Introduction: Climate-related disasters have cost the world over £450 billion over the last 3 years. In the race to mitigate these effects, the UK government has committed to net-zero emissions by 2050. Transport provides the largest single sector contribution to CO2 emissions, the road network accounts for up to 91%. As the only UK country without a formal climate change bill Northern Ireland could compromise the overall effort.
Case description: In this research a survey of road asset owners, managers, academics, consultants, public transport providers was undertaken to seek to understand the current barriers to adapting a dispersed rural road network in Northern Ireland for net-zero transport. The survey data was collected though an online form with a combination of multiple choice and open ended questions. Thematic analysis was used to code and analyse the data collected which enabled a discussion around the key expert opinions gathered.
Discussion and evaluation: The paper presents details of the current road network in Northern Ireland and highlights some of the issues faced by asset owners. The survey questions were developed though engagement with transport professionals in Northern Ireland and focus predominantly on road use rather than the impact of current land management practices or environmental conditions such as flood risk. The response highlights a clear enthusiasm for change in the operation of the public road network which is hindered by a lack of government strategy and limited public consultation.
Conclusions: The high response rate (41%) for the survey highlights the interest of those in the transport sector to engage in activities which can support a better understanding of how road networks contribute to CO2 emissions. Within the survey data a requirement for behavioural change was highlighted as a key step to reduce transport related emissions, the enthusiasm for change demonstrates this is the optimum time to engage with the public and develop clear transport strategies. More accurate findings and empirical evidence could have been established had the study considered specific, transport planning, environmental and land use conditions for Northern Ireland. This will be the focus of further research in this area to enable clear translation of the research to other countries.
This paper presents a review of four existing growth models for near-neutral pH stress corrosion cracking (NNpHSCC) defects on buried oil and gas pipelines: Chen et al.'s model, two models developed at the Southwest Research Institute (SwRI) and Xing et al.'s model. All four models consider corrosion fatigue enhanced by hydrogen embrittlement as the main growth mechanism for NNpHSCC. The predictive accuracy of these growth models is investigated based on 39 crack growth rates obtained from full-scale tests conducted at the CanmetMATERIALS of Natural Resources Canada of pipe specimens that are in contact with NNpH soils and subjected to cyclic internal pressures. The comparison of the observed and predicted crack growth rates indicates that the hydrogen-enhanced decohesion (HEDE) component of Xing et al.'s model leads to on average reasonably accurate predictions with the corresponding mean and coefficient of variation (COV) of the observed-to-predicted ratios being 1.06 and 61.2%, respectively. The predictive accuracy of the other three models are markedly poorer. The analysis results suggest that further research is needed to improve existing growth models or develop new growth models to facilitate the pipeline integrity management practice with respect to NNpHSCC.
The world is experiencing a rapid loss in the biodiversity of pollinator insects. Habitat segmentation caused by infrastructures is one of the contributing factors. To improve the habitat connectivity of pollinator insects, it is proposed in this study to build green corridors for pollinators over linear infrastructures such as highways. In the context of suburban areas of a large city, this study examines differences in air parameters between natural environments and a roadside environment based on monitored and estimated data. Influences of different green corridor designs on floral scent dispersion are also investigated using computational fluid dynamics (CFD) modeling and simulation. It is found that, if flower plants are installed on highway overpasses, the floral scents would be better preserved as compared with those in a natural environment due to the lower concentrations of oxidative radicals in the air above highways. The stronger floral scents and their wider dispersion may help attract pollinators. Conversely, highway air contains a variety of volatine organic compounds (VOCs) that are traced to highway operations and pavements. Hence, the overall profile of VOCs in a highway environment differs from that in a natural environment. Results from CFD modeling and simulation suggest that the use of green corridors planted with flowers on the highway overpass can greatly improve the connectivity of floral scents. Hence, with proper engineering design and right combination of plant species, green corridors built on highway overpasses have the potential to facilitate pollinators to cross the road, thereby improving their habitat connectivity and resilience against declining biodiversity.