首页 > 最新文献

In vitro models最新文献

英文 中文
Longitudinally aligned inner-patterned silk fibroin conduits for peripheral nerve regeneration. 纵向排列内图案丝素蛋白导管用于周围神经再生
Pub Date : 2023-04-18 eCollection Date: 2023-11-01 DOI: 10.1007/s44164-023-00050-3
Ane Escobar, Mariana R Carvalho, Tiago H Silva, Rui L Reis, J Miguel Oliveira

Peripheral nerve injuries represent a major clinical challenge, if nerve ends retract, there is no spontaneous regeneration, and grafts are required to proximate the nerve ends and give continuity to the nerve. The nerve guidance conduits (NGCs) presented in this work are silk fibroin (SF)-based, which is biocompatible and very versatile. The formation of conduits is obtained by forming a covalently cross-linked hydrogel in two concentric moulds, and the inner longitudinally aligned pattern of the SF NGCs is obtained through the use of a patterned inner mould. SF NGCs with two wall thicknesses of ~ 200 to ~ 400 μm are synthesized. Their physicochemical and mechanical characteristics have shown improved properties when the wall thickness is thicker such as resistance to kinking, which is of special importance as conduits might also be used to substitute nerves in flexible body parts. The Young modulus is higher for conduits with inner pattern, and none of the conduits has shown any salt deposition in presence of simulated body fluid, meaning they do not calcify; thus, the regeneration does not get impaired when conduits have contact with body fluids. In vitro studies demonstrated the biocompatibility of the SF NGCs; proliferation is enhanced when iSCs are cultured on top of conduits with longitudinally aligned pattern. BJ fibroblasts cannot infiltrate through the SF wall, avoiding scar tissue formation on the lumen of the graft when used in vivo. These conduits have been demonstrated to be very versatile and fulfil with the requirements for their use in PNR.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-023-00050-3.

{"title":"Longitudinally aligned inner-patterned silk fibroin conduits for peripheral nerve regeneration.","authors":"Ane Escobar, Mariana R Carvalho, Tiago H Silva, Rui L Reis, J Miguel Oliveira","doi":"10.1007/s44164-023-00050-3","DOIUrl":"10.1007/s44164-023-00050-3","url":null,"abstract":"<p><p>Peripheral nerve injuries represent a major clinical challenge, if nerve ends retract, there is no spontaneous regeneration, and grafts are required to proximate the nerve ends and give continuity to the nerve. The nerve guidance conduits (NGCs) presented in this work are silk fibroin (SF)-based, which is biocompatible and very versatile. The formation of conduits is obtained by forming a covalently cross-linked hydrogel in two concentric moulds, and the inner longitudinally aligned pattern of the SF NGCs is obtained through the use of a patterned inner mould. SF NGCs with two wall thicknesses of ~ 200 to ~ 400 μm are synthesized. Their physicochemical and mechanical characteristics have shown improved properties when the wall thickness is thicker such as resistance to kinking, which is of special importance as conduits might also be used to substitute nerves in flexible body parts. The Young modulus is higher for conduits with inner pattern, and none of the conduits has shown any salt deposition in presence of simulated body fluid, meaning they do not calcify; thus, the regeneration does not get impaired when conduits have contact with body fluids. In vitro studies demonstrated the biocompatibility of the SF NGCs; proliferation is enhanced when iSCs are cultured on top of conduits with longitudinally aligned pattern. BJ fibroblasts cannot infiltrate through the SF wall, avoiding scar tissue formation on the lumen of the graft when used in vivo. These conduits have been demonstrated to be very versatile and fulfil with the requirements for their use in PNR.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-023-00050-3.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"18 1","pages":"195-205"},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78987824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend. 纳米羟基磷灰石/天然高分子复合材料骨组织工程支架研究进展
Pub Date : 2023-04-13 eCollection Date: 2023-11-01 DOI: 10.1007/s44164-023-00049-w
G Radha, N Manjubaashini, S Balakumar

Nanostructured inorganic biomaterial emerged as the most essential platform to address traumatic and non-traumatic conditions of hard tissues in the current scenario. Synthetic inorganic biomaterials serve as an efficient and pathogen-free choice that overcomes the obstructions associated with autografts and allografts to promote new tissue regeneration, since nano-hydroxyapatite (nHAp) is a biomaterial that mimics the natural mineral composition of bones and teeth of human hard tissues, which is widely employed in orthopedics and dentistry. The nHAp-based materials exhibit bioactive, biocompatible, and osteoconductive features under in vitro and in vivo conditions. The brittle nature of synthetic nHAp leads to weak mechanical properties, which eventually confines the utility of nHAp in load-bearing applications. Hence, this review focuses on the recent trends in the fabrication and investigation of nHAp-based polymer nanocomposite scaffolds for bone regeneration. Employing different polymers and fabrication strategies would efficiently tailor the physicochemical properties, and tailor-made mechanical properties in competence with biodegradation, thereby enhancing their potential in biomedical utility, and exploring their efficacy under in vitro and in vivo conditions to make "HAp-based smart-biomaterials" for bone tissue engineering.

{"title":"Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend.","authors":"G Radha, N Manjubaashini, S Balakumar","doi":"10.1007/s44164-023-00049-w","DOIUrl":"10.1007/s44164-023-00049-w","url":null,"abstract":"<p><p>Nanostructured inorganic biomaterial emerged as the most essential platform to address traumatic and non-traumatic conditions of hard tissues in the current scenario. Synthetic inorganic biomaterials serve as an efficient and pathogen-free choice that overcomes the obstructions associated with autografts and allografts to promote new tissue regeneration, since nano-hydroxyapatite (nHAp) is a biomaterial that mimics the natural mineral composition of bones and teeth of human hard tissues, which is widely employed in orthopedics and dentistry. The nHAp-based materials exhibit bioactive, biocompatible, and osteoconductive features under in vitro and in vivo conditions. The brittle nature of synthetic nHAp leads to weak mechanical properties, which eventually confines the utility of nHAp in load-bearing applications. Hence, this review focuses on the recent trends in the fabrication and investigation of nHAp-based polymer nanocomposite scaffolds for bone regeneration. Employing different polymers and fabrication strategies would efficiently tailor the physicochemical properties, and tailor-made mechanical properties in competence with biodegradation, thereby enhancing their potential in biomedical utility, and exploring their efficacy under in vitro and in vivo conditions to make \"HAp-based smart-biomaterials\" for bone tissue engineering.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"2014 1","pages":"125-151"},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86819508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cortical Spheroid Model for Studying the Effects of Ischemic Brain Injury. 研究缺血性脑损伤影响的皮质球体模型
Pub Date : 2023-03-29 eCollection Date: 2023-04-01 DOI: 10.1007/s44164-023-00046-z
Rachel M McLaughlin, Ilayda Top, Amanda Laguna, Christien Hernandez, Harrison Katz, Liane L Livi, Liana Kramer, Samantha G Zambuto, Diane Hoffman-Kim

Purpose: Ischemic brain injury occurs when there is reduced or complete disruption of blood flow to a brain region, such as in stroke or severe traumatic brain injury. Even short interruptions can lead to devastating effects including excitotoxicity and widespread cell death. Despite many decades of research, there are still very few therapeutic options for patients suffering from brain ischemia.

Methods: We developed an in vitro brain ischemia model using our previously established 3D spheroids derived from primary postnatal rat cortex. These spheroids provide an in vivo-relevant model containing a similar cellular composition to the native cortex and a cell-synthesized extracellular matrix. This model is cost-effective, highly reproducible, and can be produced in a high-throughput manner, making it an ideal candidate for screening potential therapeutics. To study the cellular and molecular mechanisms of stroke in this model, spheroids were deprived of glucose, oxygen, or both oxygen and glucose for 24 h.

Results: Both oxygen and oxygen-glucose deprived spheroids demonstrated many of the hallmarks of ischemic brain injury, including a decrease in metabolism, an increase in neural dysfunction, breakdown in the neurovascular unit, and an increase in reactive astrocytes. Pretreatment of spheroids with the antioxidant agent N-acetylcysteine (NAC) mitigated the decrease in ATP after oxygen-glucose deprivation, was partially neuroprotective, and enhanced the expression of laminin.

Conclusion: This 3D cortical spheroid model provides a platform for studying ischemic injury and has the potential for screening therapeutics.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-023-00046-z.

{"title":"Cortical Spheroid Model for Studying the Effects of Ischemic Brain Injury.","authors":"Rachel M McLaughlin, Ilayda Top, Amanda Laguna, Christien Hernandez, Harrison Katz, Liane L Livi, Liana Kramer, Samantha G Zambuto, Diane Hoffman-Kim","doi":"10.1007/s44164-023-00046-z","DOIUrl":"10.1007/s44164-023-00046-z","url":null,"abstract":"<p><strong>Purpose: </strong>Ischemic brain injury occurs when there is reduced or complete disruption of blood flow to a brain region, such as in stroke or severe traumatic brain injury. Even short interruptions can lead to devastating effects including excitotoxicity and widespread cell death. Despite many decades of research, there are still very few therapeutic options for patients suffering from brain ischemia.</p><p><strong>Methods: </strong>We developed an in vitro brain ischemia model using our previously established 3D spheroids derived from primary postnatal rat cortex. These spheroids provide an in vivo-relevant model containing a similar cellular composition to the native cortex and a cell-synthesized extracellular matrix. This model is cost-effective, highly reproducible, and can be produced in a high-throughput manner, making it an ideal candidate for screening potential therapeutics. To study the cellular and molecular mechanisms of stroke in this model, spheroids were deprived of glucose, oxygen, or both oxygen and glucose for 24 h.</p><p><strong>Results: </strong>Both oxygen and oxygen-glucose deprived spheroids demonstrated many of the hallmarks of ischemic brain injury, including a decrease in metabolism, an increase in neural dysfunction, breakdown in the neurovascular unit, and an increase in reactive astrocytes. Pretreatment of spheroids with the antioxidant agent N-acetylcysteine (NAC) mitigated the decrease in ATP after oxygen-glucose deprivation, was partially neuroprotective, and enhanced the expression of laminin.</p><p><strong>Conclusion: </strong>This 3D cortical spheroid model provides a platform for studying ischemic injury and has the potential for screening therapeutics.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-023-00046-z.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"71 1","pages":"25-41"},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89492854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A human Caco-2-based co-culture model of the inflamed intestinal mucosa for particle toxicity studies. 用于颗粒毒性研究的基于caco -2的人炎症肠黏膜共培养模型
Pub Date : 2023-03-24 eCollection Date: 2023-04-01 DOI: 10.1007/s44164-023-00047-y
Maxi B Paul, Marén Schlief, Hannes Daher, Albert Braeuning, Holger Sieg, Linda Böhmert

The intestinal barrier is a complex interface of the human body, possessing the largest contact surface to nutrients and antigens and containing a major part of the immune system. It has to deal with continuous exposure to a broad mixture of essential, harmful, or useless substances and particles. In the context of plastic pollution and the ubiquitous occurrence of micro- and nanoplastics, oral exposure to such particles is of particular interest. Standard intestinal in vitro models, however, are unable to mimic the role of the immune system in the particle-exposed intestine. To allow for a closer look on the effect of particles on the intestinal immune system, we here developed a co-culture model to enable investigation of the epithelial brush border monolayer in a healthy and inflamed state. The model is based on well-established Caco-2 intestinal epithelial cells cultured in a Transwell™ system. Intraepithelial immune cells were mimicked by THP-1-derived M0-macrophages and MUTZ-3-derived dendritic cells. To fulfill the requirements needed for the investigation of particles, the co-culture system was developed without an additional matrix layer. Cell-cell contacts were established between interstitial and immune cells, and the Caco-2 standard cell culture medium was used, which is well-characterized for its role in defining the identity of particle dispersions. The model was characterized using confocal microscopy, membrane integrity measurements, and cytokine release assays from inflamed and healthy cells. Finally, the new co-culture model was used for investigation on polylactic acid, melamine formaldehyde resin, and polymethylmethacrylate plastic micro- and nanoparticles.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-023-00047-y.

{"title":"A human Caco-2-based co-culture model of the inflamed intestinal mucosa for particle toxicity studies.","authors":"Maxi B Paul, Marén Schlief, Hannes Daher, Albert Braeuning, Holger Sieg, Linda Böhmert","doi":"10.1007/s44164-023-00047-y","DOIUrl":"10.1007/s44164-023-00047-y","url":null,"abstract":"<p><p>The intestinal barrier is a complex interface of the human body, possessing the largest contact surface to nutrients and antigens and containing a major part of the immune system. It has to deal with continuous exposure to a broad mixture of essential, harmful, or useless substances and particles. In the context of plastic pollution and the ubiquitous occurrence of micro- and nanoplastics, oral exposure to such particles is of particular interest. Standard intestinal in vitro models, however, are unable to mimic the role of the immune system in the particle-exposed intestine. To allow for a closer look on the effect of particles on the intestinal immune system, we here developed a co-culture model to enable investigation of the epithelial brush border monolayer in a healthy and inflamed state. The model is based on well-established Caco-2 intestinal epithelial cells cultured in a Transwell™ system. Intraepithelial immune cells were mimicked by THP-1-derived M0-macrophages and MUTZ-3-derived dendritic cells. To fulfill the requirements needed for the investigation of particles, the co-culture system was developed without an additional matrix layer. Cell-cell contacts were established between interstitial and immune cells, and the Caco-2 standard cell culture medium was used, which is well-characterized for its role in defining the identity of particle dispersions. The model was characterized using confocal microscopy, membrane integrity measurements, and cytokine release assays from inflamed and healthy cells. Finally, the new co-culture model was used for investigation on polylactic acid, melamine formaldehyde resin, and polymethylmethacrylate plastic micro- and nanoparticles.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-023-00047-y.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"39 1","pages":"43-64"},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756451/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81698449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: Publisher Correction: Neurovascular models for organ-on-a-chips. 发布者更正:器官芯片的神经血管模型
Pub Date : 2023-02-13 eCollection Date: 2022-12-01 DOI: 10.1007/s44164-023-00045-0
Eunkyung Ko, Roger D Kamm

[This corrects the article DOI: 10.1007/s44164-022-00015-y.].

{"title":"Erratum: Publisher Correction: Neurovascular models for organ-on-a-chips.","authors":"Eunkyung Ko, Roger D Kamm","doi":"10.1007/s44164-023-00045-0","DOIUrl":"10.1007/s44164-023-00045-0","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1007/s44164-022-00015-y.].</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"9 1","pages":"475"},"PeriodicalIF":0.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88000889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: In situ 3D spatiotemporal measurement of soluble biomarkers in spheroid culture. 校正:球体培养中可溶性生物标志物的原位三维时空测量
Pub Date : 2023-02-09 eCollection Date: 2023-04-01 DOI: 10.1007/s44164-023-00042-3
Alexander J McGhee, Eric O McGhee, Jack E Famiglietti, W Gregory Sawyer

[This corrects the article DOI: 10.1007/s44164-022-00037-6.].

{"title":"Correction: In situ 3D spatiotemporal measurement of soluble biomarkers in spheroid culture.","authors":"Alexander J McGhee, Eric O McGhee, Jack E Famiglietti, W Gregory Sawyer","doi":"10.1007/s44164-023-00042-3","DOIUrl":"10.1007/s44164-023-00042-3","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1007/s44164-022-00037-6.].</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"80 9 1","pages":"65-66"},"PeriodicalIF":0.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83440957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling. 用于体外肿瘤微环境仿生三维建模的功能生物材料
Pub Date : 2023-01-27 eCollection Date: 2023-04-01 DOI: 10.1007/s44164-023-00043-2
Tanvir Ahmed

The translational potential of promising anticancer medications and treatments may be enhanced by the creation of 3D in vitro models that can accurately reproduce native tumor microenvironments. Tumor microenvironments for cancer treatment and research can be built in vitro using biomaterials. Three-dimensional in vitro cancer models have provided new insights into the biology of cancer. Cancer researchers are creating artificial three-dimensional tumor models based on functional biomaterials that mimic the microenvironment of the real tumor. Our understanding of tumor stroma activity over the course of cancer has improved because of the use of scaffold and matrix-based three-dimensional systems intended for regenerative medicine. Scientists have created synthetic tumor models thanks to recent developments in materials engineering. These models enable researchers to investigate the biology of cancer and assess the therapeutic effectiveness of available medications. The emergence of biomaterial engineering technologies with the potential to hasten treatment outcomes is highlighted in this review, which also discusses the influence of creating in vitro biomimetic 3D tumor microenvironments utilizing functional biomaterials. Future cancer treatments will rely much more heavily on biomaterials engineering.

{"title":"Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling.","authors":"Tanvir Ahmed","doi":"10.1007/s44164-023-00043-2","DOIUrl":"10.1007/s44164-023-00043-2","url":null,"abstract":"<p><p>The translational potential of promising anticancer medications and treatments may be enhanced by the creation of 3D in vitro models that can accurately reproduce native tumor microenvironments. Tumor microenvironments for cancer treatment and research can be built in vitro using biomaterials. Three-dimensional in vitro cancer models have provided new insights into the biology of cancer. Cancer researchers are creating artificial three-dimensional tumor models based on functional biomaterials that mimic the microenvironment of the real tumor. Our understanding of tumor stroma activity over the course of cancer has improved because of the use of scaffold and matrix-based three-dimensional systems intended for regenerative medicine. Scientists have created synthetic tumor models thanks to recent developments in materials engineering. These models enable researchers to investigate the biology of cancer and assess the therapeutic effectiveness of available medications. The emergence of biomaterial engineering technologies with the potential to hasten treatment outcomes is highlighted in this review, which also discusses the influence of creating in vitro biomimetic 3D tumor microenvironments utilizing functional biomaterials. Future cancer treatments will rely much more heavily on biomaterials engineering.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"24 1","pages":"1-23"},"PeriodicalIF":0.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88609387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: Publisher Correction: Development and evaluation of a bovine lung-on-chip (bLOC) to study bovine respiratory diseases. 出版者更正:开发和评估牛肺芯片(bLOC)研究牛呼吸道疾病
Pub Date : 2023-01-18 eCollection Date: 2022-12-01 DOI: 10.1007/s44164-023-00041-4
Diane F Lee, Clare L Thompson, Ronald E Baynes, Hiroko Enomoto, Geof W Smith, Mark A Chambers

[This corrects the article DOI: 10.1007/s44164-022-00030-z.].

{"title":"Erratum: Publisher Correction: Development and evaluation of a bovine lung-on-chip (bLOC) to study bovine respiratory diseases.","authors":"Diane F Lee, Clare L Thompson, Ronald E Baynes, Hiroko Enomoto, Geof W Smith, Mark A Chambers","doi":"10.1007/s44164-023-00041-4","DOIUrl":"10.1007/s44164-023-00041-4","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1007/s44164-022-00030-z.].</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"117 1","pages":"473-474"},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77144685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro cancer models as an approach to identify targetable developmental phenotypes in cancer stem cells. 体外癌症模型作为鉴定癌症干细胞靶向发育表型的方法。
Pub Date : 2023-01-01 Epub Date: 2023-05-12 DOI: 10.1007/s44164-023-00051-2
Adrian Biddle

Cancer therapeutics are often highly toxic to the patient, and they often elicit rapid resistance in the tumour. Recent advances have suggested a potential new way in which we may improve on this, through two important concepts: (1) that multitudinous pathway alterations converge on a limited number of cancer cellular phenotypes, and (2) that these cancer cellular phenotypes depend on reactivation of developmental processes that are only minimally active in adult tissues. This provides a rationale for pursuing an approach of 'drugging the phenotype' focussed on targeting reactivated cellular processes from embryonic development. In this concepts paper, we cover these recent developments and their implications for the development of new cancer therapeutics that can avoid patient toxicity and acquired resistance. We then propose that in vitro tumour and developmental models can provide an experimental approach to identify and target the specific developmental processes at play, with a focus on the reactivation of developmental processes in the cancer stem cells that drive tumour progression and spread. Ultimately, the aim is to identify cellular processes that are specific to developmental phenotypes, are reactivated in cancer stem cells, and are essential to tumour progression. Therapeutically targeting these cellular processes could represent a new approach of 'drugging the phenotype' that treats the tumour whilst avoiding patient toxicity or the acquisition of therapeutic resistance.

癌症疗法通常对患者具有高度毒性,并且通常会引起肿瘤的快速耐药性。最近的进展表明,我们可以通过两个重要的概念来改善这一点,这是一种潜在的新方法:(1)多种途径的改变集中在有限数量的癌症细胞表型上,以及(2)这些癌症细胞表型依赖于发育过程的重新激活,而这些发育过程在成年组织中仅具有最低的活性。这为寻求一种专注于靶向胚胎发育中重新激活的细胞过程的“表型药物化”方法提供了理论依据。在这篇概念论文中,我们介绍了这些最新进展及其对开发新的癌症疗法的影响,这些疗法可以避免患者毒性和获得性耐药性。然后,我们提出,体外肿瘤和发育模型可以提供一种实验方法来识别和靶向正在发挥作用的特定发育过程,重点是癌症干细胞中驱动肿瘤进展和扩散的发育过程的再激活。最终,目的是确定发育表型特异性的、在癌症干细胞中被重新激活的、对肿瘤进展至关重要的细胞过程。靶向这些细胞过程的治疗可能代表了一种“给表型用药”的新方法,可以治疗肿瘤,同时避免患者毒性或获得治疗耐药性。
{"title":"In vitro cancer models as an approach to identify targetable developmental phenotypes in cancer stem cells.","authors":"Adrian Biddle","doi":"10.1007/s44164-023-00051-2","DOIUrl":"10.1007/s44164-023-00051-2","url":null,"abstract":"<p><p>Cancer therapeutics are often highly toxic to the patient, and they often elicit rapid resistance in the tumour. Recent advances have suggested a potential new way in which we may improve on this, through two important concepts: (1) that multitudinous pathway alterations converge on a limited number of cancer cellular phenotypes, and (2) that these cancer cellular phenotypes depend on reactivation of developmental processes that are only minimally active in adult tissues. This provides a rationale for pursuing an approach of 'drugging the phenotype' focussed on targeting reactivated cellular processes from embryonic development. In this concepts paper, we cover these recent developments and their implications for the development of new cancer therapeutics that can avoid patient toxicity and acquired resistance. We then propose that in vitro tumour and developmental models can provide an experimental approach to identify and target the specific developmental processes at play, with a focus on the reactivation of developmental processes in the cancer stem cells that drive tumour progression and spread. Ultimately, the aim is to identify cellular processes that are specific to developmental phenotypes, are reactivated in cancer stem cells, and are essential to tumour progression. Therapeutically targeting these cellular processes could represent a new approach of 'drugging the phenotype' that treats the tumour whilst avoiding patient toxicity or the acquisition of therapeutic resistance.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"2 3-4","pages":"83-88"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41123672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of a 3D hydrogel-based model to replace use of animals for passaging patient-derived xenografts. 基于3D水凝胶的模型的应用,以取代使用动物通过患者来源的异种移植物。
Pub Date : 2023-01-01 Epub Date: 2023-05-09 DOI: 10.1007/s44164-023-00048-x
Sal Jones, Jennifer C Ashworth, Marian Meakin, Pamela Collier, Catherine Probert, Alison A Ritchie, Catherine L R Merry, Anna M Grabowska

Purpose: This 3D in vitro cancer model for propagation of patient-derived cells, using a synthetic self-assembling peptide gel, allows the formation of a fully characterised, tailorable tumour microenvironment. Unlike many existing 3D cancer models, the peptide gel is inert, apart from molecules and motifs deliberately added or produced by cells within the model.

Methods: Breast cancer patient-derived xenografts (PDXs) were disaggregated and embedded in a peptide hydrogel. Growth was monitored by microscopic examination and at intervals, cells were extracted from the gels and passaged on into fresh gels. Passaged cells were assessed by qPCR and immunostaining techniques for the retention of characteristic markers.

Results: Breast cancer PDXs were shown to be capable of expansion over four or more passages in the peptide gel. Contaminating mouse cells were found to be rapidly removed by successive passages. The resulting human cells were shown to be compatible with a range of common assays useful for assessing survival, growth and maintenance of heterogeneity.

Conclusions: Based on these findings, the hydrogel has the potential to provide an effective and practical breast cancer model for the passage of PDXs which will have the added benefits of being relatively cheap, fully-defined and free from the use of animals or animal products. Encapsulated cells will require further validation to confirm the maintenance of cell heterogeneity, genotypes and phenotypes across passage, but with further development, including the addition of bespoke cell and matrix components of the tumour microenvironment, there is clear potential to model other cancer types.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-023-00048-x.

目的:这种3D体外癌症患者衍生细胞繁殖模型,使用合成的自组装肽凝胶,可以形成完全表征的、可定制的肿瘤微环境。与许多现有的3D癌症模型不同,除了模型中细胞故意添加或产生的分子和图案外,肽凝胶是惰性的。方法:将癌症患者来源的异种移植物(PDX)分解并包埋在肽水凝胶中。通过显微镜检查监测生长,并每隔一段时间从凝胶中提取细胞并传代到新鲜凝胶中。通过qPCR和免疫染色技术评估传代细胞特征标记的保留。结果:癌症PDX显示能够在肽凝胶中扩展四个或更多个通道。发现污染的小鼠细胞可以通过连续传代快速去除。所得到的人类细胞被证明与一系列用于评估生存、生长和异质性维持的常见测定方法兼容。结论:基于这些发现,水凝胶有可能为PDX的通过提供一种有效和实用的癌症模型,这将具有相对便宜、完全明确和不使用动物或动物产品的额外好处。封装的细胞将需要进一步验证,以确认细胞异质性、基因型和表型在整个传代过程中的维持,但随着进一步的发展,包括添加肿瘤微环境的定制细胞和基质成分,有明显的潜力对其他癌症类型进行建模。补充信息:在线版本包含补充材料,可访问10.1007/s44164-023-00048-x。
{"title":"Application of a 3D hydrogel-based model to replace use of animals for passaging patient-derived xenografts.","authors":"Sal Jones, Jennifer C Ashworth, Marian Meakin, Pamela Collier, Catherine Probert, Alison A Ritchie, Catherine L R Merry, Anna M Grabowska","doi":"10.1007/s44164-023-00048-x","DOIUrl":"10.1007/s44164-023-00048-x","url":null,"abstract":"<p><strong>Purpose: </strong>This 3D in vitro cancer model for propagation of patient-derived cells, using a synthetic self-assembling peptide gel, allows the formation of a fully characterised, tailorable tumour microenvironment. Unlike many existing 3D cancer models, the peptide gel is inert, apart from molecules and motifs deliberately added or produced by cells within the model.</p><p><strong>Methods: </strong>Breast cancer patient-derived xenografts (PDXs) were disaggregated and embedded in a peptide hydrogel. Growth was monitored by microscopic examination and at intervals, cells were extracted from the gels and passaged on into fresh gels. Passaged cells were assessed by qPCR and immunostaining techniques for the retention of characteristic markers.</p><p><strong>Results: </strong>Breast cancer PDXs were shown to be capable of expansion over four or more passages in the peptide gel. Contaminating mouse cells were found to be rapidly removed by successive passages. The resulting human cells were shown to be compatible with a range of common assays useful for assessing survival, growth and maintenance of heterogeneity.</p><p><strong>Conclusions: </strong>Based on these findings, the hydrogel has the potential to provide an effective and practical breast cancer model for the passage of PDXs which will have the added benefits of being relatively cheap, fully-defined and free from the use of animals or animal products. Encapsulated cells will require further validation to confirm the maintenance of cell heterogeneity, genotypes and phenotypes across passage, but with further development, including the addition of bespoke cell and matrix components of the tumour microenvironment, there is clear potential to model other cancer types.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-023-00048-x.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"2 3-4","pages":"99-111"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
In vitro models
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1