首页 > 最新文献

Information processing in medical imaging : proceedings of the ... conference最新文献

英文 中文
Blob Loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation Blob损失:语义分割的实例不平衡感知损失函数
Pub Date : 2022-05-17 DOI: 10.48550/arXiv.2205.08209
F. Kofler, Suprosanna Shit, I. Ezhov, L. Fidon, Rami Al-Maskari, Hongwei Li, H. Bhatia, T. Loehr, M. Piraud, Ali Erturk, J. Kirschke, J. Peeken, Tom Kamiel Magda Vercauteren, C. Zimmer, B. Wiestler, Bjoern H Menze
Deep convolutional neural networks (CNN) have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Dice coefficient (DSC). By design, DSC can tackle class imbalance, however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory DSC. Nevertheless, detecting tiny instances is crucial for many applications, such as disease monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, emph{blob loss}, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. emph{Blob loss} is designed for semantic segmentation problems where detecting multiple instances matters. We extensively evaluate a DSC-based emph{blob loss} in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.
深度卷积神经网络(CNN)在语义分割任务中已经被证明是非常有效的。最流行的损失函数是针对改进的体积分数,如Dice系数(DSC)。通过设计,DSC可以处理类的不平衡,但是,它不能识别类中的实例不平衡。因此,大型前台实例可以支配较小的实例,并且仍然产生令人满意的DSC。然而,检测微小实例对于许多应用程序(如疾病监测)至关重要。例如,在多发性硬化症患者的随访中,定位和监测小范围病变是必不可少的。我们提出了一种新的损失函数,emph{blob损失},主要目的是最大化实例级检测指标,如F1分数和灵敏度。emph{Blob损失}是为语义分割问题而设计的,其中检测多个实例很重要。我们在五个复杂的3D语义分割任务中广泛评估了基于dsc的emph{blob损失},这些任务在纹理和形态方面具有明显的实例异质性。与软骰子损失相比,我们达到了5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.
{"title":"Blob Loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation","authors":"F. Kofler, Suprosanna Shit, I. Ezhov, L. Fidon, Rami Al-Maskari, Hongwei Li, H. Bhatia, T. Loehr, M. Piraud, Ali Erturk, J. Kirschke, J. Peeken, Tom Kamiel Magda Vercauteren, C. Zimmer, B. Wiestler, Bjoern H Menze","doi":"10.48550/arXiv.2205.08209","DOIUrl":"https://doi.org/10.48550/arXiv.2205.08209","url":null,"abstract":"Deep convolutional neural networks (CNN) have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Dice coefficient (DSC). By design, DSC can tackle class imbalance, however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory DSC. Nevertheless, detecting tiny instances is crucial for many applications, such as disease monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, emph{blob loss}, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. emph{Blob loss} is designed for semantic segmentation problems where detecting multiple instances matters. We extensively evaluate a DSC-based emph{blob loss} in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"85 1","pages":"755-767"},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83889020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Modeling the Shape of the Brain Connectome via Deep Neural Networks 通过深度神经网络建模大脑连接组的形状
Pub Date : 2022-03-06 DOI: 10.1007/978-3-031-34048-2_23
Haocheng Dai, M. Bauer, P. Fletcher, S. Joshi
{"title":"Modeling the Shape of the Brain Connectome via Deep Neural Networks","authors":"Haocheng Dai, M. Bauer, P. Fletcher, S. Joshi","doi":"10.1007/978-3-031-34048-2_23","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_23","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"14 1","pages":"291-302"},"PeriodicalIF":0.0,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90181431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Bidirectional Unsupervised Domain Adaptation Segmentation Framework 一种新的双向无监督域自适应分割框架
Pub Date : 2021-08-18 DOI: 10.1007/978-3-030-78191-0_38
Munan Ning, Cheng Bian, Dong Wei, Shuang Yu, Chenglang Yuan, Yaohua Wang, Yang Guo, Kai Ma, Yefeng Zheng
{"title":"A New Bidirectional Unsupervised Domain Adaptation Segmentation Framework","authors":"Munan Ning, Cheng Bian, Dong Wei, Shuang Yu, Chenglang Yuan, Yaohua Wang, Yang Guo, Kai Ma, Yefeng Zheng","doi":"10.1007/978-3-030-78191-0_38","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_38","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"215 1","pages":"492-503"},"PeriodicalIF":0.0,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77763892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Segmentation with Multiple Acceptable Annotations: A Case Study of Myocardial Segmentation in Contrast Echocardiography 分割与多个可接受的注释:心肌分割对比超声心动图的一个案例研究
Pub Date : 2021-06-29 DOI: 10.1007/978-3-030-78191-0_37
Dewen Zeng, Mingqi Li, Yukun Ding, Xiaowei Xu, Qiu Xie, Ruixue Xu, Hongwen Fei, Meiping Huang, Zhuang Jian, Yiyu Shi
{"title":"Segmentation with Multiple Acceptable Annotations: A Case Study of Myocardial Segmentation in Contrast Echocardiography","authors":"Dewen Zeng, Mingqi Li, Yukun Ding, Xiaowei Xu, Qiu Xie, Ruixue Xu, Hongwen Fei, Meiping Huang, Zhuang Jian, Yiyu Shi","doi":"10.1007/978-3-030-78191-0_37","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_37","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"91 1","pages":"478-491"},"PeriodicalIF":0.0,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78329412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A Higher Order Manifold-Valued Convolutional Neural Network with Applications to Diffusion MRI Processing 高阶流形值卷积神经网络在弥散核磁共振处理中的应用
Pub Date : 2021-06-28 DOI: 10.1007/978-3-030-78191-0_24
Jose J. Bouza, Chun-Hao Yang, D. Vaillancourt, B. Vemuri
{"title":"A Higher Order Manifold-Valued Convolutional Neural Network with Applications to Diffusion MRI Processing","authors":"Jose J. Bouza, Chun-Hao Yang, D. Vaillancourt, B. Vemuri","doi":"10.1007/978-3-030-78191-0_24","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_24","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"23 1","pages":"304-317"},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72852263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Discovering Spreading Pathways of Neuropathological Events in Alzheimer's Disease Using Harmonic Wavelets 利用谐波小波发现阿尔茨海默病神经病理事件的传播途径
Pub Date : 2021-06-28 DOI: 10.1007/978-3-030-78191-0_18
Jiazhou Chen, Defu Yang, Hongmin Cai, M. Styner, Guorong Wu
{"title":"Discovering Spreading Pathways of Neuropathological Events in Alzheimer's Disease Using Harmonic Wavelets","authors":"Jiazhou Chen, Defu Yang, Hongmin Cai, M. Styner, Guorong Wu","doi":"10.1007/978-3-030-78191-0_18","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_18","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"25 1 1","pages":"228-240"},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88070000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Continual Active Learning for Efficient Adaptation of Machine Learning Models to Changing Image Acquisition 持续主动学习使机器学习模型有效适应不断变化的图像采集
Pub Date : 2021-06-07 DOI: 10.1007/978-3-030-78191-0_50
Matthias Perkonigg, J. Hofmanninger, G. Langs
{"title":"Continual Active Learning for Efficient Adaptation of Machine Learning Models to Changing Image Acquisition","authors":"Matthias Perkonigg, J. Hofmanninger, G. Langs","doi":"10.1007/978-3-030-78191-0_50","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_50","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"40 1","pages":"649-660"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76468866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Representation Disentanglement for Multi-modal Brain MRI Analysis. 多模态脑MRI分析的表征解缠。
Pub Date : 2021-06-01 Epub Date: 2021-06-14 DOI: 10.1007/978-3-030-78191-0_25
Jiahong Ouyang, Ehsan Adeli, Kilian M Pohl, Qingyu Zhao, Greg Zaharchuk

Multi-modal MRIs are widely used in neuroimaging applications since different MR sequences provide complementary information about brain structures. Recent works have suggested that multi-modal deep learning analysis can benefit from explicitly disentangling anatomical (shape) and modality (appearance) information into separate image presentations. In this work, we challenge mainstream strategies by showing that they do not naturally lead to representation disentanglement both in theory and in practice. To address this issue, we propose a margin loss that regularizes the similarity in relationships of the representations across subjects and modalities. To enable robust training, we further use a conditional convolution to design a single model for encoding images of all modalities. Lastly, we propose a fusion function to combine the disentangled anatomical representations as a set of modality-invariant features for downstream tasks. We evaluate the proposed method on three multi-modal neuroimaging datasets. Experiments show that our proposed method can achieve superior disentangled representations compared to existing disentanglement strategies. Results also indicate that the fused anatomical representation has potential in the downstream task of zero-dose PET reconstruction and brain tumor segmentation.

多模态核磁共振被广泛应用于神经成像应用,因为不同的核磁共振序列提供了大脑结构的互补信息。最近的研究表明,多模态深度学习分析可以从明确地将解剖(形状)和模态(外观)信息分离到单独的图像表示中受益。在这项工作中,我们通过表明它们在理论和实践中都不会自然地导致表征解纠缠来挑战主流策略。为了解决这个问题,我们提出了一个边际损失,它使跨主体和模态的表征关系中的相似性规范化。为了实现鲁棒性训练,我们进一步使用条件卷积来设计一个单一的模型来编码所有模态的图像。最后,我们提出了一个融合函数,将解纠缠的解剖表示组合为一组模态不变的特征,用于下游任务。我们在三个多模态神经成像数据集上评估了所提出的方法。实验表明,与现有的解纠缠策略相比,我们提出的方法可以获得更好的解纠缠表示。结果还表明,融合的解剖表征在后续的零剂量PET重建和脑肿瘤分割任务中具有潜在的应用价值。
{"title":"Representation Disentanglement for Multi-modal Brain MRI Analysis.","authors":"Jiahong Ouyang,&nbsp;Ehsan Adeli,&nbsp;Kilian M Pohl,&nbsp;Qingyu Zhao,&nbsp;Greg Zaharchuk","doi":"10.1007/978-3-030-78191-0_25","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_25","url":null,"abstract":"<p><p>Multi-modal MRIs are widely used in neuroimaging applications since different MR sequences provide complementary information about brain structures. Recent works have suggested that multi-modal deep learning analysis can benefit from explicitly disentangling anatomical (shape) and modality (appearance) information into separate image presentations. In this work, we challenge mainstream strategies by showing that they do not naturally lead to representation disentanglement both in theory and in practice. To address this issue, we propose a margin loss that regularizes the similarity in relationships of the representations across subjects and modalities. To enable robust training, we further use a conditional convolution to design a single model for encoding images of all modalities. Lastly, we propose a fusion function to combine the disentangled anatomical representations as a set of modality-invariant features for downstream tasks. We evaluate the proposed method on three multi-modal neuroimaging datasets. Experiments show that our proposed method can achieve superior disentangled representations compared to existing disentanglement strategies. Results also indicate that the fused anatomical representation has potential in the downstream task of zero-dose PET reconstruction and brain tumor segmentation.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":" ","pages":"321-333"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844656/pdf/nihms-1776957.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39929535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Going Beyond Saliency Maps: Training Deep Models to Interpret Deep Models. 超越显著性地图:训练深度模型,解读深度模型。
Pub Date : 2021-06-01 Epub Date: 2021-06-14 DOI: 10.1007/978-3-030-78191-0_6
Zixuan Liu, Ehsan Adeli, Kilian M Pohl, Qingyu Zhao

Interpretability is a critical factor in applying complex deep learning models to advance the understanding of brain disorders in neuroimaging studies. To interpret the decision process of a trained classifier, existing techniques typically rely on saliency maps to quantify the voxel-wise or feature-level importance for classification through partial derivatives. Despite providing some level of localization, these maps are not human-understandable from the neuroscience perspective as they often do not inform the specific type of morphological changes linked to the brain disorder. Inspired by the image-to-image translation scheme, we propose to train simulator networks to inject (or remove) patterns of the disease into a given MRI based on a warping operation, such that the classifier increases (or decreases) its confidence in labeling the simulated MRI as diseased. To increase the robustness of training, we propose to couple the two simulators into a unified model based on conditional convolution. We applied our approach to interpreting classifiers trained on a synthetic dataset and two neuroimaging datasets to visualize the effect of Alzheimer's disease and alcohol dependence. Compared to the saliency maps generated by baseline approaches, our simulations and visualizations based on the Jacobian determinants of the warping field reveal meaningful and understandable patterns related to the diseases.

在神经成像研究中,应用复杂的深度学习模型来促进对脑部疾病的理解,可解释性是一个关键因素。为了解释训练有素的分类器的决策过程,现有技术通常依赖于显著性图,通过偏导数量化体素或特征级分类的重要性。尽管这些图谱提供了一定程度的定位,但从神经科学的角度来看,它们并不为人类所理解,因为它们通常无法告知与脑部疾病相关的形态变化的具体类型。受图像到图像转换方案的启发,我们建议训练模拟器网络,根据扭曲操作将疾病模式注入(或移除)给定的磁共振成像中,从而增加(或减少)分类器将模拟磁共振成像标记为疾病的置信度。为了提高训练的鲁棒性,我们建议将两个模拟器结合到一个基于条件卷积的统一模型中。我们将我们的方法应用于解释在合成数据集和两个神经成像数据集上训练的分类器,以直观显示阿尔茨海默病和酒精依赖的影响。与基线方法生成的显著性地图相比,我们基于翘曲场雅各布决定因素的模拟和可视化揭示了与疾病相关的有意义且可理解的模式。
{"title":"Going Beyond Saliency Maps: Training Deep Models to Interpret Deep Models.","authors":"Zixuan Liu, Ehsan Adeli, Kilian M Pohl, Qingyu Zhao","doi":"10.1007/978-3-030-78191-0_6","DOIUrl":"10.1007/978-3-030-78191-0_6","url":null,"abstract":"<p><p>Interpretability is a critical factor in applying complex deep learning models to advance the understanding of brain disorders in neuroimaging studies. To interpret the decision process of a trained classifier, existing techniques typically rely on <i>saliency maps</i> to quantify the voxel-wise or feature-level importance for classification through partial derivatives. Despite providing some level of localization, these maps are not human-understandable from the neuroscience perspective as they often do not inform the specific type of morphological changes linked to the brain disorder. Inspired by the image-to-image translation scheme, we propose to train simulator networks to inject (or remove) patterns of the disease into a given MRI based on a warping operation, such that the classifier increases (or decreases) its confidence in labeling the simulated MRI as diseased. To increase the robustness of training, we propose to couple the two simulators into a unified model based on <i>conditional convolution</i>. We applied our approach to interpreting classifiers trained on a synthetic dataset and two neuroimaging datasets to visualize the effect of Alzheimer's disease and alcohol dependence. Compared to the saliency maps generated by baseline approaches, our simulations and visualizations based on the Jacobian determinants of the warping field reveal meaningful and understandable patterns related to the diseases.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":" ","pages":"71-82"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451265/pdf/nihms-1738816.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39436817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data. 等变球面反卷积:从球面数据中学习稀疏方向分布函数。
Pub Date : 2021-06-01 DOI: 10.1007/978-3-030-78191-0_21
Axel Elaldi, Neel Dey, Heejong Kim, Guido Gerig

We present a rotation-equivariant self-supervised learning framework for the sparse deconvolution of non-negative scalar fields on the unit sphere. Spherical signals with multiple peaks naturally arise in Diffusion MRI (dMRI), where each voxel consists of one or more signal sources corresponding to anisotropic tissue structure such as white matter. Due to spatial and spectral partial voluming, clinically-feasible dMRI struggles to resolve crossing-fiber white matter configurations, leading to extensive development in spherical deconvolution methodology to recover underlying fiber directions. However, these methods are typically linear and struggle with small crossing-angles and partial volume fraction estimation. In this work, we improve on current methodologies by nonlinearly estimating fiber structures via self-supervised spherical convolutional networks with guaranteed equivariance to spherical rotation. We perform validation via extensive single and multi-shell synthetic benchmarks demonstrating competitive performance against common base-lines. We further show improved downstream performance on fiber tractography measures on the Tractometer benchmark dataset. Finally, we show downstream improvements in terms of tractography and partial volume estimation on a multi-shell dataset of human subjects.

提出了单位球上非负标量场稀疏反卷积的旋转等变自监督学习框架。具有多峰的球形信号在扩散MRI (dMRI)中自然出现,其中每个体素由一个或多个与各向异性组织结构(如白质)相对应的信号源组成。由于空间和光谱部分体积,临床上可行的dMRI难以解决交叉纤维白质结构,导致球形反褶积方法的广泛发展,以恢复潜在的纤维方向。然而,这些方法通常是线性的,并且难以进行小的交叉角和部分体积分数估计。在这项工作中,我们改进了现有的方法,通过保证球旋转等方差的自监督球面卷积网络非线性估计纤维结构。我们通过广泛的单壳和多壳合成基准进行验证,展示了与普通基线相比的竞争性能。我们在Tractometer基准数据集上进一步展示了光纤牵引测量的下游性能改进。最后,我们在人类受试者的多壳数据集上展示了在示踪和部分体积估计方面的下游改进。
{"title":"Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data.","authors":"Axel Elaldi,&nbsp;Neel Dey,&nbsp;Heejong Kim,&nbsp;Guido Gerig","doi":"10.1007/978-3-030-78191-0_21","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_21","url":null,"abstract":"<p><p>We present a rotation-equivariant self-supervised learning framework for the sparse deconvolution of non-negative scalar fields on the unit sphere. Spherical signals with multiple peaks naturally arise in Diffusion MRI (dMRI), where each voxel consists of one or more signal sources corresponding to anisotropic tissue structure such as white matter. Due to spatial and spectral partial voluming, clinically-feasible dMRI struggles to resolve crossing-fiber white matter configurations, leading to extensive development in spherical deconvolution methodology to recover underlying fiber directions. However, these methods are typically linear and struggle with small crossing-angles and partial volume fraction estimation. In this work, we improve on current methodologies by nonlinearly estimating fiber structures via self-supervised spherical convolutional networks with guaranteed equivariance to spherical rotation. We perform validation via extensive single and multi-shell synthetic benchmarks demonstrating competitive performance against common base-lines. We further show improved downstream performance on fiber tractography measures on the Tractometer benchmark dataset. Finally, we show downstream improvements in terms of tractography and partial volume estimation on a multi-shell dataset of human subjects.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"12729 ","pages":"267-278"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422024/pdf/nihms-1922058.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10008226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
期刊
Information processing in medical imaging : proceedings of the ... conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1