Background: Increased workload, including workload related to electronic health record (EHR) documentation, is reported as a main contributor to nurse burnout and adversely affects patient safety and nurse satisfaction. Traditional methods for workload analysis are either administrative measures (such as the nurse-patient ratio) that do not represent actual nursing care or are subjective and limited to snapshots of care (eg, time-motion studies). Observing care and testing workflow changes in real time can be obstructive to clinical care. An examination of EHR interactions using EHR audit logs could provide a scalable, unobtrusive way to quantify the nursing workload, at least to the extent that nursing work is represented in EHR documentation. EHR audit logs are extremely complex; however, simple analytical methods cannot discover complex temporal patterns, requiring use of state-of-the-art temporal data-mining approaches. To effectively use these approaches, it is necessary to structure the raw audit logs into a consistent and scalable logical data model that can be consumed by machine learning (ML) algorithms.
Objective: We aimed to conceptualize a logical data model for nurse-EHR interactions that would support the future development of temporal ML models based on EHR audit log data.
Methods: We conducted a preliminary review of EHR audit logs to understand the types of nursing-specific data captured. Using concepts derived from the literature and our previous experience studying temporal patterns in biomedical data, we formulated a logical data model that can describe nurse-EHR interactions, the nurse-intrinsic and situational characteristics that may influence those interactions, and outcomes of relevance to the nursing workload in a scalable and extensible manner.
Results: We describe the data structure and concepts from EHR audit log data associated with nursing workload as a logical data model named RNteract. We conceptually demonstrate how using this logical data model could support temporal unsupervised ML and state-of-the-art artificial intelligence (AI) methods for predictive modeling.
Conclusions: The RNteract logical data model appears capable of supporting a variety of AI-based systems and should be generalizable to any type of EHR system or health care setting. Quantitatively identifying and analyzing temporal patterns of nurse-EHR interactions is foundational for developing interventions that support the nursing documentation workload and address nurse burnout.
Background: One issue to be considered in universities is the need for interventions to improve sleep quality and educational systems for university students. However, sleep problems remain unresolved. As a clinical practice technique, a mindfulness-based stress reduction method can help students develop mindfulness skills to cope with stress, self-healing skills, and sleep.
Objective: We aim to verify the effectiveness of mindful breathing exercises using a tablet device.
Methods: In total, 18 nursing students, aged 18-22 years, were randomly assigned and divided equally into mindfulness (Mi) and nonmindfulness (nMi) implementation groups using tablet devices. During the 9-day experimental period, cardiac potentials were measured on days 1, 5, and 9. In each sleep stage (sleep with sympathetic nerve dominance, shallow sleep with parasympathetic nerve dominance, and deep sleep with parasympathetic nerve dominance), low frequency (LF) value, high frequency (HF) value, and LF/HF ratios obtained from the cardiac potentials were evaluated.
Results: On day 5, a significant correlation was observed between sleep duration and each sleep stage in both groups. In comparison to each experimental day, the LF and LF/HF ratios of the Mi group were significantly higher on day 1 than on days 5 and 10. LF and HF values in the nMi group were significantly higher on day 1 than on day 5.
Conclusions: The correlation between sleep duration and each sleep stage on day 5 suggested that sleep homeostasis in both groups was activated on day 5, resulting in similar changes in sleep stages. During the experimental period, the cardiac potentials in the nMi group showed a wide range of fluctuations, whereas the LF values and LF/HF ratio in the Mi group showed a decreasing trend over time. This finding suggests that implementing mindful breathing exercises using a tablet device may suppress sympathetic activity during sleep.
Trial registration: UMIN-CTR Clinical Trials Registry UMIN000054639; https://tinyurl.com/mu2vdrks.
Background: Mobile health (mHealth) is increasingly used to support public health practice, as it has positive benefits such as enhancing self-efficacy and facilitating chronic disease management. Yet, relatively few studies have explored the use of mHealth apps among nurses, despite their important role in caring for patients with and at risk of chronic conditions.
Objective: The aim of the study is to explore nurses' use of mHealth apps to support adults with or at risk of chronic conditions and understand the factors that influence technology adoption.
Methods: A web-based cross-sectional survey was conducted between September 2022 and January 2023. The survey was shared via social media and professional nursing organizations to Australian nurses caring for adults with or at risk of chronic conditions.
Results: A total of 158 responses were included in the analysis. More than two-thirds (n=108, 68.4%) of respondents reported that they personally used at least 1 mHealth app. Over half (n=83, 52.5% to n=108, 68.4%) reported they use mHealth apps at least a few times a month for clinical purposes. Logistic regression demonstrated that performance expectancy (P=.04), facilitating condition (P=.05), and personal use of mHealth apps (P=.05) were significantly associated with mHealth app recommendation. In contrast, effort expectancy (P=.09) and social influence (P=.46) did not have a significant influence on whether respondents recommended mHealth apps to patients. The inability to identify the quality of mHealth apps and the lack of access to mobile devices or internet were the most common barriers to mHealth app recommendation.
Conclusions: While nurses use mHealth apps personally, there is potential to increase their clinical application. Given the challenges reported in appraising and assessing mHealth apps, app regulation and upskilling nurses will help to integrate mHealth apps into usual patient care.
Background: The behavioral and psychological symptoms of dementia (BPSD) are common among people with dementia and have multiple negative consequences. Artificial intelligence-based technologies (AITs) have the potential to help nurses in the early prodromal detection of BPSD. Despite significant recent interest in the topic and the increasing number of available appropriate devices, little information is available on using AITs to help nurses striving to detect BPSD early.
Objective: The aim of this study is to identify the number and characteristics of existing publications on introducing AITs to support nursing interventions to detect and manage BPSD early.
Methods: A literature review of publications in the PubMed database referring to AITs and dementia was conducted in September 2023. A detailed analysis sought to identify the characteristics of these publications. The results were reported using a narrative approach.
Results: A total of 25 publications from 14 countries were identified, with most describing prospective observational studies. We identified three categories of publications on using AITs and they are (1) predicting behaviors and the stages and progression of dementia, (2) screening and assessing clinical symptoms, and (3) managing dementia and BPSD. Most of the publications referred to managing dementia and BPSD.
Conclusions: Despite growing interest, most AITs currently in use are designed to support psychosocial approaches to treating and caring for existing clinical signs of BPSD. AITs thus remain undertested and underused for the early and real-time detection of BPSD. They could, nevertheless, provide nurses with accurate, reliable systems for assessing, monitoring, planning, and supporting safe therapeutic interventions.
Technology has a major impact on the way nurses work. Data-driven technologies, such as artificial intelligence (AI), have particularly strong potential to support nurses in their work. However, their use also introduces ambiguities. An example of such a technology is AI-driven lifestyle monitoring in long-term care for older adults, based on data collected from ambient sensors in an older adult's home. Designing and implementing this technology in such an intimate setting requires collaboration with nurses experienced in long-term and older adult care. This viewpoint paper emphasizes the need to incorporate nurses and the nursing perspective into every stage of designing, using, and implementing AI-driven lifestyle monitoring in long-term care settings. It is argued that the technology will not replace nurses, but rather act as a new digital colleague, complementing the humane qualities of nurses and seamlessly integrating into nursing workflows. Several advantages of such a collaboration between nurses and technology are highlighted, as are potential risks such as decreased patient empowerment, depersonalization, lack of transparency, and loss of human contact. Finally, practical suggestions are offered to move forward with integrating the digital colleague.
Background: Health monitoring technologies help patients and older adults live better and stay longer in their own homes. However, there are many factors influencing their adoption of these technologies. Privacy is one of them.
Objective: The aim of this study was to provide an overview of the privacy barriers in health monitoring from current research, analyze the factors that influence patients to adopt assisted living technologies, provide a social psychological explanation, and propose suggestions for mitigating these barriers in future research.
Methods: A scoping review was conducted, and web-based literature databases were searched for published studies to explore the available research on privacy barriers in a health monitoring environment.
Results: In total, 65 articles met the inclusion criteria and were selected and analyzed. Contradictory findings and results were found in some of the included articles. We analyzed the contradictory findings and provided possible explanations for current barriers, such as demographic differences, information asymmetry, researchers' conceptual confusion, inducible experiment design and its psychological impacts on participants, researchers' confirmation bias, and a lack of distinction among different user roles. We found that few exploratory studies have been conducted so far to collect privacy-related legal norms in a health monitoring environment. Four research questions related to privacy barriers were raised, and an attempt was made to provide answers.
Conclusions: This review highlights the problems of some research, summarizes patients' privacy concerns and legal concerns from the studies conducted, and lists the factors that should be considered when gathering and analyzing people's privacy attitudes.
Background: Caregiving dyads in palliative care are confronted with complex care needs. Respite care services can be highly beneficial in alleviating the caregiving burden, supporting survivorship and dying at home. Yet, respite care services are difficult to locate and access in the province of Quebec, Canada, particularly when navigating ubiquitous sources of online health information of varying quality.
Objective: This project aimed to (1) compile a list of at-home palliative respite care services in Quebec, Canada; (2) describe key accessibility features for each respite care service; (3) identify accessibility gaps and opportunities; and (4) describe a novel method for conducting environmental scans using internet search engines, internet-based community health databases, and member checking.
Methods: A novel environmental scan methodology using 2 internet-based targeted databases and 1 internet search engine was conducted. Results were screened and data were extracted, descriptively analyzed, and geographically schematized.
Results: A total of 401 services were screened, and 52 at-home respite care services specific to palliative populations were identified, compiled, and analyzed. These respite care services were characterized by various types of assistance, providers, fees, and serviced geographical regions. Accessibility was explored through the lens of service amenability, availability, eligibility, and compatibility. The data revealed important barriers to accessing respite care services, such as a lack of readily available information on service characteristics, limited availability, and a time-consuming, technical search process for potential respite care users and clinicians to identify appropriate services.
Conclusions: Both methodological and contextual knowledge have been gained through this environmental scan. Few methodologies for conducting internet-based environmental scans have been clearly articulated, so we applied several learnings from other scans and devised a methodology for conducting an environmental scan using the mixed methods of internet search engines, internet-based community health databases, and member checking. We have carefully reported our methods, so that others conducting community health environmental scans may replicate our process. Furthermore, through this scan, we identified assorted respite care services and pinpointed needs in the provision of these services. The findings highlighted that more easily accessible and centralized information about respite care services is needed in Quebec. The data will enable the creation of a user-friendly tool to share with community support services across Quebec and ultimately help alleviate the added burden caregivers and clinicians face when looking for respite care services in fragmented and complex digital spaces.
Background: Despite the life-threatening nature of sepsis, little is known about the emotional experiences of patients and their families during sepsis events. We conducted a sentiment analysis pertaining to sepsis incidents involving patients and families, leveraging textual data retrieved from a publicly available blog post disseminated by the Centers for Disease Control and Prevention (CDC).
Objective: This investigation involved a sentiment analysis of patient- and family-related sepsis events, leveraging text responses sourced from a publicly accessible blog post disseminated by the CDC. Driven by the imperative to elucidate the emotional dynamics encountered by patients and their families throughout sepsis incidents, the overarching aims centered on elucidating the emotional ramifications of sepsis on both patients and their families and discerning potential avenues for enhancing the quality of sepsis care.
Methods: The research used a cross-sectional data mining methodology to investigate the sentiments and emotional aspects linked to sepsis, using a data set sourced from the CDC, which encompasses 170 responses from both patients and caregivers, spanning the period between September 2014 and September 2020. This investigation used the National Research Council Canada Emotion Lexicon for sentiment analysis, coupled with a combination of manual and automated techniques to extract salient features from textual responses. The study used negative binomial least absolute shrinkage and selection operator regressions to ascertain significant textual features that correlated with specific emotional states. Moreover, the visualization of Plutchik's Wheel of Emotions facilitated the discernment of prevailing emotions within the data set.
Results: The results showed that patients and their families experienced a range of emotions during sepsis events, including fear, anxiety, sadness, and gratitude. Our analyses revealed an estimated incidence rate ratio (IRR) of 1.35 for fear-related words and a 1.51 IRR for sadness-related words when mentioning "hospital" in sepsis-related experiences. Similarly, mentions of "intensive care unit" were associated with an average occurrence of 12.3 fear-related words and 10.8 sadness-related words. Surviving patients' experiences had an estimated 1.15 IRR for joy-related words, contrasting with discussions around organ failure, which were associated with multiple negative emotions including disgust, anger, fear, and sadness. Furthermore, mentions of "death" were linked to more fear and anger words but fewer joy-related words. Conversely, longer timelines in sepsis events were associated with more joy-related words and fewer fear-related words, potentially indicating improved emotional adaptation over time.
Conclusions: The study's outcomes underscore the imperative for health care providers to integrate emo

