首页 > 最新文献

IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics最新文献

英文 中文
Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case. 使用基于开放本体的方法开发人类体育活动和运动的计算表征:太极使用案例。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00012
Eloisa Nguyen, Rebecca Z Lin, Yang Gong, Cui Tao, Muhammad Tuan Amith

Many studies have examined the impact of exercise and other physical activities in influencing the health outcomes of individuals. These physical activities entail an intricate sequence and series of physical anatomy, physiological movement, movement of the anatomy, etc. To better understand how these components interact with one another and their downstream impact on health outcomes, there needs to be an information model that conceptualizes all entities involved. In this study, we introduced our early development of an ontology model to computationally describe human physical activities and the various entities that compose each activity. We developed an open-sourced biomedical ontology called the Kinetic Human Movement Ontology that reused OBO Foundry terminologies and encoded in OWL2. We applied this ontology in modeling and linking a specific Tai Chi movement. The contribution of this work could enable modeling of information relating to human physical activity, like exercise, and lead towards information standardization of human movement for analysis. Future work will include expanding our ontology to include more expressive information and completely modeling entire sets of movement from human physical activity.

许多研究都探讨了运动和其他体育活动对个人健康结果的影响。这些体能活动包含一系列错综复杂的物理解剖、生理运动、解剖运动等。为了更好地理解这些组成部分之间如何相互作用以及它们对健康结果的下游影响,需要有一个信息模型来概念化所涉及的所有实体。在本研究中,我们介绍了我们早期开发的本体模型,该模型用于计算描述人类的身体活动以及构成每项活动的各种实体。我们开发了一个开源的生物医学本体,名为 "人体运动本体"(Kinetic Human Movement Ontology),该本体重复使用了 OBO Foundry 术语,并用 OWL2 进行了编码。我们将该本体应用于特定太极运动的建模和链接。这项工作的贡献在于能够对与人类身体活动(如运动)相关的信息进行建模,并实现人类运动分析的信息标准化。未来的工作将包括扩展我们的本体,以包含更具表现力的信息,并对人类体育活动的整套动作进行完全建模。
{"title":"Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case.","authors":"Eloisa Nguyen, Rebecca Z Lin, Yang Gong, Cui Tao, Muhammad Tuan Amith","doi":"10.1109/ichi61247.2024.00012","DOIUrl":"10.1109/ichi61247.2024.00012","url":null,"abstract":"<p><p>Many studies have examined the impact of exercise and other physical activities in influencing the health outcomes of individuals. These physical activities entail an intricate sequence and series of physical anatomy, physiological movement, movement of the anatomy, etc. To better understand how these components interact with one another and their downstream impact on health outcomes, there needs to be an information model that conceptualizes all entities involved. In this study, we introduced our early development of an ontology model to computationally describe human physical activities and the various entities that compose each activity. We developed an open-sourced biomedical ontology called the Kinetic Human Movement Ontology that reused OBO Foundry terminologies and encoded in OWL2. We applied this ontology in modeling and linking a specific Tai Chi movement. The contribution of this work could enable modeling of information relating to human physical activity, like exercise, and lead towards information standardization of human movement for analysis. Future work will include expanding our ontology to include more expressive information and completely modeling entire sets of movement from human physical activity.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"31-39"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups. 分析社会因素,加强不同人群的自杀预防。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00032
Richard Li Xu, Song Wang, Zewei Wang, Yuhan Zhang, Yunyu Xiao, Jyotishman Pathak, David Hodge, Yan Leng, S Craig Watkins, Ying Ding, Yifan Peng

Social factors like family background, education level, financial status, and stress can impact public health outcomes, such as suicidal ideation. However, the analysis of social factors for suicide prevention has been limited by the lack of up-to-date suicide reporting data, variations in reporting practices, and small sample sizes. In this study, we analyzed 172,629 suicide incidents from 2014 to 2020 utilizing the National Violent Death Reporting System Restricted Access Database (NVDRS-RAD). Logistic regression models were developed to examine the relationships between demographics and suicide-related circumstances. Trends over time were assessed, and Latent Dirichlet Allocation (LDA) was used to identify common suicide-related social factors. Mental health, interpersonal relationships, mental health treatment and disclosure, and school/work-related stressors were identified as the main themes of suicide-related social factors. This study also identified systemic disparities across various population groups, particularly concerning Black individuals, young people aged under 24, healthcare practitioners, and those with limited education backgrounds, which shed light on potential directions for demographic-specific suicidal interventions.

家庭背景、教育水平、经济状况和压力等社会因素会对自杀意念等公共卫生结果产生影响。然而,由于缺乏最新的自杀报告数据、报告方法的差异以及样本量较小,对预防自杀的社会因素的分析一直受到限制。在本研究中,我们利用国家暴力死亡报告系统限制访问数据库(NVDRS-RAD)分析了 2014 年至 2020 年期间的 172629 起自杀事件。我们建立了逻辑回归模型来研究人口统计学与自杀相关情况之间的关系。对随时间变化的趋势进行了评估,并使用 Latent Dirichlet Allocation (LDA) 来识别常见的自杀相关社会因素。心理健康、人际关系、心理健康治疗和披露以及与学校/工作相关的压力因素被确定为与自杀相关的社会因素的主要主题。这项研究还发现了不同人群中存在的系统性差异,尤其是黑人、24 岁以下的年轻人、医护人员和教育背景有限的人群,这为针对特定人群的自杀干预措施提供了潜在的方向。
{"title":"Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups.","authors":"Richard Li Xu, Song Wang, Zewei Wang, Yuhan Zhang, Yunyu Xiao, Jyotishman Pathak, David Hodge, Yan Leng, S Craig Watkins, Ying Ding, Yifan Peng","doi":"10.1109/ichi61247.2024.00032","DOIUrl":"10.1109/ichi61247.2024.00032","url":null,"abstract":"<p><p>Social factors like family background, education level, financial status, and stress can impact public health outcomes, such as suicidal ideation. However, the analysis of social factors for suicide prevention has been limited by the lack of up-to-date suicide reporting data, variations in reporting practices, and small sample sizes. In this study, we analyzed 172,629 suicide incidents from 2014 to 2020 utilizing the National Violent Death Reporting System Restricted Access Database (NVDRS-RAD). Logistic regression models were developed to examine the relationships between demographics and suicide-related circumstances. Trends over time were assessed, and Latent Dirichlet Allocation (LDA) was used to identify common suicide-related social factors. Mental health, interpersonal relationships, mental health treatment and disclosure, and school/work-related stressors were identified as the main themes of suicide-related social factors. This study also identified systemic disparities across various population groups, particularly concerning Black individuals, young people aged under 24, healthcare practitioners, and those with limited education backgrounds, which shed light on potential directions for demographic-specific suicidal interventions.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"189-199"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Large Language Models for Clinical Decision Support by Incorporating Clinical Practice Guidelines. 通过纳入临床实践指南,增强临床决策支持的大型语言模型。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00111
David Oniani, Xizhi Wu, Shyam Visweswaran, Sumit Kapoor, Shravan Kooragayalu, Katelyn Polanska, Yanshan Wang

Large Language Models (LLMs), enhanced with Clinical Practice Guidelines (CPGs), can significantly improve Clinical Decision Support (CDS). However, approaches for incorporating CPGs into LLMs are not well studied. In this study, we develop three distinct methods for incorporating CPGs into LLMs: Binary Decision Tree (BDT), Program-Aided Graph Construction (PAGC), and Chain-of-Thought-Few-Shot Prompting (CoT-FSP), and focus on CDS for COVID-19 outpatient treatment as the case study. Zero-Shot Prompting (ZSP) is our baseline method. To evaluate the effectiveness of the proposed methods, we create a set of synthetic patient descriptions and conduct both automatic and human evaluation of the responses generated by four LLMs: GPT-4, GPT-3.5 Turbo, LLaMA, and PaLM 2. All four LLMs exhibit improved performance when enhanced with CPGs compared to the baseline ZSP. BDT outperformed both CoT-FSP and PAGC in automatic evaluation. All of the proposed methods demonstrate high performance in human evaluation. LLMs enhanced with CPGs outperform plain LLMs with ZSP in providing accurate recommendations for COVID-19 outpatient treatment, highlighting the potential for broader applications beyond the case study.

大型语言模型(LLMs),与临床实践指南(CPGs)增强,可以显著提高临床决策支持(CDS)。然而,将CPGs纳入llm的方法并没有得到很好的研究。在本研究中,我们开发了三种不同的方法将cpg纳入llm:二叉决策树(BDT),程序辅助图构建(PAGC)和思维链-少针提示(ct - fsp),并将重点放在COVID-19门诊治疗的CDS作为案例研究。零射击提示(ZSP)是我们的基准方法。为了评估所提出方法的有效性,我们创建了一组合成的患者描述,并对四种LLMs (GPT-4、GPT-3.5 Turbo、LLaMA和PaLM 2)产生的反应进行了自动和人工评估。与基线ZSP相比,cpg增强后,所有四种llm的性能都有所提高。BDT在自动评价方面优于CoT-FSP和PAGC。所有提出的方法在人类评估中都表现出很高的性能。CPGs增强llm在为COVID-19门诊治疗提供准确建议方面优于ZSP的普通llm,突出了案例研究之外更广泛应用的潜力。
{"title":"Enhancing Large Language Models for Clinical Decision Support by Incorporating Clinical Practice Guidelines.","authors":"David Oniani, Xizhi Wu, Shyam Visweswaran, Sumit Kapoor, Shravan Kooragayalu, Katelyn Polanska, Yanshan Wang","doi":"10.1109/ichi61247.2024.00111","DOIUrl":"https://doi.org/10.1109/ichi61247.2024.00111","url":null,"abstract":"<p><p>Large Language Models (LLMs), enhanced with Clinical Practice Guidelines (CPGs), can significantly improve Clinical Decision Support (CDS). However, approaches for incorporating CPGs into LLMs are not well studied. In this study, we develop three distinct methods for incorporating CPGs into LLMs: Binary Decision Tree (BDT), Program-Aided Graph Construction (PAGC), and Chain-of-Thought-Few-Shot Prompting (CoT-FSP), and focus on CDS for COVID-19 outpatient treatment as the case study. Zero-Shot Prompting (ZSP) is our baseline method. To evaluate the effectiveness of the proposed methods, we create a set of synthetic patient descriptions and conduct both automatic and human evaluation of the responses generated by four LLMs: GPT-4, GPT-3.5 Turbo, LLaMA, and PaLM 2. All four LLMs exhibit improved performance when enhanced with CPGs compared to the baseline ZSP. BDT outperformed both CoT-FSP and PAGC in automatic evaluation. All of the proposed methods demonstrate high performance in human evaluation. LLMs enhanced with CPGs outperform plain LLMs with ZSP in providing accurate recommendations for COVID-19 outpatient treatment, highlighting the potential for broader applications beyond the case study.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"694-702"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Task Deep Neural Networks for Irregularly Sampled Multivariate Clinical Time Series. 不规则采样多变量临床时间序列的多任务深度神经网络。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00025
Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Jiang Bian

Multivariate clinical time series data, such as those contained in Electronic Health Records (EHR), often exhibit high levels of irregularity, notably, many missing values and varying time intervals. Existing methods usually construct deep neural network architectures that combine recurrent neural networks and time decay mechanisms to model variable correlations, impute missing values, and capture the impact of varying time intervals. The complete data matrices thus obtained from the imputation task are used for downstream risk prediction tasks. This study aims to achieve more desirable imputation and prediction accuracy by performing both tasks simultaneously. We present a new multi-task deep neural network that incorporates the imputation task as an auxiliary task while performing risk prediction tasks. We validate the method on clinical time series imputation and in-hospital mortality prediction tasks using two publicly available EHR databases. The experimental results show that our method outperforms state-of-the-art imputation-prediction methods by significant margins. The results also empirically demonstrate that the incorporation of time decay mechanisms is a critical factor for superior imputation and prediction performance. The novel deep imputation-prediction network proposed in this study provides more accurate imputation and prediction results with EHR data. Future work should focus on developing more effective time decay mechanisms for simultaneously enhancing the imputation and prediction performance of multi-task learning models.

多变量临床时间序列数据,如电子健康记录(EHR)中包含的数据,通常表现出高度的不规则性,特别是许多缺失值和不同的时间间隔。现有方法通常构建深度神经网络架构,结合递归神经网络和时间衰减机制来建模变量相关性,估算缺失值,并捕获不同时间间隔的影响。由此获得的完整数据矩阵用于下游风险预测任务。本研究旨在通过同时执行这两项任务来获得更理想的输入和预测精度。提出了一种新的多任务深度神经网络,该网络在执行风险预测任务的同时,将归算任务作为辅助任务。我们使用两个公开的EHR数据库验证了临床时间序列imputation和院内死亡率预测任务的方法。实验结果表明,我们的方法明显优于目前最先进的估计预测方法。实证结果还表明,时间衰减机制的引入是提高估算和预测性能的关键因素。本研究提出的新型深度估算-预测网络可对电子病历数据提供更准确的估算和预测结果。未来的工作应侧重于开发更有效的时间衰减机制,以同时提高多任务学习模型的输入和预测性能。
{"title":"Multi-Task Deep Neural Networks for Irregularly Sampled Multivariate Clinical Time Series.","authors":"Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Jiang Bian","doi":"10.1109/ichi61247.2024.00025","DOIUrl":"10.1109/ichi61247.2024.00025","url":null,"abstract":"<p><p>Multivariate clinical time series data, such as those contained in Electronic Health Records (EHR), often exhibit high levels of irregularity, notably, many missing values and varying time intervals. Existing methods usually construct deep neural network architectures that combine recurrent neural networks and time decay mechanisms to model variable correlations, impute missing values, and capture the impact of varying time intervals. The complete data matrices thus obtained from the imputation task are used for downstream risk prediction tasks. This study aims to achieve more desirable imputation and prediction accuracy by performing both tasks simultaneously. We present a new multi-task deep neural network that incorporates the imputation task as an auxiliary task while performing risk prediction tasks. We validate the method on clinical time series imputation and in-hospital mortality prediction tasks using two publicly available EHR databases. The experimental results show that our method outperforms state-of-the-art imputation-prediction methods by significant margins. The results also empirically demonstrate that the incorporation of time decay mechanisms is a critical factor for superior imputation and prediction performance. The novel deep imputation-prediction network proposed in this study provides more accurate imputation and prediction results with EHR data. Future work should focus on developing more effective time decay mechanisms for simultaneously enhancing the imputation and prediction performance of multi-task learning models.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"135-140"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine-grained Patient Similarity Measuring using Contrastive Graph Similarity Networks. 使用对比图相似度网络的细粒度患者相似度测量。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00009
Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Flora D Salim, Jiang Bian, Antonio Jimeno Yepes

Predictive analytics using Electronic Health Records (EHRs) have become an active research area in recent years, especially with the development of deep learning techniques. A popular EHR data analysis paradigm in deep learning is patient representation learning, which aims to learn a condensed mathematical representation of individual patients. However, EHR data are often inherently irregular, i.e., data entries were captured at different times as well as with different contents due to the individualized needs of each patient. Most of the work focused on the provision of deep neural networks with attention mechanisms that generate complete patient representations that can be readily used for downstream prediction tasks. However, such approaches fail to take patient similarity into account, which is generally used in clinical reasoning scenarios. This study presents a new Contrastive Graph Similarity Network for similarity calculation among patients in large EHR datasets. Particularly, we apply graph-based similarity analysis that explicitly extracts the clinical characteristics of each patient and aggregates the information of similar patients to generate rich patient representations. Experimental results on real-world EHR databases demonstrate the effectiveness and superiority of our method for the task of vital signs imputation and ICU patient deterioration prediction.

近年来,特别是随着深度学习技术的发展,使用电子健康记录(EHRs)进行预测分析已成为一个活跃的研究领域。深度学习中流行的EHR数据分析范式是患者表征学习,其目的是学习单个患者的浓缩数学表示。然而,EHR数据通常具有固有的不规则性,即,由于每个患者的个性化需求,在不同的时间捕获数据条目以及不同的内容。大部分工作都集中在提供具有注意力机制的深度神经网络上,这些机制可以生成完整的患者表征,这些表征可以很容易地用于下游预测任务。然而,这些方法没有考虑到患者的相似性,这通常用于临床推理场景。本研究提出了一种新的对比图相似度网络,用于大型电子病历数据集患者之间的相似度计算。特别是,我们应用基于图的相似性分析,明确提取每个患者的临床特征,并聚集相似患者的信息,以生成丰富的患者表征。在现实世界的EHR数据库上的实验结果证明了我们的方法在生命体征输入和ICU患者恶化预测任务中的有效性和优越性。
{"title":"Fine-grained Patient Similarity Measuring using Contrastive Graph Similarity Networks.","authors":"Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Flora D Salim, Jiang Bian, Antonio Jimeno Yepes","doi":"10.1109/ichi61247.2024.00009","DOIUrl":"10.1109/ichi61247.2024.00009","url":null,"abstract":"<p><p>Predictive analytics using Electronic Health Records (EHRs) have become an active research area in recent years, especially with the development of deep learning techniques. A popular EHR data analysis paradigm in deep learning is patient representation learning, which aims to learn a condensed mathematical representation of individual patients. However, EHR data are often inherently irregular, i.e., data entries were captured at different times as well as with different contents due to the individualized needs of each patient. Most of the work focused on the provision of deep neural networks with attention mechanisms that generate complete patient representations that can be readily used for downstream prediction tasks. However, such approaches fail to take patient similarity into account, which is generally used in clinical reasoning scenarios. This study presents a new Contrastive Graph Similarity Network for similarity calculation among patients in large EHR datasets. Particularly, we apply graph-based similarity analysis that explicitly extracts the clinical characteristics of each patient and aggregates the information of similar patients to generate rich patient representations. Experimental results on real-world EHR databases demonstrate the effectiveness and superiority of our method for the task of vital signs imputation and ICU patient deterioration prediction.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654828/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Ethical Approach to Genomic Privacy Preserving Technology Development. 基因组隐私保护技术发展的伦理途径。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00102
Lynette Hammond Gerido, Erman Ayday

Demand for genomic research data and genetic testing results from cancer patients has grown exponentially. When a patient is diagnosed with a hereditary cancer syndrome, standard practice is for providers to encourage patients to discuss their results with their relatives and encourage those relatives to have clinical genetic testing and possibly participate in genetic research. Genomic research data and genetic testing results are being shared and connected in ways never imagined. Genomic data sharing is critical for advancing precision health and increasing diversity in global genome databases. However, these advancements often come with undesirable consequences, which call for additional privacy safeguards and research practices to protect hereditary cancer patients and their families because relatives who may have genomic information in common with the patient causing privacy risks to ripple throughout a kinship network. We propose to address this gap using an interdisciplinary approach integrating bioethical principles (autonomy, non-maleficence, beneficence, respect for persons, and equity) with data science techniques to mitigate privacy risk challenges.

癌症患者对基因组研究数据和基因检测结果的需求呈指数级增长。当一个病人被诊断出患有遗传性癌症综合症时,医生的标准做法是鼓励病人与其亲属讨论结果,并鼓励这些亲属进行临床基因检测,并可能参与基因研究。基因组研究数据和基因检测结果正在以前所未有的方式共享和联系。基因组数据共享对于推进精准健康和增加全球基因组数据库的多样性至关重要。然而,这些进步往往会带来不良后果,这就需要额外的隐私保护和研究实践来保护遗传性癌症患者及其家人,因为可能与患者有共同基因组信息的亲属会在整个亲属网络中造成隐私风险。我们建议采用跨学科的方法来解决这一差距,将生物伦理原则(自主、非恶意、慈善、尊重个人和公平)与数据科学技术相结合,以减轻隐私风险挑战。
{"title":"An Ethical Approach to Genomic Privacy Preserving Technology Development.","authors":"Lynette Hammond Gerido, Erman Ayday","doi":"10.1109/ichi61247.2024.00102","DOIUrl":"10.1109/ichi61247.2024.00102","url":null,"abstract":"<p><p>Demand for genomic research data and genetic testing results from cancer patients has grown exponentially. When a patient is diagnosed with a hereditary cancer syndrome, standard practice is for providers to encourage patients to discuss their results with their relatives and encourage those relatives to have clinical genetic testing and possibly participate in genetic research. Genomic research data and genetic testing results are being shared and connected in ways never imagined. Genomic data sharing is critical for advancing precision health and increasing diversity in global genome databases. However, these advancements often come with undesirable consequences, which call for additional privacy safeguards and research practices to protect hereditary cancer patients and their families because relatives who may have genomic information in common with the patient causing privacy risks to ripple throughout a kinship network. We propose to address this gap using an interdisciplinary approach integrating bioethical principles (autonomy, non-maleficence, beneficence, respect for persons, and equity) with data science techniques to mitigate privacy risk challenges.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"638-641"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143812955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating Generative Models in Medical Imaging. 评估医学成像中的生成模型。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00084
Liyue Fan, Ashley Bang, Luca Bonomi

Data synthesis can address important data availability challenges in biomedical informatics. Quantitative evaluation of generative models may help understand their applications to synthesizing biomedical data. This poster paper examines state-of-the-art generative models used in medical imaging, such as StyleGAN and DDPM models, and evaluates their performance in learning data manifolds and in the visible features of generated samples. Results show that existing generative models have much to improve based on the studied measures.

数据合成可以解决生物医学信息学中重要的数据可用性挑战。对生成模型进行定量评估有助于了解它们在生物医学数据合成中的应用。这篇海报论文研究了医学成像中使用的最先进的生成模型,如 StyleGAN 和 DDPM 模型,并评估了它们在学习数据流形和生成样本的可见特征方面的性能。结果表明,根据所研究的指标,现有的生成模型还有很多需要改进的地方。
{"title":"Evaluating Generative Models in Medical Imaging.","authors":"Liyue Fan, Ashley Bang, Luca Bonomi","doi":"10.1109/ichi61247.2024.00084","DOIUrl":"10.1109/ichi61247.2024.00084","url":null,"abstract":"<p><p>Data synthesis can address important data availability challenges in biomedical informatics. Quantitative evaluation of generative models may help understand their applications to synthesizing biomedical data. This poster paper examines state-of-the-art generative models used in medical imaging, such as StyleGAN and DDPM models, and evaluates their performance in learning data manifolds and in the visible features of generated samples. Results show that existing generative models have much to improve based on the studied measures.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"553-555"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating Membership Inference in Deep Survival Analyses with Differential Privacy. 利用差异隐私减轻深度生存分析中的成员推断。
Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ichi57859.2023.00022
Liyue Fan, Luca Bonomi

Deep neural networks have been increasingly integrated in healthcare applications to enable accurate predicative analyses. Sharing trained deep models not only facilitates knowledge integration in collaborative research efforts but also enables equitable access to computational intelligence. However, recent studies have shown that an adversary may leverage a shared model to learn the participation of a target individual in the training set. In this work, we investigate privacy-protecting model sharing for survival studies. Specifically, we pose three research questions. (1) Do deep survival models leak membership information? (2) How effective is differential privacy in defending against membership inference in deep survival analyses? (3) Are there other effects of differential privacy on deep survival analyses? Our study assesses the membership leakage in emerging deep survival models and develops differentially private training procedures to provide rigorous privacy protection. The experimental results show that deep survival models leak membership information and our approach effectively reduces membership inference risks. The results also show that differential privacy introduces a limited performance loss, and may improve the model robustness in the presence of noisy data, compared to non-private models.

深度神经网络已越来越多地集成到医疗保健应用中,以实现准确的预测分析。共享训练有素的深度模型不仅能促进合作研究工作中的知识整合,还能实现对计算智能的公平获取。然而,最近的研究表明,对手可能会利用共享模型来了解目标个体在训练集中的参与情况。在这项工作中,我们研究了用于生存研究的隐私保护模型共享。具体来说,我们提出了三个研究问题。(1) 深度生存模型会泄露成员信息吗?(2) 在深度生存分析中,差异隐私对防御成员推断的效果如何?(3) 差异隐私对深度生存分析是否有其他影响?我们的研究评估了新兴深度生存模型中的成员信息泄露,并开发了差异化隐私训练程序,以提供严格的隐私保护。实验结果表明,深度生存模型会泄露成员信息,而我们的方法能有效降低成员推断风险。实验结果还表明,与非隐私模型相比,差异化隐私会带来有限的性能损失,并可能提高模型在高噪声数据存在时的鲁棒性。
{"title":"Mitigating Membership Inference in Deep Survival Analyses with Differential Privacy.","authors":"Liyue Fan, Luca Bonomi","doi":"10.1109/ichi57859.2023.00022","DOIUrl":"10.1109/ichi57859.2023.00022","url":null,"abstract":"<p><p>Deep neural networks have been increasingly integrated in healthcare applications to enable accurate predicative analyses. Sharing trained deep models not only facilitates knowledge integration in collaborative research efforts but also enables equitable access to computational intelligence. However, recent studies have shown that an adversary may leverage a shared model to learn the participation of a target individual in the training set. In this work, we investigate privacy-protecting model sharing for survival studies. Specifically, we pose three research questions. (1) Do deep survival models leak membership information? (2) How effective is differential privacy in defending against membership inference in deep survival analyses? (3) Are there other effects of differential privacy on deep survival analyses? Our study assesses the membership leakage in emerging deep survival models and develops differentially private training procedures to provide rigorous privacy protection. The experimental results show that deep survival models leak membership information and our approach effectively reduces membership inference risks. The results also show that differential privacy introduces a limited performance loss, and may improve the model robustness in the presence of noisy data, compared to non-private models.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2023 ","pages":"81-90"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An LSTM-based Gesture-to-Speech Recognition System. 基于 LSTM 的手势语音识别系统
Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ichi57859.2023.00062
Riyad Bin Rafiq, Syed Araib Karim, Mark V Albert

Fast and flexible communication options are limited for speech-impaired people. Hand gestures coupled with fast, generated speech can enable a more natural social dynamic for those individuals - particularly individuals without the fine motor skills to type on a keyboard or tablet reliably. We created a mobile phone application prototype that generates audible responses associated with trained hand movements and collects and organizes the accelerometer data for rapid training to allow tailored models for individuals who may not be able to perform standard movements such as sign language. Six participants performed 11 distinct gestures to produce the dataset. A mobile application was developed that integrated a bidirectional LSTM network architecture which was trained from this data. After evaluation using nested subject-wise cross-validation, our integrated bidirectional LSTM model demonstrates an overall recall of 91.8% in recognition of these pre-selected 11 hand gestures, with recall at 95.8% when two commonly confused gestures were not assessed. This prototype is a step in creating a mobile phone system capable of capturing new gestures and developing tailored gesture recognition models for individuals in speech-impaired populations. Further refinement of this prototype can enable fast and efficient communication with the goal of further improving social interaction for individuals unable to speak.

对于有语言障碍的人来说,快速灵活的交流方式非常有限。手势加上快速生成的语音,可以为这些人提供更自然的社交动态,尤其是没有精细运动技能在键盘或平板电脑上打字的人。我们创建了一个手机应用原型,它能生成与训练有素的手部动作相关的声音反应,并收集和整理加速度计数据以进行快速训练,从而为那些可能无法完成手语等标准动作的人提供量身定制的模型。六名参与者做出了 11 种不同的手势,从而产生了数据集。开发的移动应用程序集成了双向 LSTM 网络架构,该架构根据这些数据进行了训练。在使用嵌套主体交叉验证进行评估后,我们的集成双向 LSTM 模型在识别预选的 11 种手势方面的总体召回率为 91.8%,在不评估两种常见混淆手势的情况下,召回率为 95.8%。这个原型是创建能够捕捉新手势的手机系统和为语言障碍人群开发定制手势识别模型的一个步骤。对这一原型的进一步改进可以实现快速高效的交流,从而进一步改善无法说话人群的社交互动。
{"title":"An LSTM-based Gesture-to-Speech Recognition System.","authors":"Riyad Bin Rafiq, Syed Araib Karim, Mark V Albert","doi":"10.1109/ichi57859.2023.00062","DOIUrl":"10.1109/ichi57859.2023.00062","url":null,"abstract":"<p><p>Fast and flexible communication options are limited for speech-impaired people. Hand gestures coupled with fast, generated speech can enable a more natural social dynamic for those individuals - particularly individuals without the fine motor skills to type on a keyboard or tablet reliably. We created a mobile phone application prototype that generates audible responses associated with trained hand movements and collects and organizes the accelerometer data for rapid training to allow tailored models for individuals who may not be able to perform standard movements such as sign language. Six participants performed 11 distinct gestures to produce the dataset. A mobile application was developed that integrated a bidirectional LSTM network architecture which was trained from this data. After evaluation using nested subject-wise cross-validation, our integrated bidirectional LSTM model demonstrates an overall recall of 91.8% in recognition of these pre-selected 11 hand gestures, with recall at 95.8% when two commonly confused gestures were not assessed. This prototype is a step in creating a mobile phone system capable of capturing new gestures and developing tailored gesture recognition models for individuals in speech-impaired populations. Further refinement of this prototype can enable fast and efficient communication with the goal of further improving social interaction for individuals unable to speak.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2023 ","pages":"430-438"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking Transformer-Based Models for Identifying Social Determinants of Health in Clinical Notes. 在临床笔记中识别健康的社会决定因素的基于变压器的模型基准。
Pub Date : 2023-06-01 Epub Date: 2023-12-11 DOI: 10.1109/ichi57859.2023.00102
Xiaoyu Wang, Dipankar Gupta, Michael Killian, Zhe He

Electronic health records (EHR) have been widely used in building machine learning models for health outcomes prediction. However, many EHR-based models are inherently biased due to lack of risk factors on social determinants of health (SDoH), which are responsible for up to 40% preventive deaths. As SDoH information is often captured in clinical notes, recent efforts have been made to extract such information from notes with natural language processing and append it to other structured data. In this work, we benchmark 7 pre-trained transformer-based models, including BERT, ALBERT, BioBERT, BioClinicalBERT, RoBERTa, ELECTRA, and RoBERTa-MIMIC-Trial, for recognizing SDoH terms using a previously annotated corpus of MIMIC-III clinical notes. Our study shows that BioClinicalBERT model performs best on F-1 scores (0.911, 0.923) under both strict and relaxed criteria. This work shows the promise of using transformer-based models for recognizing SDoH information from clinical notes.

电子健康记录(EHR)已被广泛用于建立健康结果预测的机器学习模型。然而,由于缺乏社会健康决定因素(SDoH)方面的风险因素,许多基于 EHR 的模型本身就存在偏差,而社会健康决定因素是造成高达 40% 预防性死亡的原因。由于 SDoH 信息通常记录在临床病历中,因此最近人们努力通过自然语言处理从病历中提取此类信息,并将其附加到其他结构化数据中。在这项工作中,我们使用先前注释的 MIMIC-III 临床笔记语料库,对 7 个基于转换器的预训练模型(包括 BERT、ALBERT、BioBERT、BioClinicalBERT、RoBERTa、ELECTRA 和 RoBERTa-MIMIC-Trial)进行了基准测试,以识别 SDoH 术语。我们的研究表明,在严格和宽松标准下,BioClinicalBERT 模型在 F-1 分数(0.911,0.923)上表现最佳。这项工作表明,使用基于转换器的模型识别临床笔记中的 SDoH 信息大有可为。
{"title":"Benchmarking Transformer-Based Models for Identifying Social Determinants of Health in Clinical Notes.","authors":"Xiaoyu Wang, Dipankar Gupta, Michael Killian, Zhe He","doi":"10.1109/ichi57859.2023.00102","DOIUrl":"10.1109/ichi57859.2023.00102","url":null,"abstract":"<p><p>Electronic health records (EHR) have been widely used in building machine learning models for health outcomes prediction. However, many EHR-based models are inherently biased due to lack of risk factors on social determinants of health (SDoH), which are responsible for up to 40% preventive deaths. As SDoH information is often captured in clinical notes, recent efforts have been made to extract such information from notes with natural language processing and append it to other structured data. In this work, we benchmark 7 pre-trained transformer-based models, including BERT, ALBERT, BioBERT, BioClinicalBERT, RoBERTa, ELECTRA, and RoBERTa-MIMIC-Trial, for recognizing SDoH terms using a previously annotated corpus of MIMIC-III clinical notes. Our study shows that BioClinicalBERT model performs best on F-1 scores (0.911, 0.923) under both strict and relaxed criteria. This work shows the promise of using transformer-based models for recognizing SDoH information from clinical notes.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2023 ","pages":"570-574"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1