污染介导,主要是二氧化氮(比例介导:63.6%;95% CI, 27.0 ~ 89.2%)和PM 2.5(60.9%, 26.8 ~ 87.0%)。居住距离越短,大脑结构体积越小,这也与交通相关的空气污染物有关。噪声污染未见显著的中介作用。结论:住宅距离主干道较短与痴呆发病率升高和脑结构体积较小相关,这主要与交通相关的空气污染有关。
{"title":"Relationships of Residential Distance to Major Traffic Roads with Dementia Incidence and Brain Structure Measures: Mediation Role of Air Pollution","authors":"Chenglong Li, Darui Gao, Yutong Samuel Cai, Jie Liang, Yongqian Wang, Yang Pan, Wenya Zhang, Fanfan Zheng, Wuxiang Xie","doi":"10.34133/hds.0091","DOIUrl":"https://doi.org/10.34133/hds.0091","url":null,"abstract":"Background: Uncertainty exists regarding the operating pathways between near-roadway exposure and dementia incidence. We intend to examine relationships between proximity to major roadways with dementia incidence and brain MRI structure measures, and potential mediation roles of air and noise pollution. Methods: The cohort study was based on the UK Biobank. Baseline survey was conducted from 2006 to 2010, with linkage to electronic health records conducted for follow-up. Residential distance to major roadways was ascertained residential address postcode. A land use regression model was applied for estimating traffic-related air pollution at residence. Dementia incidence was ascertained using national administrative databases. Brain MRI measures were derived as image-derived phenotypes, including total brain, white matter, gray matter, and peripheral cortical gray matter. Results: We included 460,901 participants [mean (SD) age: 57.1 (8.1) years; men: 45.7%]. Compared with individuals living &gt;1,000 m from major traffic roads, living ≤1,000 m was associated with a 13% to 14% higher dementia risk, accounting for 10% of dementia cases. Observed association between residential distance and dementia was substantially mediated by traffic-related air pollution, mainly nitrogen dioxide (proportion mediated: 63.6%; 95% CI, 27.0 to 89.2%) and PM 2.5 (60.9%, 26.8 to 87.0%). The shorter residential distance was associated with smaller volumes of brain structures, which was also mediated by traffic-related air pollutants. No significant mediation role was observed of noise pollution. Conclusions: The shorter residential distance to major roads was associated with elevated dementia incidence and smaller brain structure volumes, which was mainly mediated by traffic-related air pollution.","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135699128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
#ChronicPain: Automated Building of a Chronic Pain Cohort from Twitter Using Machine Learning. #慢性疼痛:使用机器学习从推特自动构建慢性疼痛队列
Pub Date : 2023-01-01 Epub Date: 2023-07-04 DOI: 10.34133/hds.0078
Abeed Sarker, Sahithi Lakamana, Yuting Guo, Yao Ge, Abimbola Leslie, Omolola Okunromade, Elena Gonzalez-Polledo, Jeanmarie Perrone, Anne Marie McKenzie-Brown

Background: Due to the high burden of chronic pain, and the detrimental public health consequences of its treatment with opioids, there is a high-priority need to identify effective alternative therapies. Social media is a potentially valuable resource for knowledge about self-reported therapies by chronic pain sufferers.

Methods: We attempted to (a) verify the presence of large-scale chronic pain-related chatter on Twitter, (b) develop natural language processing and machine learning methods for automatically detecting self-disclosures, (c) collect longitudinal data posted by them, and (d) semiautomatically analyze the types of chronic pain-related information reported by them. We collected data using chronic pain-related hashtags and keywords and manually annotated 4,998 posts to indicate if they were self-reports of chronic pain experiences. We trained and evaluated several state-of-the-art supervised text classification models and deployed the best-performing classifier. We collected all publicly available posts from detected cohort members and conducted manual and natural language processing-driven descriptive analyses.

Results: Interannotator agreement for the binary annotation was 0.82 (Cohen's kappa). The RoBERTa model performed best (F1 score: 0.84; 95% confidence interval: 0.80 to 0.89), and we used this model to classify all collected unlabeled posts. We discovered 22,795 self-reported chronic pain sufferers and collected over 3 million of their past posts. Further analyses revealed information about, but not limited to, alternative treatments, patient sentiments about treatments, side effects, and self-management strategies.

Conclusion: Our social media based approach will result in an automatically growing large cohort over time, and the data can be leveraged to identify effective opioid-alternative therapies for diverse chronic pain types.

背景:由于慢性疼痛的高负担,以及用阿片类药物治疗慢性疼痛的有害公共卫生后果,需要高度优先确定有效的替代疗法。社交媒体是了解慢性疼痛患者自我报告治疗方法的潜在宝贵资源。方法:我们试图(a)验证Twitter上是否存在大规模的慢性疼痛相关聊天,(b)开发自然语言处理和机器学习方法来自动检测自我披露,(c)收集他们发布的纵向数据,(d)半自动分析他们报告的慢性疼痛相关信息类型。我们使用与慢性疼痛相关的标签和关键词收集数据,并手动注释4,998篇文章,以表明它们是否是慢性疼痛经历的自我报告。我们训练和评估了几个最先进的监督文本分类模型,并部署了性能最好的分类器。我们从检测到的队列成员中收集了所有公开可用的帖子,并进行了手动和自然语言处理驱动的描述性分析。结果:二元标注间的一致性为0.82 (Cohen’s kappa)。RoBERTa模型表现最佳(f1得分:0.84;95%置信区间:0.80 ~ 0.89),我们使用该模型对所有收集到的未标记帖子进行分类。我们发现了22795名自我报告的慢性疼痛患者,并收集了超过300万份他们过去的帖子。进一步的分析揭示了有关但不限于替代治疗、患者对治疗的看法、副作用和自我管理策略的信息。结论:随着时间的推移,我们基于社交媒体的方法将导致一个自动增长的大队列,数据可以用来确定有效的阿片类药物替代疗法,用于治疗各种慢性疼痛类型。
{"title":"#ChronicPain: Automated Building of a Chronic Pain Cohort from Twitter Using Machine Learning.","authors":"Abeed Sarker, Sahithi Lakamana, Yuting Guo, Yao Ge, Abimbola Leslie, Omolola Okunromade, Elena Gonzalez-Polledo, Jeanmarie Perrone, Anne Marie McKenzie-Brown","doi":"10.34133/hds.0078","DOIUrl":"10.34133/hds.0078","url":null,"abstract":"<p><strong>Background: </strong>Due to the high burden of chronic pain, and the detrimental public health consequences of its treatment with opioids, there is a high-priority need to identify effective alternative therapies. Social media is a potentially valuable resource for knowledge about self-reported therapies by chronic pain sufferers.</p><p><strong>Methods: </strong>We attempted to (a) verify the presence of large-scale chronic pain-related chatter on Twitter, (b) develop natural language processing and machine learning methods for automatically detecting self-disclosures, (c) collect longitudinal data posted by them, and (d) semiautomatically analyze the types of chronic pain-related information reported by them. We collected data using chronic pain-related hashtags and keywords and manually annotated 4,998 posts to indicate if they were self-reports of chronic pain experiences. We trained and evaluated several state-of-the-art supervised text classification models and deployed the best-performing classifier. We collected all publicly available posts from detected cohort members and conducted manual and natural language processing-driven descriptive analyses.</p><p><strong>Results: </strong>Interannotator agreement for the binary annotation was 0.82 (Cohen's kappa). The RoBERTa model performed best (F<sub>1</sub> score: 0.84; 95% confidence interval: 0.80 to 0.89), and we used this model to classify all collected unlabeled posts. We discovered 22,795 self-reported chronic pain sufferers and collected over 3 million of their past posts. Further analyses revealed information about, but not limited to, alternative treatments, patient sentiments about treatments, side effects, and self-management strategies.</p><p><strong>Conclusion: </strong>Our social media based approach will result in an automatically growing large cohort over time, and the data can be leveraged to identify effective opioid-alternative therapies for diverse chronic pain types.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47203150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of COVID-19 Prevention and Control on the Influenza Epidemic in China: A Time Series Study. 新冠肺炎疫情防控对中国流感疫情影响的时间序列研究
Pub Date : 2022-11-01 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9830159
Zirui Guo, Li Zhang, Jue Liu, Min Liu

Background. COVID-19 prevention and control measures might affect influenza epidemic in China since the nonpharmaceutical interventions (NPIs) and behavioral changes contain transmission of both SARS-CoV-2 and influenza virus. We aimed to explore the impact of COVID-19 prevention and control measures on influenza using data from the National Influenza Surveillance Network.Methods. The percentage of influenza-like illness (ILI%) in southern and northern China from 2010 to 2022 was collected from the National Influenza Surveillance Network. Weekly ILI% observed value from 2010 to 2019 was used to calculate estimated annual percentage change (EAPC) of ILI% with 95% confidence intervals (CIs). Time series analysis was applied to estimate weekly ILI% predicted values in 2020/2021 and 2021/2022 season. Impact index was used to explore the impact of COVID-19 prevention and control on influenza during nonpharmaceutical intervention and vaccination stages.Results. China influenza activity was affected by the COVID-19 pandemic and different prevention and control measures during 2020-2022. In 2020/2021 season, weekly ILI% observed value in both southern and northern China was at a low epidemic level, and there was no obvious epidemic peak in winter and spring. In 2021/2022 season, weekly ILI% observed value in southern and northern China showed a small peak in summer and epidemic peak in winter and spring. The weekly ILI% observed value was generally lower than the predicted value in southern and northern China during 2020-2022. The median of impact index of weekly ILI% was 15.11% in north and 22.37% in south in 2020/2021 season and decreased significantly to 2.20% in north and 3.89% in south in 2021/2022 season.Conclusion. In summary, there was a significant decrease in reported ILI in China during the 2020-2022 COVID-19 pandemic, particularly in winter and spring. Reduction of influenza virus infection might relate to everyday Chinese public health COVID-19 interventions. The confirmation of this relationship depends on future studies.

背景。COVID-19防控措施可能会影响中国流感疫情,因为非药物干预措施和行为改变同时包含了SARS-CoV-2和流感病毒的传播。我们旨在利用国家流感监测网的数据探讨COVID-19防控措施对流感的影响。方法。2010年至2022年中国南部和北部流感样疾病百分比(ILI%)收集自国家流感监测网。采用2010 - 2019年每周ILI%观测值计算ILI%的估计年百分比变化(EAPC), 95%置信区间(ci)。采用时间序列分析估计2020/2021和2021/2022季节的每周ILI%预测值。采用影响指数法探讨COVID-19防控在非药物干预和疫苗接种阶段对流感的影响。结果。2020-2022年中国流感活动受到新冠肺炎大流行和不同防控措施的影响。2020/2021季节,华南和华北地区每周ILI%观测值均处于低流行水平,冬、春季均未出现明显流行高峰。在2021/2022年流行季,中国南部和北部的每周ILI%观测值在夏季出现小高峰,在冬季和春季出现流行高峰。2020-2022年,中国南方和北方地区ILI%的周观测值普遍低于预测值。每周ILI%影响指数中位数在2020/2021季北方为15.11%,南方为22.37%,在2021/2022季北方为2.20%,南方为3.89%,显著下降。结论。总之,在2020-2022年COVID-19大流行期间,特别是冬季和春季,中国报告的ILI病例显著减少。减少流感病毒感染可能与中国日常公共卫生COVID-19干预措施有关。这种关系的证实取决于未来的研究。
{"title":"Impact of COVID-19 Prevention and Control on the Influenza Epidemic in China: A Time Series Study.","authors":"Zirui Guo, Li Zhang, Jue Liu, Min Liu","doi":"10.34133/2022/9830159","DOIUrl":"10.34133/2022/9830159","url":null,"abstract":"<p><p><i>Background</i>. COVID-19 prevention and control measures might affect influenza epidemic in China since the nonpharmaceutical interventions (NPIs) and behavioral changes contain transmission of both SARS-CoV-2 and influenza virus. We aimed to explore the impact of COVID-19 prevention and control measures on influenza using data from the National Influenza Surveillance Network.<i>Methods</i>. The percentage of influenza-like illness (ILI%) in southern and northern China from 2010 to 2022 was collected from the National Influenza Surveillance Network. Weekly ILI% observed value from 2010 to 2019 was used to calculate estimated annual percentage change (EAPC) of ILI% with 95% confidence intervals (CIs). Time series analysis was applied to estimate weekly ILI% predicted values in 2020/2021 and 2021/2022 season. Impact index was used to explore the impact of COVID-19 prevention and control on influenza during nonpharmaceutical intervention and vaccination stages.<i>Results</i>. China influenza activity was affected by the COVID-19 pandemic and different prevention and control measures during 2020-2022. In 2020/2021 season, weekly ILI% observed value in both southern and northern China was at a low epidemic level, and there was no obvious epidemic peak in winter and spring. In 2021/2022 season, weekly ILI% observed value in southern and northern China showed a small peak in summer and epidemic peak in winter and spring. The weekly ILI% observed value was generally lower than the predicted value in southern and northern China during 2020-2022. The median of impact index of weekly ILI% was 15.11% in north and 22.37% in south in 2020/2021 season and decreased significantly to 2.20% in north and 3.89% in south in 2021/2022 season.<i>Conclusion</i>. In summary, there was a significant decrease in reported ILI in China during the 2020-2022 COVID-19 pandemic, particularly in winter and spring. Reduction of influenza virus infection might relate to everyday Chinese public health COVID-19 interventions. The confirmation of this relationship depends on future studies.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":" ","pages":"9830159"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44046970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Trends and Emerging Hotspots of Lung Cancer Surgery during 2012-2021: A 10-Year Bibliometric and Network Analysis. 2012-2021年癌症外科研究趋势与热点:10年文献计量与网络分析
Pub Date : 2022-10-20 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9797842
Jingyi Wu, Chenlu Bao, Ganwei Liu, Shushi Meng, Yunwei Lu, Pengfei Li, Jian Zhou

Background. Lung cancer remains the leading cause of death because of cancer globally in the past years. To inspire researchers with new targets and path-breaking directions for lung cancer research, this study is aimed at exploring the research trends and emerging hotspots in the lung cancer surgery literature in the recent decade.Methods. This cross-sectional study combined bibliometric and network analysis techniques to undertake a quantitative analysis of lung cancer surgery literature. Dimensions database was searched using keywords in a 10-year period (2012-2021). Publications were characterized by publication year, research countries, field citation ratio, cooperation status, research area, and emerging hotspots.Results. Overall, global scholarly outputs of lung cancer surgery had almost doubled during the recent decade, with China, Japan, and the United States leading the way, while Denmark and Belgium predominated in terms of scientific influence. Network analysis showed that international cooperation accounted for a relatively small portion in lung cancer surgery research, and the United States, China, and Europe were the prominent centers of international cooperation network. In the recent decade, research of lung cancer surgery majored in prevention, biomedical imaging, rehabilitation, and genetics, and the emerging research hotspots transformed into immunotherapy. Research on immunotherapy showed a considerable increase in scientific influence in the latest year.Conclusions. The study findings are expected to provide researchers and policymakers with interesting insights into the changing trends of lung cancer surgery research and further generate evidence to support decision-making in improving prognosis for patients with lung cancer.

背景在过去的几年里,由于癌症,癌症仍然是全球死亡的主要原因。本研究旨在探索近十年来癌症外科文献的研究趋势和新热点,为研究者提供癌症研究的新靶点和开拓方向。方法。这项横断面研究结合文献计量和网络分析技术,对癌症手术文献进行定量分析。维度数据库在10年期间(2012-2021)使用关键词进行搜索。出版物按出版年份、研究国家、领域引用率、合作状况、研究领域和新兴热点进行了分类。后果总体而言,在最近十年中,全球癌症手术的学术产出几乎翻了一番,其中中国、日本和美国领先,而丹麦和比利时在科学影响力方面占主导地位。网络分析表明,国际合作在癌症外科研究中所占比例相对较小,美国、中国和欧洲是国际合作网络的突出中心。近十年来,癌症外科的研究主要集中在预防、生物医学成像、康复和遗传学方面,新兴的研究热点转变为免疫疗法。免疫疗法的研究表明,最近一年科学影响力显著增加。结论。该研究结果有望为研究人员和政策制定者提供对癌症手术研究变化趋势的有趣见解,并进一步提供证据,支持改善癌症患者预后的决策。
{"title":"Research Trends and Emerging Hotspots of Lung Cancer Surgery during 2012-2021: A 10-Year Bibliometric and Network Analysis.","authors":"Jingyi Wu, Chenlu Bao, Ganwei Liu, Shushi Meng, Yunwei Lu, Pengfei Li, Jian Zhou","doi":"10.34133/2022/9797842","DOIUrl":"10.34133/2022/9797842","url":null,"abstract":"<p><p><i>Background</i>. Lung cancer remains the leading cause of death because of cancer globally in the past years. To inspire researchers with new targets and path-breaking directions for lung cancer research, this study is aimed at exploring the research trends and emerging hotspots in the lung cancer surgery literature in the recent decade.<i>Methods</i>. This cross-sectional study combined bibliometric and network analysis techniques to undertake a quantitative analysis of lung cancer surgery literature. Dimensions database was searched using keywords in a 10-year period (2012-2021). Publications were characterized by publication year, research countries, field citation ratio, cooperation status, research area, and emerging hotspots.<i>Results</i>. Overall, global scholarly outputs of lung cancer surgery had almost doubled during the recent decade, with China, Japan, and the United States leading the way, while Denmark and Belgium predominated in terms of scientific influence. Network analysis showed that international cooperation accounted for a relatively small portion in lung cancer surgery research, and the United States, China, and Europe were the prominent centers of international cooperation network. In the recent decade, research of lung cancer surgery majored in prevention, biomedical imaging, rehabilitation, and genetics, and the emerging research hotspots transformed into immunotherapy. Research on immunotherapy showed a considerable increase in scientific influence in the latest year.<i>Conclusions</i>. The study findings are expected to provide researchers and policymakers with interesting insights into the changing trends of lung cancer surgery research and further generate evidence to support decision-making in improving prognosis for patients with lung cancer.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":" ","pages":"9797842"},"PeriodicalIF":0.0,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48470813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinician Data Scientists-Preparing for the Future of Medicine in the Digital World. 临床医生数据科学家——为数字世界的未来医学做准备
Pub Date : 2022-09-27 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9832564
Fulin Wang, Lin Ma, Georgina Moulton, Mai Wang, Luxia Zhang
{"title":"Clinician Data Scientists-Preparing for the Future of Medicine in the Digital World.","authors":"Fulin Wang, Lin Ma, Georgina Moulton, Mai Wang, Luxia Zhang","doi":"10.34133/2022/9832564","DOIUrl":"10.34133/2022/9832564","url":null,"abstract":"","PeriodicalId":73207,"journal":{"name":"Health data science","volume":" ","pages":"9832564"},"PeriodicalIF":0.0,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42051556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Health Data Sharing Platforms: Serving Researchers through Provision of Access to High-Quality Data for Reuse. 健康数据共享平台:通过提供高质量数据以供重用,为研究人员提供服务
Pub Date : 2022-09-14 eCollection Date: 2022-01-01 DOI: 10.34133/2022/9768384
Rebecca Li, Nina Hill, Catherine D'Arcy, Amrutha Baskaran, Patricia Bradford
{"title":"Health Data Sharing Platforms: Serving Researchers through Provision of Access to High-Quality Data for Reuse.","authors":"Rebecca Li, Nina Hill, Catherine D'Arcy, Amrutha Baskaran, Patricia Bradford","doi":"10.34133/2022/9768384","DOIUrl":"10.34133/2022/9768384","url":null,"abstract":"","PeriodicalId":73207,"journal":{"name":"Health data science","volume":" ","pages":"9768384"},"PeriodicalIF":0.0,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42312100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Health data science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1