首页 > 最新文献

Information processing in medical imaging : proceedings of the ... conference最新文献

英文 中文
Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-aware Contrastive Distillation 基于解剖感知对比蒸馏的自举半监督医学图像分割
Pub Date : 2022-06-06 DOI: 10.48550/arXiv.2206.02307
Chenyu You, Weichen Dai, L. Staib, J. Duncan
Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically assume a balanced class distribution for both labeled and unlabeled medical images. However, medical image data in reality is commonly imbalanced (i.e., multi-class label imbalance), which naturally yields blurry contours and usually incorrectly labels rare objects. Moreover, it remains unclear whether all negative samples are equally negative. In this work, we present ACTION, an Anatomical-aware ConTrastive dIstillatiON framework, for semi-supervised medical image segmentation. Specifically, we first develop an iterative contrastive distillation algorithm by softly labeling the negatives rather than binary supervision between positive and negative pairs. We also capture more semantically similar features from the randomly chosen negative set compared to the positives to enforce the diversity of the sampled data. Second, we raise a more important question: Can we really handle imbalanced samples to yield better performance? Hence, the key innovation in ACTION is to learn global semantic relationship across the entire dataset and local anatomical features among the neighbouring pixels with minimal additional memory footprint. During the training, we introduce anatomical contrast by actively sampling a sparse set of hard negative pixels, which can generate smoother segmentation boundaries and more accurate predictions. Extensive experiments across two benchmark datasets and different unlabeled settings show that ACTION significantly outperforms the current state-of-the-art semi-supervised methods.
在医学图像分割的背景下,对比学习在解决注释稀缺问题方面表现出了巨大的前景。现有的方法通常假设标记的和未标记的医学图像都具有平衡的类别分布。然而,现实中的医学图像数据通常是不平衡的(即多类标签不平衡),这自然会产生模糊的轮廓,并且通常会错误地标记稀有对象。此外,目前尚不清楚是否所有阴性样本均为阴性。在这项工作中,我们提出了ACTION,一种解剖学感知ConTrastive dStillation框架,用于半监督医学图像分割。具体来说,我们首先开发了一种迭代对比提取算法,通过对否定进行软标记,而不是在正负对之间进行二元监督。与阳性集相比,我们还从随机选择的阴性集中捕获了更多语义相似的特征,以增强采样数据的多样性。其次,我们提出了一个更重要的问题:我们真的能处理不平衡的样本以获得更好的性能吗?因此,ACTION的关键创新是以最小的额外内存占用来学习整个数据集的全局语义关系和相邻像素之间的局部解剖特征。在训练过程中,我们通过主动采样一组稀疏的硬负像素来引入解剖对比度,这可以生成更平滑的分割边界和更准确的预测。在两个基准数据集和不同的未标记设置上进行的大量实验表明,ACTION显著优于当前最先进的半监督方法。
{"title":"Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-aware Contrastive Distillation","authors":"Chenyu You, Weichen Dai, L. Staib, J. Duncan","doi":"10.48550/arXiv.2206.02307","DOIUrl":"https://doi.org/10.48550/arXiv.2206.02307","url":null,"abstract":"Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically assume a balanced class distribution for both labeled and unlabeled medical images. However, medical image data in reality is commonly imbalanced (i.e., multi-class label imbalance), which naturally yields blurry contours and usually incorrectly labels rare objects. Moreover, it remains unclear whether all negative samples are equally negative. In this work, we present ACTION, an Anatomical-aware ConTrastive dIstillatiON framework, for semi-supervised medical image segmentation. Specifically, we first develop an iterative contrastive distillation algorithm by softly labeling the negatives rather than binary supervision between positive and negative pairs. We also capture more semantically similar features from the randomly chosen negative set compared to the positives to enforce the diversity of the sampled data. Second, we raise a more important question: Can we really handle imbalanced samples to yield better performance? Hence, the key innovation in ACTION is to learn global semantic relationship across the entire dataset and local anatomical features among the neighbouring pixels with minimal additional memory footprint. During the training, we introduce anatomical contrast by actively sampling a sparse set of hard negative pixels, which can generate smoother segmentation boundaries and more accurate predictions. Extensive experiments across two benchmark datasets and different unlabeled settings show that ACTION significantly outperforms the current state-of-the-art semi-supervised methods.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"13939 1","pages":"641-653"},"PeriodicalIF":0.0,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42815533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
BInGo: Bayesian Intrinsic Groupwise Registration via Explicit Hierarchical Disentanglement 宾果:贝叶斯内在群体注册通过显式分层解纠缠
Pub Date : 2022-06-06 DOI: 10.1007/978-3-031-34048-2_25
Xin Wang, Xinzhe Luo, X. Zhuang
{"title":"BInGo: Bayesian Intrinsic Groupwise Registration via Explicit Hierarchical Disentanglement","authors":"Xin Wang, Xinzhe Luo, X. Zhuang","doi":"10.1007/978-3-031-34048-2_25","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_25","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"37 1","pages":"319-331"},"PeriodicalIF":0.0,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74078504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DTU-Net: Learning Topological Similarity for Curvilinear Structure Segmentation DTU-Net:曲线结构分割的拓扑相似性学习
Pub Date : 2022-05-23 DOI: 10.48550/arXiv.2205.11115
Manxi Lin, Zahra Bashir, M. Tolsgaard, A. Christensen, Aasa Feragen
Curvilinear structure segmentation is important in medical imaging, quantifying structures such as vessels, airways, neurons, or organ boundaries in 2D slices. Segmentation via pixel-wise classification often fails to capture the small and low-contrast curvilinear structures. Prior topological information is typically used to address this problem, often at an expensive computational cost, and sometimes requiring prior knowledge of the expected topology. We present DTU-Net, a data-driven approach to topology-preserving curvilinear structure segmentation. DTU-Net consists of two sequential, lightweight U-Nets, dedicated to texture and topology, respectively. While the texture net makes a coarse prediction using image texture information, the topology net learns topological information from the coarse prediction by employing a triplet loss trained to recognize false and missed splits in the structure. We conduct experiments on a challenging multi-class ultrasound scan segmentation dataset as well as a well-known retinal imaging dataset. Results show that our model outperforms existing approaches in both pixel-wise segmentation accuracy and topological continuity, with no need for prior topological knowledge.
曲线结构分割在医学成像中很重要,可以在二维切片中量化血管、气道、神经元或器官边界等结构。通过逐像素分类的分割往往不能捕获小而低对比度的曲线结构。通常使用先验拓扑信息来解决此问题,通常需要昂贵的计算成本,并且有时需要对预期拓扑的先验知识。我们提出了DTU-Net,一种数据驱动的方法来保持拓扑的曲线结构分割。DTU-Net由两个连续的轻量级u - net组成,分别用于纹理和拓扑。纹理网络使用图像纹理信息进行粗预测,而拓扑网络则通过使用经过训练的三重损失来识别结构中错误和遗漏的分裂,从而从粗预测中学习拓扑信息。我们在一个具有挑战性的多类超声扫描分割数据集以及一个众所周知的视网膜成像数据集上进行了实验。结果表明,我们的模型在不需要先验拓扑知识的情况下,在像素分割精度和拓扑连续性方面都优于现有的方法。
{"title":"DTU-Net: Learning Topological Similarity for Curvilinear Structure Segmentation","authors":"Manxi Lin, Zahra Bashir, M. Tolsgaard, A. Christensen, Aasa Feragen","doi":"10.48550/arXiv.2205.11115","DOIUrl":"https://doi.org/10.48550/arXiv.2205.11115","url":null,"abstract":"Curvilinear structure segmentation is important in medical imaging, quantifying structures such as vessels, airways, neurons, or organ boundaries in 2D slices. Segmentation via pixel-wise classification often fails to capture the small and low-contrast curvilinear structures. Prior topological information is typically used to address this problem, often at an expensive computational cost, and sometimes requiring prior knowledge of the expected topology. We present DTU-Net, a data-driven approach to topology-preserving curvilinear structure segmentation. DTU-Net consists of two sequential, lightweight U-Nets, dedicated to texture and topology, respectively. While the texture net makes a coarse prediction using image texture information, the topology net learns topological information from the coarse prediction by employing a triplet loss trained to recognize false and missed splits in the structure. We conduct experiments on a challenging multi-class ultrasound scan segmentation dataset as well as a well-known retinal imaging dataset. Results show that our model outperforms existing approaches in both pixel-wise segmentation accuracy and topological continuity, with no need for prior topological knowledge.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"318 1","pages":"654-666"},"PeriodicalIF":0.0,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76439568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Blob Loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation Blob损失:语义分割的实例不平衡感知损失函数
Pub Date : 2022-05-17 DOI: 10.48550/arXiv.2205.08209
F. Kofler, Suprosanna Shit, I. Ezhov, L. Fidon, Rami Al-Maskari, Hongwei Li, H. Bhatia, T. Loehr, M. Piraud, Ali Erturk, J. Kirschke, J. Peeken, Tom Kamiel Magda Vercauteren, C. Zimmer, B. Wiestler, Bjoern H Menze
Deep convolutional neural networks (CNN) have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Dice coefficient (DSC). By design, DSC can tackle class imbalance, however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory DSC. Nevertheless, detecting tiny instances is crucial for many applications, such as disease monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, emph{blob loss}, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. emph{Blob loss} is designed for semantic segmentation problems where detecting multiple instances matters. We extensively evaluate a DSC-based emph{blob loss} in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.
深度卷积神经网络(CNN)在语义分割任务中已经被证明是非常有效的。最流行的损失函数是针对改进的体积分数,如Dice系数(DSC)。通过设计,DSC可以处理类的不平衡,但是,它不能识别类中的实例不平衡。因此,大型前台实例可以支配较小的实例,并且仍然产生令人满意的DSC。然而,检测微小实例对于许多应用程序(如疾病监测)至关重要。例如,在多发性硬化症患者的随访中,定位和监测小范围病变是必不可少的。我们提出了一种新的损失函数,emph{blob损失},主要目的是最大化实例级检测指标,如F1分数和灵敏度。emph{Blob损失}是为语义分割问题而设计的,其中检测多个实例很重要。我们在五个复杂的3D语义分割任务中广泛评估了基于dsc的emph{blob损失},这些任务在纹理和形态方面具有明显的实例异质性。与软骰子损失相比,我们达到了5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.
{"title":"Blob Loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation","authors":"F. Kofler, Suprosanna Shit, I. Ezhov, L. Fidon, Rami Al-Maskari, Hongwei Li, H. Bhatia, T. Loehr, M. Piraud, Ali Erturk, J. Kirschke, J. Peeken, Tom Kamiel Magda Vercauteren, C. Zimmer, B. Wiestler, Bjoern H Menze","doi":"10.48550/arXiv.2205.08209","DOIUrl":"https://doi.org/10.48550/arXiv.2205.08209","url":null,"abstract":"Deep convolutional neural networks (CNN) have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Dice coefficient (DSC). By design, DSC can tackle class imbalance, however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory DSC. Nevertheless, detecting tiny instances is crucial for many applications, such as disease monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, emph{blob loss}, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. emph{Blob loss} is designed for semantic segmentation problems where detecting multiple instances matters. We extensively evaluate a DSC-based emph{blob loss} in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"85 1","pages":"755-767"},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83889020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Modeling the Shape of the Brain Connectome via Deep Neural Networks 通过深度神经网络建模大脑连接组的形状
Pub Date : 2022-03-06 DOI: 10.1007/978-3-031-34048-2_23
Haocheng Dai, M. Bauer, P. Fletcher, S. Joshi
{"title":"Modeling the Shape of the Brain Connectome via Deep Neural Networks","authors":"Haocheng Dai, M. Bauer, P. Fletcher, S. Joshi","doi":"10.1007/978-3-031-34048-2_23","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_23","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"14 1","pages":"291-302"},"PeriodicalIF":0.0,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90181431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Bidirectional Unsupervised Domain Adaptation Segmentation Framework 一种新的双向无监督域自适应分割框架
Pub Date : 2021-08-18 DOI: 10.1007/978-3-030-78191-0_38
Munan Ning, Cheng Bian, Dong Wei, Shuang Yu, Chenglang Yuan, Yaohua Wang, Yang Guo, Kai Ma, Yefeng Zheng
{"title":"A New Bidirectional Unsupervised Domain Adaptation Segmentation Framework","authors":"Munan Ning, Cheng Bian, Dong Wei, Shuang Yu, Chenglang Yuan, Yaohua Wang, Yang Guo, Kai Ma, Yefeng Zheng","doi":"10.1007/978-3-030-78191-0_38","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_38","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"215 1","pages":"492-503"},"PeriodicalIF":0.0,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77763892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Segmentation with Multiple Acceptable Annotations: A Case Study of Myocardial Segmentation in Contrast Echocardiography 分割与多个可接受的注释:心肌分割对比超声心动图的一个案例研究
Pub Date : 2021-06-29 DOI: 10.1007/978-3-030-78191-0_37
Dewen Zeng, Mingqi Li, Yukun Ding, Xiaowei Xu, Qiu Xie, Ruixue Xu, Hongwen Fei, Meiping Huang, Zhuang Jian, Yiyu Shi
{"title":"Segmentation with Multiple Acceptable Annotations: A Case Study of Myocardial Segmentation in Contrast Echocardiography","authors":"Dewen Zeng, Mingqi Li, Yukun Ding, Xiaowei Xu, Qiu Xie, Ruixue Xu, Hongwen Fei, Meiping Huang, Zhuang Jian, Yiyu Shi","doi":"10.1007/978-3-030-78191-0_37","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_37","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"91 1","pages":"478-491"},"PeriodicalIF":0.0,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78329412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A Higher Order Manifold-Valued Convolutional Neural Network with Applications to Diffusion MRI Processing 高阶流形值卷积神经网络在弥散核磁共振处理中的应用
Pub Date : 2021-06-28 DOI: 10.1007/978-3-030-78191-0_24
Jose J. Bouza, Chun-Hao Yang, D. Vaillancourt, B. Vemuri
{"title":"A Higher Order Manifold-Valued Convolutional Neural Network with Applications to Diffusion MRI Processing","authors":"Jose J. Bouza, Chun-Hao Yang, D. Vaillancourt, B. Vemuri","doi":"10.1007/978-3-030-78191-0_24","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_24","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"23 1","pages":"304-317"},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72852263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Discovering Spreading Pathways of Neuropathological Events in Alzheimer's Disease Using Harmonic Wavelets 利用谐波小波发现阿尔茨海默病神经病理事件的传播途径
Pub Date : 2021-06-28 DOI: 10.1007/978-3-030-78191-0_18
Jiazhou Chen, Defu Yang, Hongmin Cai, M. Styner, Guorong Wu
{"title":"Discovering Spreading Pathways of Neuropathological Events in Alzheimer's Disease Using Harmonic Wavelets","authors":"Jiazhou Chen, Defu Yang, Hongmin Cai, M. Styner, Guorong Wu","doi":"10.1007/978-3-030-78191-0_18","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_18","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"25 1 1","pages":"228-240"},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88070000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Continual Active Learning for Efficient Adaptation of Machine Learning Models to Changing Image Acquisition 持续主动学习使机器学习模型有效适应不断变化的图像采集
Pub Date : 2021-06-07 DOI: 10.1007/978-3-030-78191-0_50
Matthias Perkonigg, J. Hofmanninger, G. Langs
{"title":"Continual Active Learning for Efficient Adaptation of Machine Learning Models to Changing Image Acquisition","authors":"Matthias Perkonigg, J. Hofmanninger, G. Langs","doi":"10.1007/978-3-030-78191-0_50","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_50","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"40 1","pages":"649-660"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76468866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
Information processing in medical imaging : proceedings of the ... conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1