Priya Mandal, Vikramjeet Singh, Jianhui Zhang, Manish K. Tiwari
Transparent non-wetting surfaces with mechanical robustness are critical for applications such as contamination prevention, (anti-)condensation, anti-icing, anti-biofouling, etc. The surface treatments in these applications often use hazardous per- and polyfluoroalkyl substances (PFAS), which are bio-persistent or have compromised durability due to weak polymer/particle interfacial interactions. Hence, developing new approaches to synthesise non-fluorinated liquid-repellent coatings with attributes such as scalable fabrication, transparency, and mechanical durability is important. Here, we present a water-based spray formulation to fabricate non-fluorinated amphiphobic (repellent to both water and low surface tension liquids) coatings by combining polyurethane and porous metal–organic frameworks (MOFs) followed by post-functionalisation with flexible alkyl silanes. Owing to intercalation of polyurethane chains into MOF pores, akin to robust bicontinuous structures in nature, these coatings show excellent impact robustness, resisting high-speed water jets (∼35 m s−1), and a very low ice adhesion strength of ≤30 kPa across multiple icing/de-icing cycles. These surfaces are also smooth and highly transparent, and exhibit excellent amphiphobicity towards a range of low surface tension liquids from water to alcohols and ketones. The multi-functionality, robustness and potential scalability of our approach make this formulation a good alternative to hazardous PFAS-based coatings or solid particle/polymer nanocomposites.
{"title":"Intercalated MOF nanocomposites: robust, fluorine-free and waterborne amphiphobic coatings","authors":"Priya Mandal, Vikramjeet Singh, Jianhui Zhang, Manish K. Tiwari","doi":"10.1039/d4en00762j","DOIUrl":"https://doi.org/10.1039/d4en00762j","url":null,"abstract":"Transparent non-wetting surfaces with mechanical robustness are critical for applications such as contamination prevention, (anti-)condensation, anti-icing, anti-biofouling, <em>etc.</em> The surface treatments in these applications often use hazardous per- and polyfluoroalkyl substances (PFAS), which are bio-persistent or have compromised durability due to weak polymer/particle interfacial interactions. Hence, developing new approaches to synthesise non-fluorinated liquid-repellent coatings with attributes such as scalable fabrication, transparency, and mechanical durability is important. Here, we present a water-based spray formulation to fabricate non-fluorinated amphiphobic (repellent to both water and low surface tension liquids) coatings by combining polyurethane and porous metal–organic frameworks (MOFs) followed by post-functionalisation with flexible alkyl silanes. Owing to intercalation of polyurethane chains into MOF pores, akin to robust bicontinuous structures in nature, these coatings show excellent impact robustness, resisting high-speed water jets (∼35 m s<small><sup>−1</sup></small>), and a very low ice adhesion strength of ≤30 kPa across multiple icing/de-icing cycles. These surfaces are also smooth and highly transparent, and exhibit excellent amphiphobicity towards a range of low surface tension liquids from water to alcohols and ketones. The multi-functionality, robustness and potential scalability of our approach make this formulation a good alternative to hazardous PFAS-based coatings or solid particle/polymer nanocomposites.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"36 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aaron Goodman, Brianna Benner, Manuel David Montaño
The development and application of engineered nanomaterials has required pushing the boundaries of analytical instrumentation in order to detect, quantify and characterize the properties and behaviors of materials at the nanoscale. One technique, single particle ICP-MS, has stood apart for its ability to characterize and quantify inorganic nanomaterials at low concentrations and in complex environmental and biological media. For the past 20 years, this technique has matured significantly, with an ever-expanding scope of application. Where initially it was capable of analyzing precious metal nanoparticles in relatively pristine solutions, now it can be used to characterize multiple different NP populations of varying elemental and isotopic compositions. The types of materials analyzed now extend beyond traditional metallic NPs, with such varied materials as nanominerals, carbon nanotubes, biological cells, and microplastics. In this perspective, we examine the key developments in the past decade of spICP-MS and aim to provide a vision for what this field may look like 10 years from now. The study of nanoparticles, both natural and engineered, will continue to play a vital role in our understanding of climate change, anthropogenic impact, and biogeochemical cycling of nutrients and contaminants in a rapidly changing environment.
{"title":"Out of the Lab and into the Environment: The Evolution of Single Particle ICP-MS Over the Past Decade","authors":"Aaron Goodman, Brianna Benner, Manuel David Montaño","doi":"10.1039/d4en00804a","DOIUrl":"https://doi.org/10.1039/d4en00804a","url":null,"abstract":"The development and application of engineered nanomaterials has required pushing the boundaries of analytical instrumentation in order to detect, quantify and characterize the properties and behaviors of materials at the nanoscale. One technique, single particle ICP-MS, has stood apart for its ability to characterize and quantify inorganic nanomaterials at low concentrations and in complex environmental and biological media. For the past 20 years, this technique has matured significantly, with an ever-expanding scope of application. Where initially it was capable of analyzing precious metal nanoparticles in relatively pristine solutions, now it can be used to characterize multiple different NP populations of varying elemental and isotopic compositions. The types of materials analyzed now extend beyond traditional metallic NPs, with such varied materials as nanominerals, carbon nanotubes, biological cells, and microplastics. In this perspective, we examine the key developments in the past decade of spICP-MS and aim to provide a vision for what this field may look like 10 years from now. The study of nanoparticles, both natural and engineered, will continue to play a vital role in our understanding of climate change, anthropogenic impact, and biogeochemical cycling of nutrients and contaminants in a rapidly changing environment.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"11 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Developing efficient, non-toxic (or low toxicity), low-cost, and long-lasting antibacterial and algae-inhibiting materials is an important issue closely related to human health. Coral sand, due to its porous and biologically residual nature, is an environmentally friendly pure natural material, and its application in the field of environment has attracted attention. This study used coral sand as a carrier to immobilize nano silver and obtained the composite material coral sand-Ag (CS-Ag), which could release nano silver in a slow-release manner to achieve the purpose of continuous sterilization and algae inhibition. The research results showed that 44.2% of silver ions could be sustained within one week, demonstrating a silver sustained release effect. There were obvious antibacterial circles around the CS-Ag composite material, with a diameter of 22.5 ± 0.1 mm for Staphylococcus aureus and 24.1 ± 0.1 mm for Escherichia coli. The bactericidal activity of silver-loaded coral sand was affected by environmental temperature and pH value. SEM observations showed that silver-loaded coral sand caused scars or holes on the surface of bacterial cells, which also confirmed its ability to damage bacterial cells. This material also had an inhibitory effect on single-cell algae. In the treatment group with a concentration of 1.0 g L−1, the inhibition efficiency of CS-Ag on the growth of microalgae for 96 h can reach 89.7%. The addition of silver-loaded coral sand also affected the structural morphology of algal cells and the synthesis of chlorophyll a, thereby inhibiting photosynthesis and respiration, respectively. The high concentration of silver-loaded coral sand almost completely inhibited the photosynthesis and respiration of algal cells. Therefore, CS-Ag is expected to achieve the removal of bacteria and algae in intensive aquaculture water and achieve harmless disease control.
{"title":"Enhanced antibacterial and algae inhibition performance by coral sand-supported nano-Ag composites","authors":"Sufeng Wang, Fengjing Lv, Wen Zhang, Jingshan Li, Mingyang Lin, Zhengyi Tao","doi":"10.1039/d4en01057d","DOIUrl":"https://doi.org/10.1039/d4en01057d","url":null,"abstract":"Developing efficient, non-toxic (or low toxicity), low-cost, and long-lasting antibacterial and algae-inhibiting materials is an important issue closely related to human health. Coral sand, due to its porous and biologically residual nature, is an environmentally friendly pure natural material, and its application in the field of environment has attracted attention. This study used coral sand as a carrier to immobilize nano silver and obtained the composite material coral sand-Ag (CS-Ag), which could release nano silver in a slow-release manner to achieve the purpose of continuous sterilization and algae inhibition. The research results showed that 44.2% of silver ions could be sustained within one week, demonstrating a silver sustained release effect. There were obvious antibacterial circles around the CS-Ag composite material, with a diameter of 22.5 ± 0.1 mm for <em>Staphylococcus aureus</em> and 24.1 ± 0.1 mm for <em>Escherichia coli</em>. The bactericidal activity of silver-loaded coral sand was affected by environmental temperature and pH value. SEM observations showed that silver-loaded coral sand caused scars or holes on the surface of bacterial cells, which also confirmed its ability to damage bacterial cells. This material also had an inhibitory effect on single-cell algae. In the treatment group with a concentration of 1.0 g L<small><sup>−1</sup></small>, the inhibition efficiency of CS-Ag on the growth of microalgae for 96 h can reach 89.7%. The addition of silver-loaded coral sand also affected the structural morphology of algal cells and the synthesis of chlorophyll <em>a</em>, thereby inhibiting photosynthesis and respiration, respectively. The high concentration of silver-loaded coral sand almost completely inhibited the photosynthesis and respiration of algal cells. Therefore, CS-Ag is expected to achieve the removal of bacteria and algae in intensive aquaculture water and achieve harmless disease control.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"120 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The management of antibiotic resistance gene (ARG) contamination in the soil-plant system is a critical area of research with significant implications for public health and environmental sustainability. Recently, engineered nanomaterials (ENMs) have been developed to enhance plant growth and address the global food crisis. Studies on the effects of nanomaterials mostly indicate an increase in the spread of antibiotic resistance, while emerging findings reveal the potential of ENMs in mitigating ARG pollution. Unlike existing mechanisms such as adsorption, DNA damage, and microbial disinfection involved in ARG removal, ENMs are specifically modified (e.g., with particular chemical compositions or surface charge adjustment) to inhibit the transfer of ARGs and migration of antibiotic-resistant bacteria. The integration of ENMs with advanced technologies (e.g., CRISPR gene editing) holds great promise for remediating antibiotic resistance in soil-plant systems. Here, we provide an overview of ENM-ARG interactions and propose applications of tailored ENMs to inhibit ARG dissemination during the development of nano-enabled agriculture, addressing major challenges and directions for optimizing efficacy and safety of ENMs-based strategies for mitigating ARG contamination in agriculture.
{"title":"Tailoring Nanomaterials towards Global One Health: A Promising Nano-strategy against Antibiotic Resistance","authors":"Feiran Chen, Shuhan Zhang, Xi Wang, Zhenyu Wang","doi":"10.1039/d4en00854e","DOIUrl":"https://doi.org/10.1039/d4en00854e","url":null,"abstract":"The management of antibiotic resistance gene (ARG) contamination in the soil-plant system is a critical area of research with significant implications for public health and environmental sustainability. Recently, engineered nanomaterials (ENMs) have been developed to enhance plant growth and address the global food crisis. Studies on the effects of nanomaterials mostly indicate an increase in the spread of antibiotic resistance, while emerging findings reveal the potential of ENMs in mitigating ARG pollution. Unlike existing mechanisms such as adsorption, DNA damage, and microbial disinfection involved in ARG removal, ENMs are specifically modified (e.g., with particular chemical compositions or surface charge adjustment) to inhibit the transfer of ARGs and migration of antibiotic-resistant bacteria. The integration of ENMs with advanced technologies (e.g., CRISPR gene editing) holds great promise for remediating antibiotic resistance in soil-plant systems. Here, we provide an overview of ENM-ARG interactions and propose applications of tailored ENMs to inhibit ARG dissemination during the development of nano-enabled agriculture, addressing major challenges and directions for optimizing efficacy and safety of ENMs-based strategies for mitigating ARG contamination in agriculture.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"35 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extensive knowledge is available on the impacts of both engineered nanomaterials (ENMs) and microplastics, yet there remains a critical gap in understanding the impacts of nanoplastics at the cellular and subcellular effects at sublethal concentrations. This study investigates the impacts of PS NPs on Oncorhynchus mykiss (rainbow trout) gill epithelial cells, emphasizing the crucial role of surface charge in nano-bio interactions. The current study employs both traditional and non-traditional toxicological techniques presenting an image-based study to examine PS NP-cellular interactions at sublethal doses. Our findings demonstrated that relative to the uncharged and negatively charged PS NPs, the positively charged PS NPs significantly decreased cell viability at 4 μg mL-1 (EC50: 4.31 μg mL-1). However, at the sublethal concentration of 2 μg mL-1, phenotypic profiling analysis indicates that positively charged PS NPs elicit a significant change to cellular morphology and suggests key interactions with subcellular components. As the impacts measured are novel, further research into the underlying mechanisms will contribute to our understanding of nanoparticle toxicity in vertebrate species guiding both the policy and sustainable design of nanoparticles.
{"title":"Phenotypic profiling reveals polystyrene nanoplastics elicit sublethal and lethal effects on cellular morphology in rainbow trout gill epithelial cells","authors":"Lissett Guadalupe Diaz, Rebecca Klaper","doi":"10.1039/d4en01149j","DOIUrl":"https://doi.org/10.1039/d4en01149j","url":null,"abstract":"Extensive knowledge is available on the impacts of both engineered nanomaterials (ENMs) and microplastics, yet there remains a critical gap in understanding the impacts of nanoplastics at the cellular and subcellular effects at sublethal concentrations. This study investigates the impacts of PS NPs on Oncorhynchus mykiss (rainbow trout) gill epithelial cells, emphasizing the crucial role of surface charge in nano-bio interactions. The current study employs both traditional and non-traditional toxicological techniques presenting an image-based study to examine PS NP-cellular interactions at sublethal doses. Our findings demonstrated that relative to the uncharged and negatively charged PS NPs, the positively charged PS NPs significantly decreased cell viability at 4 μg mL<small><sup>-1</sup></small> (EC50: 4.31 μg mL<small><sup>-1</sup></small>). However, at the sublethal concentration of 2 μg mL<small><sup>-1,</sup></small> phenotypic profiling analysis indicates that positively charged PS NPs elicit a significant change to cellular morphology and suggests key interactions with subcellular components. As the impacts measured are novel, further research into the underlying mechanisms will contribute to our understanding of nanoparticle toxicity in vertebrate species guiding both the policy and sustainable design of nanoparticles.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"113 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandra Taylor, John Cliff, Thomas W Wiestma, Kevin Rosso
The ability to simultaneously monitor the flux of iron atoms within the solution and solid phases can provide considerable insight into mechanisms of iron oxide mineral transformations. The autocatalytic interaction between hematite and Fe(II)-oxalate has long been of interest for its environmental and industrial relevance. In this study we take advantage of iron isotopic labelling and mass-sensitive imaging at the single particle scale to determine how changes in solution composition correlate with the morphologic evolution of faceted, micrometer-sized hematite platelets. Net dissolution is confirmed through analyses of aqueous iron chemistry, as well as by quantitative atomic force microscopy. Isotopic mapping techniques show that Fe(II) readily adsorbs to (001) and (012) surfaces in the absence of oxalate, but when oxalate is present selective dissolution of the (001) surface prevails and 57Fe deposition via recrystallization is not observed. Comparison between particle microtopographies following reaction with Fe(II), oxalate, and Fe(II)-oxalate show substantially different behavior, consistent with distinct mechanisms of interaction with hematite surfaces. The extensive characterization conducted on the coupled solution/solid dynamics in this system provides new insight for distinguishing crystal growth, dissolution, and recrystallization processes.
{"title":"Facet-dependent growth and dissolution of hematite resulting from autocatalytic interactions with Fe(II) and oxalic acid","authors":"Sandra Taylor, John Cliff, Thomas W Wiestma, Kevin Rosso","doi":"10.1039/d4en01004c","DOIUrl":"https://doi.org/10.1039/d4en01004c","url":null,"abstract":"The ability to simultaneously monitor the flux of iron atoms within the solution and solid phases can provide considerable insight into mechanisms of iron oxide mineral transformations. The autocatalytic interaction between hematite and Fe(II)-oxalate has long been of interest for its environmental and industrial relevance. In this study we take advantage of iron isotopic labelling and mass-sensitive imaging at the single particle scale to determine how changes in solution composition correlate with the morphologic evolution of faceted, micrometer-sized hematite platelets. Net dissolution is confirmed through analyses of aqueous iron chemistry, as well as by quantitative atomic force microscopy. Isotopic mapping techniques show that Fe(II) readily adsorbs to (001) and (012) surfaces in the absence of oxalate, but when oxalate is present selective dissolution of the (001) surface prevails and 57Fe deposition via recrystallization is not observed. Comparison between particle microtopographies following reaction with Fe(II), oxalate, and Fe(II)-oxalate show substantially different behavior, consistent with distinct mechanisms of interaction with hematite surfaces. The extensive characterization conducted on the coupled solution/solid dynamics in this system provides new insight for distinguishing crystal growth, dissolution, and recrystallization processes.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"18 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urban rainfall and runoff are major transport vectors for pollutants into the aquatic environment. In this context, road traffic is a significant factor in the contamination of the urban environment in general, and runoff in particular. Some metals, such as Cu, Zn, Fe, and Ti, have been found in dissolved fraction (< 0.45 μm) in such water. The present study focuses on characterizing the number concentration and mass distribution of nanoparticles (NPs) containing Ti, Fe, Zn, and Cu in runoff from a heavily trafficked urban motorway (≈ 100,000 vehicles/day) in Nantes, western France. Seven runoff samples were taken between July 2023 and March 2024. A rainfall sample was also taken in the same proximity for comparative purposes, providing knowledge of atmospheric wet deposition levels. Using two sample preparation methods, filtration, and ultra-filtration, single particle ICP-MS (sp-ICP-MS) analysis confirmed the existence of the targeted elements in nanoparticulate fraction. Ti was found to be the most abundant element, followed by Fe, while Zn and Cu were less prevalent, with average number concentrations of 4.83 x 10^8, 1.68 x 10^8, 7.78 x 10^7 and 9.04 x 10^7 particles/L, respectively. Except for Fe, runoff samples exhibited higher concentrations of Ti, Zn, and Cu nanoparticles compared to the rainfall sample, with a larger average equivalent diameter indicating a likely anthropogenic origin. Comparisons between sample preparation methods demonstrates that the effectiveness of ultrafiltration is element dependent.
城市降雨和径流是污染物进入水生环境的主要运输载体。在这方面,道路交通是一般城市环境污染的一个重要因素,特别是径流污染。一些金属,如Cu、Zn、Fe和Ti,已在溶解馏分(<;0.45 μm)。本研究主要研究了法国西部南特一条交通繁忙的城市高速公路(约10万辆/天)径流中含有Ti、Fe、Zn和Cu的纳米颗粒(NPs)的数量、浓度和质量分布。在2023年7月至2024年3月期间采集了7份径流样本。为了比较的目的,还在同一附近采集了降雨样本,提供了大气湿沉积水平的知识。采用过滤和超滤两种样品制备方法,单颗粒ICP-MS (sp-ICP-MS)分析证实了纳米颗粒中目标元素的存在。其中,Ti含量最高,Fe次之,Zn和Cu含量较低,平均浓度分别为4.83 x 10^8、1.68 x 10^8、7.78 x 10^7和9.04 x 10^7粒/L。除铁外,径流样品中Ti、Zn和Cu纳米颗粒的浓度高于降雨样品,平均当量直径更大,表明可能是人为原因。不同样品制备方法的比较表明,超滤的效果与元素有关。
{"title":"Detection and quantification of nanoparticles in runoff from a highly trafficked urban motorway","authors":"Malak DIA, Pierre-Emmanuel Peyneau, Denis Courtier-Murias, Béatrice Béchet","doi":"10.1039/d4en00552j","DOIUrl":"https://doi.org/10.1039/d4en00552j","url":null,"abstract":"Urban rainfall and runoff are major transport vectors for pollutants into the aquatic environment. In this context, road traffic is a significant factor in the contamination of the urban environment in general, and runoff in particular. Some metals, such as Cu, Zn, Fe, and Ti, have been found in dissolved fraction (< 0.45 μm) in such water. The present study focuses on characterizing the number concentration and mass distribution of nanoparticles (NPs) containing Ti, Fe, Zn, and Cu in runoff from a heavily trafficked urban motorway (≈ 100,000 vehicles/day) in Nantes, western France. Seven runoff samples were taken between July 2023 and March 2024. A rainfall sample was also taken in the same proximity for comparative purposes, providing knowledge of atmospheric wet deposition levels. Using two sample preparation methods, filtration, and ultra-filtration, single particle ICP-MS (sp-ICP-MS) analysis confirmed the existence of the targeted elements in nanoparticulate fraction. Ti was found to be the most abundant element, followed by Fe, while Zn and Cu were less prevalent, with average number concentrations of 4.83 x 10^8, 1.68 x 10^8, 7.78 x 10^7 and 9.04 x 10^7 particles/L, respectively. Except for Fe, runoff samples exhibited higher concentrations of Ti, Zn, and Cu nanoparticles compared to the rainfall sample, with a larger average equivalent diameter indicating a likely anthropogenic origin. Comparisons between sample preparation methods demonstrates that the effectiveness of ultrafiltration is element dependent.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"45 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The challenge of cobalt ion separation was addressed by developing a novel MOFs nanofiber, Co(II)-PIIMs. Initially, Co(II)-SIM-IIP were synthesized using zinc-based MOFs (SIM-1) as a matrix and tetraethylpentadiamine (TEPA) as a functional monomer through ion imprinting technique (IIT). Subsequently, Co(II)-PIIMs-x nanofibers were fabricated via electrospinning. Co(II)-SIM-IIP were incorporated as fillers, while PAN was used as the substrate, aiming at selectively separating cobalt ions. Optimal performance was achieved with a 10% doping level of Co(II)-SIM-IIP, resulting in adsorptive capacity peaking at 112.74 mg/g, along with membrane flux of 1095 L/m² h, and a retention rate of 43.49%. The material exhibited excellent selectivity with high selectivity factors for various ions such as Ca2+ (7.42), K+ (55.98), Mg2+ (72.30), and Ni2+ (1.28). Adsorption mechanism results indicated that cobalt adsorption by Co(II)-PIIMs is governed by the adsorption rate control step and the even distribution of cobalt on the surface, aligning with chemisorption properties. After five adsorption-desorption cycles, Co(II)-PIIMs demonstrated excellent regeneration capability, maintaining over 95% of their initial adsorption capacity. These impressive selectivity factors underscore the material's capability to selectively adsorb cobalt ions over other competing ions, making it a promising candidate for efficient separation and purification processes in environmental remediation applications.
{"title":"Development of a Novel MOFs-Based Nanofiber for Highly Selective Removal of Cobalt from Aqueous Solutions","authors":"Yinyin Peng, Yang Luo, Shuyuan Liu, Cong Yin, Derong Liu, Bowen Hu, Xiaoqin Pu, Guoyuan Yuan, Wei Xiong","doi":"10.1039/d4en01058b","DOIUrl":"https://doi.org/10.1039/d4en01058b","url":null,"abstract":"The challenge of cobalt ion separation was addressed by developing a novel MOFs nanofiber, Co(II)-PIIMs. Initially, Co(II)-SIM-IIP were synthesized using zinc-based MOFs (SIM-1) as a matrix and tetraethylpentadiamine (TEPA) as a functional monomer through ion imprinting technique (IIT). Subsequently, Co(II)-PIIMs-x nanofibers were fabricated via electrospinning. Co(II)-SIM-IIP were incorporated as fillers, while PAN was used as the substrate, aiming at selectively separating cobalt ions. Optimal performance was achieved with a 10% doping level of Co(II)-SIM-IIP, resulting in adsorptive capacity peaking at 112.74 mg/g, along with membrane flux of 1095 L/m² h, and a retention rate of 43.49%. The material exhibited excellent selectivity with high selectivity factors for various ions such as Ca2+ (7.42), K+ (55.98), Mg2+ (72.30), and Ni2+ (1.28). Adsorption mechanism results indicated that cobalt adsorption by Co(II)-PIIMs is governed by the adsorption rate control step and the even distribution of cobalt on the surface, aligning with chemisorption properties. After five adsorption-desorption cycles, Co(II)-PIIMs demonstrated excellent regeneration capability, maintaining over 95% of their initial adsorption capacity. These impressive selectivity factors underscore the material's capability to selectively adsorb cobalt ions over other competing ions, making it a promising candidate for efficient separation and purification processes in environmental remediation applications.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"11 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Di Zhang, Keqing Liu, Chengcheng Feng, Xianmin Wang, Ayat J. S. Al-Azab, Han Lu, Haiyan Ma, Ying Tang, Li Xu, Takeshi Ohama, Fantao Kong
The ethyl cyanoacrylate nanoparticles (ECA-NPs) have recently been reported as promising novel antibacterial NPs capable of inhibiting the growth of several Gram-positive and Gram-negative bacteria. However, the effects of ECA-NPs on microalgae, which are primary producers in aquatic ecosystems, remain unknown. In this study, we examined the effects of ECA-NPs on the microalga Chlorella vulgaris (Chlorella) at both cellular and molecular levels. A high concentration of ECA-NPs (100 μg/mL) exhibited strong growth inhibitory effects on Chlorella. In the ECA-NPs-treated cells, transmission electron microscope (TEM) observations showed the prominent internalization of ECA-NPs in the periplasmic space and vacuoles. Moreover, notable morphological changes such as a thinner cell wall, stacked thylakoid structure, and plasmolysis were observed. ECA-NPs exposed Chlorella secreted more extracellular polymeric substances (EPS) and accumulated more storage lipids (mainly triacylglycerol, TAG) compared to the control. However, the contents of total fatty acids and starch were decreased, and photosynthetic activity was reduced. In addition, the content of intracellular reactive oxygen species (ROS) and the activities of antioxidant enzymes in ECA-NPs-treated cells were significantly higher than in the control. Transcriptomic analysis revealed the downregulation of genes that are involved in drug binding/catabolic process, chemical stimulus detection, and cell wall component catabolic process (chitin catabolism), while genes involved in photosynthetic membrane and plastid thylakoid were upregulated. These results indicated that the effects of ECA-NPs exposure are not limited to specific metabolic pathways, but rather influence metabolic pathways across the entire cell. This study also provided new insights into the potential toxic effects associated with cyanoacrylate NPs in phytoplankton.
{"title":"Physiological and transcriptomic responses of Chlorella vulgaris to novel antibacterial nanoparticles of ethyl cyanoacrylate polymer","authors":"Di Zhang, Keqing Liu, Chengcheng Feng, Xianmin Wang, Ayat J. S. Al-Azab, Han Lu, Haiyan Ma, Ying Tang, Li Xu, Takeshi Ohama, Fantao Kong","doi":"10.1039/d4en00861h","DOIUrl":"https://doi.org/10.1039/d4en00861h","url":null,"abstract":"The ethyl cyanoacrylate nanoparticles (ECA-NPs) have recently been reported as promising novel antibacterial NPs capable of inhibiting the growth of several Gram-positive and Gram-negative bacteria. However, the effects of ECA-NPs on microalgae, which are primary producers in aquatic ecosystems, remain unknown. In this study, we examined the effects of ECA-NPs on the microalga Chlorella vulgaris (Chlorella) at both cellular and molecular levels. A high concentration of ECA-NPs (100 μg/mL) exhibited strong growth inhibitory effects on Chlorella. In the ECA-NPs-treated cells, transmission electron microscope (TEM) observations showed the prominent internalization of ECA-NPs in the periplasmic space and vacuoles. Moreover, notable morphological changes such as a thinner cell wall, stacked thylakoid structure, and plasmolysis were observed. ECA-NPs exposed Chlorella secreted more extracellular polymeric substances (EPS) and accumulated more storage lipids (mainly triacylglycerol, TAG) compared to the control. However, the contents of total fatty acids and starch were decreased, and photosynthetic activity was reduced. In addition, the content of intracellular reactive oxygen species (ROS) and the activities of antioxidant enzymes in ECA-NPs-treated cells were significantly higher than in the control. Transcriptomic analysis revealed the downregulation of genes that are involved in drug binding/catabolic process, chemical stimulus detection, and cell wall component catabolic process (chitin catabolism), while genes involved in photosynthetic membrane and plastid thylakoid were upregulated. These results indicated that the effects of ECA-NPs exposure are not limited to specific metabolic pathways, but rather influence metabolic pathways across the entire cell. This study also provided new insights into the potential toxic effects associated with cyanoacrylate NPs in phytoplankton.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"24 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Son Hong Nguyen, Ngoc Toan Vu, Hoang Van Nguyen, Binh Nguyen, Trung Thien Luong
This review explores the advancements and trends in biologically synthesized Fe⁰-based nanoparticles (NPs) and their applications as catalysts in treating chlorinated organic compounds. The persistent nature and bioaccumulative characteristics of chlorinated organic compounds enable their accumulation in water, soil, and the food chain, leading to significant environmental and human health issues. The widespread presence of these toxic substances underscores the urgent need for effective treatment and remediation strategies. Biologically synthesized Fe⁰-based NPs are recognized for their considerable surface area, potent reduction properties, and environmental compatibility. These attributes render them a promising approach for the remediation of chlorinated compounds. This review categorizes synthesis methods into key groups: microorganisms, plant extracts, biological waste, and industrial-agricultural by-products. Recent studies highlight the promising applications of bio-NPs in environmental remediation, emphasizing their potential for sustainable and efficient treatment solutions. This analysis thoroughly examines current trends in the application and enhancement of nanoparticle activity, delineating various challenges and future prospects comprehensively. It offers well-defined research directions with high practical relevance, aiming to contribute to advancing knowledge and guiding future research endeavors in the field.
{"title":"Biologically synthesized Fe0-based nanoparticles and their application trends as catalysts in the treatment of chlorinated organic compounds: a review","authors":"Son Hong Nguyen, Ngoc Toan Vu, Hoang Van Nguyen, Binh Nguyen, Trung Thien Luong","doi":"10.1039/d4en00843j","DOIUrl":"https://doi.org/10.1039/d4en00843j","url":null,"abstract":"This review explores the advancements and trends in biologically synthesized Fe⁰-based nanoparticles (NPs) and their applications as catalysts in treating chlorinated organic compounds. The persistent nature and bioaccumulative characteristics of chlorinated organic compounds enable their accumulation in water, soil, and the food chain, leading to significant environmental and human health issues. The widespread presence of these toxic substances underscores the urgent need for effective treatment and remediation strategies. Biologically synthesized Fe⁰-based NPs are recognized for their considerable surface area, potent reduction properties, and environmental compatibility. These attributes render them a promising approach for the remediation of chlorinated compounds. This review categorizes synthesis methods into key groups: microorganisms, plant extracts, biological waste, and industrial-agricultural by-products. Recent studies highlight the promising applications of bio-NPs in environmental remediation, emphasizing their potential for sustainable and efficient treatment solutions. This analysis thoroughly examines current trends in the application and enhancement of nanoparticle activity, delineating various challenges and future prospects comprehensively. It offers well-defined research directions with high practical relevance, aiming to contribute to advancing knowledge and guiding future research endeavors in the field.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"57 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}