Pub Date : 2024-08-27DOI: 10.1088/2043-6262/ad6e5b
Tran Minh Thi, Nguyen Mau Lam, Do Khanh Tung, Nguyen Manh Nghia, Duong Quoc Van, Vu Quoc Manh, Nguyen Thi Bich Viet, Duong Khanh Linh, Nguyen Thuy Chinh, Thai Hoang, Ştefan Ţălu, Vu Quoc Trung
The polyaniline/Fe2.9Zn0.1O4 (PANI/Fe2.9Zn0.1O4) nanoparticles with different mass ratios were synthesized by both co-precipitation and in situ polymerization methods. The FT-IR spectra and DTA analyses showed the involvement of PANI in the nanocomposite samples. The grain size of samples measured by SEM ranges from 25 to 40 nm. The magnetization of samples at 300 K, H = 11000 Oe decreased from 65 to 43 emu g−1 as PANI/Fe2.9Zn0.1O4 mass ratio increased from 9% to 40%. At pH 7 and 300 K, the maximum arsenic (III) adsorption capacities of sample S1 (mass ratio of 9%) qmax = 43.48 mg g−1 was higher than that of others and Fe3O4. Additionally, the substitution of Fe2+ ions by Zn2+ ions and the presence of PANI in samples contributed to improving the magnetic and chemical stability of samples over time. Furthermore, these materials could be reused after desorption in a solution at pH 14.
{"title":"Study on the nanocomposites of polyaniline and Zn doped Fe3O4 using for arsenic absorption in water","authors":"Tran Minh Thi, Nguyen Mau Lam, Do Khanh Tung, Nguyen Manh Nghia, Duong Quoc Van, Vu Quoc Manh, Nguyen Thi Bich Viet, Duong Khanh Linh, Nguyen Thuy Chinh, Thai Hoang, Ştefan Ţălu, Vu Quoc Trung","doi":"10.1088/2043-6262/ad6e5b","DOIUrl":"https://doi.org/10.1088/2043-6262/ad6e5b","url":null,"abstract":"The polyaniline/Fe<sub>2.9</sub>Zn<sub>0.1</sub>O<sub>4</sub> (PANI/Fe<sub>2.9</sub>Zn<sub>0.1</sub>O<sub>4</sub>) nanoparticles with different mass ratios were synthesized by both co-precipitation and <italic toggle=\"yes\">in situ</italic> polymerization methods. The FT-IR spectra and DTA analyses showed the involvement of PANI in the nanocomposite samples. The grain size of samples measured by SEM ranges from 25 to 40 nm. The magnetization of samples at 300 K, H = 11000 Oe decreased from 65 to 43 emu g<sup>−1</sup> as PANI/Fe<sub>2.9</sub>Zn<sub>0.1</sub>O<sub>4</sub> mass ratio increased from 9% to 40%. At pH 7 and 300 K, the maximum arsenic (III) adsorption capacities of sample S<sub>1</sub> (mass ratio of 9%) q<sub>max</sub> = 43.48 mg g<sup>−1</sup> was higher than that of others and Fe<sub>3</sub>O<sub>4</sub>. Additionally, the substitution of Fe<sup>2+</sup> ions by Zn<sup>2+</sup> ions and the presence of PANI in samples contributed to improving the magnetic and chemical stability of samples over time. Furthermore, these materials could be reused after desorption in a solution at pH 14.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"409 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zinc is an important micronutrient for plants, involved in numerous physiological processes as well as numerous enzymatic and metabolic events. Zinc deficiency results in slowed plant development, higher chlorosis rates, smaller leaves, and fewer tillers, which lengthen the crop maturity period and lowers crop quality. In the present study, zinc oxide nanoparticles (ZnONPs) were synthesized through co-precipitation approach by using Lantana camara plant leaf extract. The synthesized ZnONPs were hexagonal in shape with mean size of around 60 nm. The bactericidal activity of ZnONPs was assessed against three phytopathogenic bacterial strains namely Ralstonia solanacearum, Xanthomonas campestris and Erwinia carotovora through broth dilution method. The MIC50 of ZnONPs was 248.33 μg ml−1, 320 .27 μg ml−1 and 320.95 μg ml−1 against R. solanacearum, X. campestris and E. carotovora respectively. The fungiciadal activity of ZnONPs against three phytopathogenic fungal strains was studied by poison food technique. It was observed that 500 ppm ZnONPs could inhbit 86%, 85% and 55% growth of Alterneria solani, Fusarium oxysporum and Athelia rolfsii respectively. The efficacy of ZnONPs as nano fertilizer was evaluated in Solanum lycopersicum Linn. by foliar spray under laboratory condition and it was observed that in comparison with micron sized ZnO, ZnONP treatment could significantly boost up fresh and dry weight, root and shoot length, chlorophyll, lipid and carbohydrate content of the plants.
{"title":"Green synthesis of ZnO nanoparticles using Lantana camara leaf extract for the enhancement of plant growth","authors":"Pushpendra Pratap Singh, Sarika Chaturvedi, Tripti Bhatnagar, Sumistha Das, Nitai Debnath","doi":"10.1088/2043-6262/ad6cc0","DOIUrl":"https://doi.org/10.1088/2043-6262/ad6cc0","url":null,"abstract":"Zinc is an important micronutrient for plants, involved in numerous physiological processes as well as numerous enzymatic and metabolic events. Zinc deficiency results in slowed plant development, higher chlorosis rates, smaller leaves, and fewer tillers, which lengthen the crop maturity period and lowers crop quality. In the present study, zinc oxide nanoparticles (ZnONPs) were synthesized through co-precipitation approach by using <italic toggle=\"yes\">Lantana camara</italic> plant leaf extract. The synthesized ZnONPs were hexagonal in shape with mean size of around 60 nm. The bactericidal activity of ZnONPs was assessed against three phytopathogenic bacterial strains namely <italic toggle=\"yes\">Ralstonia solanacearum</italic>, <italic toggle=\"yes\">Xanthomonas campestris</italic> and <italic toggle=\"yes\">Erwinia carotovora</italic> through broth dilution method. The MIC50 of ZnONPs was 248.33 <italic toggle=\"yes\">μ</italic>g ml<sup>−1</sup>, 320 .27 <italic toggle=\"yes\">μ</italic>g ml<sup>−1</sup> and 320.95 <italic toggle=\"yes\">μ</italic>g ml<sup>−1</sup> against <italic toggle=\"yes\">R. solanacearum</italic>, <italic toggle=\"yes\">X. campestris</italic> and <italic toggle=\"yes\">E. carotovora</italic> respectively. The fungiciadal activity of ZnONPs against three phytopathogenic fungal strains was studied by poison food technique. It was observed that 500 ppm ZnONPs could inhbit 86%, 85% and 55% growth of <italic toggle=\"yes\">Alterneria solani, Fusarium oxysporum</italic> and <italic toggle=\"yes\">Athelia rolfsii</italic> respectively. The efficacy of ZnONPs as nano fertilizer was evaluated in <italic toggle=\"yes\">Solanum lycopersicum</italic> Linn. by foliar spray under laboratory condition and it was observed that in comparison with micron sized ZnO, ZnONP treatment could significantly boost up fresh and dry weight, root and shoot length, chlorophyll, lipid and carbohydrate content of the plants.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"24 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Improving the apparent solubility of poorly soluble therapeutic molecules with poor absorption into the circulatory system is a significant research question in drug discovery. This enhancement is achieved by delivering drugs through nano-carriers that provide apparent solubility with its surfactant. The effectiveness of a nano-carrier is relied majorly on its loading efficiency which is determined by the extent of interaction between the drug and the surfactants of the carriers. The loading effectiveness can be reckoned with a better understanding of the drug-surfactant conjugation mechanism. Hence this review comprehends the different nano-carriers, their appropriate surfactant systems, and the loading mechanism of drugs with surfactants through different bonds. Further, the current status and prospects of the nano-carriers are briefly summarized at last to expound on the significance of these nano-carriers in drug delivery.
{"title":"Importance of nano-carriers, surfactant system, and their loading mechanism to improve the absorption and bio-availability of drugs: a review","authors":"Nazeer Abdul Azeez, Krishnaswami Venkateshwaran, Ruckmani Kandasamy, Muthupandian Saravanan, Vijaykumar Sudarshana Deepa","doi":"10.1088/2043-6262/ad6cbf","DOIUrl":"https://doi.org/10.1088/2043-6262/ad6cbf","url":null,"abstract":"Improving the apparent solubility of poorly soluble therapeutic molecules with poor absorption into the circulatory system is a significant research question in drug discovery. This enhancement is achieved by delivering drugs through nano-carriers that provide apparent solubility with its surfactant. The effectiveness of a nano-carrier is relied majorly on its loading efficiency which is determined by the extent of interaction between the drug and the surfactants of the carriers. The loading effectiveness can be reckoned with a better understanding of the drug-surfactant conjugation mechanism. Hence this review comprehends the different nano-carriers, their appropriate surfactant systems, and the loading mechanism of drugs with surfactants through different bonds. Further, the current status and prospects of the nano-carriers are briefly summarized at last to expound on the significance of these nano-carriers in drug delivery.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"177 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The global challenge of achieving sustainable agricultural productivity and ensuring food security is exacerbated by the threat of phytopathogens and pests, which cause substantial damage and result in annual production losses of approximately 20%–40%, amounting to around 40 billion US dollars worldwide. Current reliance on conventional pesticides for crop disease management not only poses risks to human, animal, and environmental health but also contributes to the development of resistant pathogens. In response to this pressing issue, innovative technologies utilizing nanomaterials offer a promising alternative. These nanomaterials including lipid based nanoparticles (LNPs) can encapsulate and deliver pesticidal active ingredients in a controlled and targeted manner, presenting opportunities to enhance efficacy and efficiency while minimizing environmental impact. This approach represents a crucial step towards sustainable agriculture, preserving agro-ecosystem resilience and ensuring global food security. This review aims to provide an overview of the current state of knowledge regarding the use of LNPs in agriculture, with a focus on their applications for crop disease management.
{"title":"Lipid nanoparticles: a sustainable solution for crop disease management","authors":"Abhishek Pathak, Neetesh Mandal, Devanshi Chandel Upadhyaya, Neha Joshi, Chandrama Prakash Upadhyaya","doi":"10.1088/2043-6262/ad6cbe","DOIUrl":"https://doi.org/10.1088/2043-6262/ad6cbe","url":null,"abstract":"The global challenge of achieving sustainable agricultural productivity and ensuring food security is exacerbated by the threat of phytopathogens and pests, which cause substantial damage and result in annual production losses of approximately 20%–40%, amounting to around 40 billion US dollars worldwide. Current reliance on conventional pesticides for crop disease management not only poses risks to human, animal, and environmental health but also contributes to the development of resistant pathogens. In response to this pressing issue, innovative technologies utilizing nanomaterials offer a promising alternative. These nanomaterials including lipid based nanoparticles (LNPs) can encapsulate and deliver pesticidal active ingredients in a controlled and targeted manner, presenting opportunities to enhance efficacy and efficiency while minimizing environmental impact. This approach represents a crucial step towards sustainable agriculture, preserving agro-ecosystem resilience and ensuring global food security. This review aims to provide an overview of the current state of knowledge regarding the use of LNPs in agriculture, with a focus on their applications for crop disease management.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"5 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1088/2043-6262/ad6cc3
Koushi Kumar, Nirmala Nithya Raju, Abdul Azeez Nazeer
This study focuses on the development of mesoporous zinc oxide nanoparticles (mZNPs) via the sol–gel technique, utilizing polyethylene glycol-6000 (PEG-6000) as a capping agent. The research aims to investigate the suitability of these nanoparticles for drug delivery purposes. The analysis of the synthesized material validates the existence of a hexagonal system of zinc oxide with space group P6