{"title":"Retracted: Nitrogen Inversion Model in a Wetland Environment Based on the Canopy Reflectance of Emergent Plants","authors":"Advances in Meteorology","doi":"10.1155/2023/9794029","DOIUrl":"https://doi.org/10.1155/2023/9794029","url":null,"abstract":"<jats:p />","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134911594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Djigbo Félicien Badou, José Hounkanrin, Jean Hounkpè, Luc Ollivier Sintondji, Agnidé Emmanuel Lawin
Cotonou, the economic capital of Benin, is suffering from the impacts of climate change, particularly evident through recurrent floods. To effectively manage these floods and address this issue, it is crucial to have a deep understanding of return periods and hydroclimatic parameters (such as intensity-duration-frequency (IDF) curves and related coefficients), which are essential for designing stormwater drainage structures. Determining return periods and these parameters requires statistical analysis of extreme events, and this analysis needs to be regularly updated in response to climate change. The objective of this study was to determine the necessary return periods and hydroclimatic parameters to improve stormwater drainage systems in the city and its surroundings areas. This required annual maximum precipitation series of 1, 2, 3, 6, 12, and 24 h for 20 years length (1999–2018) as well as flood record data. The intensity series, derived by dividing the amount of rainfall by its duration, was adjusted using Gumbel’s law. IDF curves were constructed based on Montana and Talbot models, and their coefficients were determined according to the corresponding return periods. In 2010, which witnessed devastating floods in the country, the return period for the most intense rainfall events was 40 years, followed by 2013 with a return period of 13.4 years. Consequently, the commonly used 10-year return period for the design of stormwater drainage structures in Cotonou is insufficient. The Talbot model produced the lowest mean square errors for each quantile series and coefficients of determination closest to one, indicating that the parameters obtained from this model are well suited for designing hydraulic structures in Cotonou. The hydroclimatic parameters presented in this study will contribute to the improved design of hydraulic structures in the city of Cotonou.
{"title":"Assessing the Return Periods and Hydroclimatic Parameters for Rainwater Drainage in the Coastal City of Cotonou in Benin under Climate Variability","authors":"Djigbo Félicien Badou, José Hounkanrin, Jean Hounkpè, Luc Ollivier Sintondji, Agnidé Emmanuel Lawin","doi":"10.1155/2023/1752805","DOIUrl":"https://doi.org/10.1155/2023/1752805","url":null,"abstract":"Cotonou, the economic capital of Benin, is suffering from the impacts of climate change, particularly evident through recurrent floods. To effectively manage these floods and address this issue, it is crucial to have a deep understanding of return periods and hydroclimatic parameters (such as intensity-duration-frequency (IDF) curves and related coefficients), which are essential for designing stormwater drainage structures. Determining return periods and these parameters requires statistical analysis of extreme events, and this analysis needs to be regularly updated in response to climate change. The objective of this study was to determine the necessary return periods and hydroclimatic parameters to improve stormwater drainage systems in the city and its surroundings areas. This required annual maximum precipitation series of 1, 2, 3, 6, 12, and 24 h for 20 years length (1999–2018) as well as flood record data. The intensity series, derived by dividing the amount of rainfall by its duration, was adjusted using Gumbel’s law. IDF curves were constructed based on Montana and Talbot models, and their coefficients were determined according to the corresponding return periods. In 2010, which witnessed devastating floods in the country, the return period for the most intense rainfall events was 40 years, followed by 2013 with a return period of 13.4 years. Consequently, the commonly used 10-year return period for the design of stormwater drainage structures in Cotonou is insufficient. The Talbot model produced the lowest mean square errors for each quantile series and coefficients of determination closest to one, indicating that the parameters obtained from this model are well suited for designing hydraulic structures in Cotonou. The hydroclimatic parameters presented in this study will contribute to the improved design of hydraulic structures in the city of Cotonou.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136108702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Séverin Mbog Mbog, Cyrille Adiang Mezoue, Yannick Cédric Ngangmo, D. Bitondo, Ruben Martin Mouangue
This study focused on the content of fine particle air pollution in the city of Douala. Several studies have analyzed pollution problems due to road traffic in Douala, Cameroon. Particle concentration levels are higher in heavy traffic than in light traffic. The population’s exposure to air pollution in cities is higher near roads. Several studies have analyzed pollution problems due to road traffic in Douala, Cameroon. In this city, the traffic density at the intersections is indeed higher. Thus, the question is as follows: Are these traffic areas hotspots of increased PM exposure levels? To determine it, four particle size fractions (PM10, PM2.5, PM5, and PM1) were collected using an “OC300 Gas and Dust Particle Laser Detector” for three months at different traffic locations (roundabouts or/and crossroads). Statistical analysis of the data shows very high concentrations at most measurement sites. PM concentrations at the different measurement sites are around 35.69-68.08 µg m−3 for PM1, 50.72-99.13 µg m−3 for PM2.5, 54.11-111.22 µg m−3 for PM5, and 57.97-119.25 µg m−3 for PM10. Exceedances of WHO daily guidelines for PM2.5 (45 µg m−3) and PM10 (15 µg m−3) were found during the measurement campaign, indicating that crossroads are the pollution hotspots in urban areas. Occupation of the roadsides for various economic activities (painting, restaurants, donut shops, etc.) is common in Cameroon, increasing health risks for people working around the roadside. Thus, crossroad locations are areas where the level of exposure to PMx is the highest on road traffics.
{"title":"Monitoring and Control of Particulate Matter in Urban Area in Douala-Cameroon Town","authors":"Séverin Mbog Mbog, Cyrille Adiang Mezoue, Yannick Cédric Ngangmo, D. Bitondo, Ruben Martin Mouangue","doi":"10.1155/2023/9967687","DOIUrl":"https://doi.org/10.1155/2023/9967687","url":null,"abstract":"This study focused on the content of fine particle air pollution in the city of Douala. Several studies have analyzed pollution problems due to road traffic in Douala, Cameroon. Particle concentration levels are higher in heavy traffic than in light traffic. The population’s exposure to air pollution in cities is higher near roads. Several studies have analyzed pollution problems due to road traffic in Douala, Cameroon. In this city, the traffic density at the intersections is indeed higher. Thus, the question is as follows: Are these traffic areas hotspots of increased PM exposure levels? To determine it, four particle size fractions (PM10, PM2.5, PM5, and PM1) were collected using an “OC300 Gas and Dust Particle Laser Detector” for three months at different traffic locations (roundabouts or/and crossroads). Statistical analysis of the data shows very high concentrations at most measurement sites. PM concentrations at the different measurement sites are around 35.69-68.08 µg m−3 for PM1, 50.72-99.13 µg m−3 for PM2.5, 54.11-111.22 µg m−3 for PM5, and 57.97-119.25 µg m−3 for PM10. Exceedances of WHO daily guidelines for PM2.5 (45 µg m−3) and PM10 (15 µg m−3) were found during the measurement campaign, indicating that crossroads are the pollution hotspots in urban areas. Occupation of the roadsides for various economic activities (painting, restaurants, donut shops, etc.) is common in Cameroon, increasing health risks for people working around the roadside. Thus, crossroad locations are areas where the level of exposure to PMx is the highest on road traffics.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49076966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The univariate analysis of hydrological extremes is a well-established practice in developing countries such as Ethiopia. However, for the design of hydrological and hydraulic systems, it is essential to have a thorough understanding of flood event characteristics, including volumes, peaks, time of occurrence, and duration. This study utilizes copula functions for bivariate modeling of flood peak and volume characteristics, examining the performance of four Archimedean copulas in the Guder basin located in Ethiopia from 1987 to 2017. Flood peak and volume were extracted using the theory of runs for analysis of their joint characteristics with the truncation level chosen as equal to the lowest annual maximum event. Univariate distributions with the best fitness on both variables were determined, and results showed that gamma and GEV-fitted flood peaks and lognormal-fitted flood volumes are the most suitable. Four Archimedean copulas were evaluated, and the Gumbel-Hougaard copula was found to be the best fit for the data based on graphical and measurable tests. Bivariate probability and return period were computed in “AND” and “OR” states. The joint return period for flood peak (97.49 m3/s) and volume (77.35 m3/s) was found to be 15 years in the “AND” state and approximately 4 years in the “OR” state. The study also evaluates univariate and conditional return periods, comparing them with the primary one. The copula method was an effective method for distributing marginal variables, highlighting its potential as a valuable tool in flood management.
{"title":"Copula-Based Joint Flood Frequency Analysis: The Case of Guder River, Upper Blue Nile Basin, Ethiopia","authors":"M. Haile, Rakesh Khosa, Asnake Kassahun Abebe, Ayansa Teshome Gelalcha, Abera Misgana Tolera","doi":"10.1155/2023/7637884","DOIUrl":"https://doi.org/10.1155/2023/7637884","url":null,"abstract":"The univariate analysis of hydrological extremes is a well-established practice in developing countries such as Ethiopia. However, for the design of hydrological and hydraulic systems, it is essential to have a thorough understanding of flood event characteristics, including volumes, peaks, time of occurrence, and duration. This study utilizes copula functions for bivariate modeling of flood peak and volume characteristics, examining the performance of four Archimedean copulas in the Guder basin located in Ethiopia from 1987 to 2017. Flood peak and volume were extracted using the theory of runs for analysis of their joint characteristics with the truncation level chosen as equal to the lowest annual maximum event. Univariate distributions with the best fitness on both variables were determined, and results showed that gamma and GEV-fitted flood peaks and lognormal-fitted flood volumes are the most suitable. Four Archimedean copulas were evaluated, and the Gumbel-Hougaard copula was found to be the best fit for the data based on graphical and measurable tests. Bivariate probability and return period were computed in “AND” and “OR” states. The joint return period for flood peak (97.49 m3/s) and volume (77.35 m3/s) was found to be 15 years in the “AND” state and approximately 4 years in the “OR” state. The study also evaluates univariate and conditional return periods, comparing them with the primary one. The copula method was an effective method for distributing marginal variables, highlighting its potential as a valuable tool in flood management.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64799815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, the focus is on investigating how different climate scenarios, as they have been adopted in Phase 6 of the Coupled Model Intercomparison Project (CMIP6), can lead to different regimes in the energetics components in Lorenz’s energy cycle, hence impacting the “working rate” of the climate system, which is considered as a “heat engine.” The four energy forms on which this investigation is based on are the zonal and eddy components of the available potential and kinetic energies. The permissible correspondingly considered transformations between these forms of energy are also studied. Generation of available potential energy and dissipation of kinetic energy complete the Lorenz energy cycle that is adopted here. In the CMIP6 approach, the results of different climate change analyses were collected in a matrix defined by two dimensions: climate exposure as characterized by a radiative forcing or temperature level and socioeconomic development as classified by the pathways, known as Shared Socioeconomic Pathways (SSPs). The basis of the calculations in this study is the climatic projection produced by the HadGEM3-GC3.1-LL climatic model in the period from 2015 to 2100. In this respect, the results are presented in terms of time projections of the energetics components under different SSPs. The results have shown that the different SSPs yield diverse energetics regimes, consequently impacting on Lorenz energy cycle and, hence, a “working rate” of the climate system based on the components of this cycle. In this respect, Lorenz energy cycle projections are presented, under different SSPs. The results are also contrasted to the calculations for the historical period 1929 to 2014 as this is simulated by the same climatic model.
{"title":"Modes of Atmospheric Energetics Based on HadGEM3-GC3.1-LL Simulations in the Framework of CMIP6","authors":"Silas Michaelides","doi":"10.1155/2023/3956086","DOIUrl":"https://doi.org/10.1155/2023/3956086","url":null,"abstract":"In this study, the focus is on investigating how different climate scenarios, as they have been adopted in Phase 6 of the Coupled Model Intercomparison Project (CMIP6), can lead to different regimes in the energetics components in Lorenz’s energy cycle, hence impacting the “working rate” of the climate system, which is considered as a “heat engine.” The four energy forms on which this investigation is based on are the zonal and eddy components of the available potential and kinetic energies. The permissible correspondingly considered transformations between these forms of energy are also studied. Generation of available potential energy and dissipation of kinetic energy complete the Lorenz energy cycle that is adopted here. In the CMIP6 approach, the results of different climate change analyses were collected in a matrix defined by two dimensions: climate exposure as characterized by a radiative forcing or temperature level and socioeconomic development as classified by the pathways, known as Shared Socioeconomic Pathways (SSPs). The basis of the calculations in this study is the climatic projection produced by the HadGEM3-GC3.1-LL climatic model in the period from 2015 to 2100. In this respect, the results are presented in terms of time projections of the energetics components under different SSPs. The results have shown that the different SSPs yield diverse energetics regimes, consequently impacting on Lorenz energy cycle and, hence, a “working rate” of the climate system based on the components of this cycle. In this respect, Lorenz energy cycle projections are presented, under different SSPs. The results are also contrasted to the calculations for the historical period 1929 to 2014 as this is simulated by the same climatic model.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46221775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anthony Twahirwa, C. Oludhe, P. Omondi, G. Rwanyiziri, Joseph Sebaziga Ndakize
Variability in rainfall and temperature results in different impacts on agricultural practices. Assessesment of variability and trend of rainfall and temperature for the district of Musanze in Rwanda was conducted using six meteorological stations for a period of 37 years, ranging from 1981 to 2018, and data were obtained from Rwanda Meteorology Agency. Musanze district is located in highland areas of Rwanda, understanding the variability and trend in rainfall and temperature is paramount to increase the uptake of climate information and support strategic orientation. The Mann–Kendall nonparametric test and modified Mann–Kendall were used to assess the trend in rainfall and temperature, whereas Sen’s slope estimator was used to assess the magnitude of change. The results from both methods showed much similarity and consistency. The assessment of variability and trend in rainfall and temperature in Musanza district indicated that increasing temperature and decreasing rainfall trends gave an indication of changes in variability and trend in rainfall and temperature. The annual pattern revealed a substantial downward tendency of −25.7% for Nyange, the only station with constant decreasing trend over all seasons, DJF, −61.4%, SON, −12.2%, JJA, −40.3%, and MAM, −4.35. Temperature analysis for both maximum and minimum indicated increasing trend which was signal for constant warming up in the area. The results from coefficient of variation indicated a high disparity in rainfall variation from June to August which ranged between 51 and 74%, and other seasons changes were moderate.
{"title":"Assessing Variability and Trends of Rainfall and Temperature for the District of Musanze in Rwanda","authors":"Anthony Twahirwa, C. Oludhe, P. Omondi, G. Rwanyiziri, Joseph Sebaziga Ndakize","doi":"10.1155/2023/7177776","DOIUrl":"https://doi.org/10.1155/2023/7177776","url":null,"abstract":"Variability in rainfall and temperature results in different impacts on agricultural practices. Assessesment of variability and trend of rainfall and temperature for the district of Musanze in Rwanda was conducted using six meteorological stations for a period of 37 years, ranging from 1981 to 2018, and data were obtained from Rwanda Meteorology Agency. Musanze district is located in highland areas of Rwanda, understanding the variability and trend in rainfall and temperature is paramount to increase the uptake of climate information and support strategic orientation. The Mann–Kendall nonparametric test and modified Mann–Kendall were used to assess the trend in rainfall and temperature, whereas Sen’s slope estimator was used to assess the magnitude of change. The results from both methods showed much similarity and consistency. The assessment of variability and trend in rainfall and temperature in Musanza district indicated that increasing temperature and decreasing rainfall trends gave an indication of changes in variability and trend in rainfall and temperature. The annual pattern revealed a substantial downward tendency of −25.7% for Nyange, the only station with constant decreasing trend over all seasons, DJF, −61.4%, SON, −12.2%, JJA, −40.3%, and MAM, −4.35. Temperature analysis for both maximum and minimum indicated increasing trend which was signal for constant warming up in the area. The results from coefficient of variation indicated a high disparity in rainfall variation from June to August which ranged between 51 and 74%, and other seasons changes were moderate.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45198138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Study on Meteorological Disaster Monitoring of Field Fruit Industry by Remote Sensing Data","authors":"Advances in Meteorology","doi":"10.1155/2023/9894576","DOIUrl":"https://doi.org/10.1155/2023/9894576","url":null,"abstract":"<jats:p />","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43406498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Research on the Optimization of Agricultural Industry Structure Based on Genetic Algorithm","authors":"Advances in Meteorology","doi":"10.1155/2023/9858710","DOIUrl":"https://doi.org/10.1155/2023/9858710","url":null,"abstract":"<jats:p />","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48732594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: A Personalized Recommendation Method for Short Drama Videos Based on External Index Features","authors":"Advances in Meteorology","doi":"10.1155/2023/9823485","DOIUrl":"https://doi.org/10.1155/2023/9823485","url":null,"abstract":"<jats:p />","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46007871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Visibility observations and accurate forecasts are essential in meteorology, requiring a dense network of observation stations. This paper investigates image processing techniques for object detection and visibility determination using static cameras. It proposes a comprehensive method that includes image preprocessing, landmark identification, and visibility estimation, mirroring the observation process of professional meteorological observers. This study validates the visibility observation procedure using the k-nearest neighbors machine learning method across six locations, including four in the Czech Republic, one in the USA, and one in Germany. By comparing our results with professional observations, the paper demonstrates the suitability of the proposed method for operational application, particularly in foggy and low visibility conditions. This versatile method holds potential for adoption by meteorological services worldwide.
{"title":"Application of K-Nearest Neighbor Classification for Static Webcams Visibility Observation","authors":"David Sládek","doi":"10.1155/2023/6285569","DOIUrl":"https://doi.org/10.1155/2023/6285569","url":null,"abstract":"Visibility observations and accurate forecasts are essential in meteorology, requiring a dense network of observation stations. This paper investigates image processing techniques for object detection and visibility determination using static cameras. It proposes a comprehensive method that includes image preprocessing, landmark identification, and visibility estimation, mirroring the observation process of professional meteorological observers. This study validates the visibility observation procedure using the k-nearest neighbors machine learning method across six locations, including four in the Czech Republic, one in the USA, and one in Germany. By comparing our results with professional observations, the paper demonstrates the suitability of the proposed method for operational application, particularly in foggy and low visibility conditions. This versatile method holds potential for adoption by meteorological services worldwide.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43421431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}