Antibiotic contamination represents a pressing environmental crisis affecting aquatic ecosystems globally, a challenge that climate change only intensifies. Key culprits of this pollution include pharmaceutical discharges, agricultural runoff, and improper waste disposal. These antibiotics persist in our water systems due to their stable chemical structures, while climate-related factors like rising temperatures and extreme weather can exacerbate their impact. The accumulation of these substances poses significant threats to aquatic life, human health, and the broader environment, as they facilitate the alarming spread of antimicrobial resistance among microorganisms. Unfortunately, traditional water treatment methods remain largely ineffective against these stubborn pollutants. In response to this growing issue, green nanotechnology emerges as a promising and sustainable solution. By harnessing plant extracts, microbes, and agricultural waste for the synthesis of nanoparticles, this approach minimizes environmental harm while effectively addressing contamination. Metal oxide nanoparticles, carbon-based materials, and biopolymeric nanomaterials have proven to be highly efficient in eliminating antibiotics through processes such as adsorption, photodegradation, and redox reactions. However, the effectiveness and applicability of these nanoparticles under varying climate conditions warrant further exploration. This review highlights the transformative potential of green nanotechnology for safe and sustainable water remediation. It underscores recent advancements in eco-friendly nanomaterials, elucidating their removal mechanisms, environmental behavior, and the critical need for climate-resilient, safe-by-design strategies. To combat antibiotic pollution effectively amid shifting climatic conditions, we must investigate green nanotechnology for future water treatment practices. This proactive approach not only safeguards our water systems but also ensures a healthier future for both aquatic ecosystems and human communities.
Detecting glyphosate (Gly), a widely used herbicide in agricultural practice worldwide, is crucial due to its environmental impact and potential health risks. This study presents a colorimetric sensor based on gold nanoparticles (AuNPs) functionalized with cysteamine (AuNPs + Cys) for Gly-sensitive and selective detection. The AuNPs were synthesized using the Turkevich method and characterized using ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering, X-ray diffraction spectroscopy, and scanning electron microscopy. The AuNPs display a localized surface plasmon resonance peak at a 520 nm wavelength and have an average size distribution of 23 nm with good dispersion. The AuNPs + Cys exhibit unique optical properties, allowing for visible color changes in response to varying concentrations of Gly. The detection mechanism relies on the interaction between Gly and the Cys on the nanoparticle surface, which induces changes in the aggregation state of the AuNPs, leading to a shift in the UV-vis absorption spectrum. The sensor was tested at a maximum concentration of 100 ppm Gly, with a detection limit of 1.42 ppm and a distinct color change easily visible to the naked eye. To evaluate the sensor's selectivity, assays were conducted in a soil matrix. Glufosinate was employed as a complementary analyte, and the sensor exhibited a clear differentiation, thus achieving selective detection between the herbicides. The developed AuNPs + Cys sensor offers a simple, cost-effective, and efficient method for Gly detection, with potential applications in environmental monitoring and agricultural practices.

