Pub Date : 2024-06-18eCollection Date: 2024-12-01DOI: 10.1093/lifemeta/loae026
Fenghua Xu, Shoujie Zhao, Yejing Zhu, Jun Zhu, Lingyang Kong, Huichen Li, Shouzheng Ma, Bo Wang, Yongquan Qu, Zhimin Tian, Junlong Zhao, Lei Liu
Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases and is mainly caused by metabolic disorders and systemic inflammatory responses. Recent studies have indicated that the activation of the mammalian (or mechanistic) target of rapamycin (mTOR) signaling participates in MASH progression by facilitating lipogenesis and regulating the immune microenvironment. Although several molecular medicines have been demonstrated to inhibit the phosphorylation or activation of mTOR, their poor specificity and side effects limit their clinical application in MASH treatment. Phytic acid (PA), as an endogenous and natural antioxidant in the liver, presents significant anti-inflammatory and lipid metabolism-inhibiting functions to alleviate MASH. In this study, considering the unique phosphate-rich structure of PA, we developed a cerium-PA (CePA) nanocomplex by combining PA with cerium ions possessing phosphodiesterase activity. CePA intervened in the S2448 phosphorylation of mTOR through the occupation effect of phosphate groups, thereby inhibiting the inflammatory response and mTOR-sterol regulatory element-binding protein 1 (SREBP1) regulation axis. The in vivo experiments suggested that CePA alleviated MASH progression and fat accumulation in high-fat diet-fed mice. Mechanistic studies validated that CePA exerts a liver-targeted mTOR repressive function, making it a promising candidate for MASH and other mTOR-related disease treatments.
{"title":"Phytic acid-based nanomedicine against mTOR represses lipogenesis and immune response for metabolic dysfunction-associated steatohepatitis therapy.","authors":"Fenghua Xu, Shoujie Zhao, Yejing Zhu, Jun Zhu, Lingyang Kong, Huichen Li, Shouzheng Ma, Bo Wang, Yongquan Qu, Zhimin Tian, Junlong Zhao, Lei Liu","doi":"10.1093/lifemeta/loae026","DOIUrl":"10.1093/lifemeta/loae026","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases and is mainly caused by metabolic disorders and systemic inflammatory responses. Recent studies have indicated that the activation of the mammalian (or mechanistic) target of rapamycin (mTOR) signaling participates in MASH progression by facilitating lipogenesis and regulating the immune microenvironment. Although several molecular medicines have been demonstrated to inhibit the phosphorylation or activation of mTOR, their poor specificity and side effects limit their clinical application in MASH treatment. Phytic acid (PA), as an endogenous and natural antioxidant in the liver, presents significant anti-inflammatory and lipid metabolism-inhibiting functions to alleviate MASH. In this study, considering the unique phosphate-rich structure of PA, we developed a cerium-PA (CePA) nanocomplex by combining PA with cerium ions possessing phosphodiesterase activity. CePA intervened in the S2448 phosphorylation of mTOR through the occupation effect of phosphate groups, thereby inhibiting the inflammatory response and mTOR-sterol regulatory element-binding protein 1 (SREBP1) regulation axis. The <i>in vivo</i> experiments suggested that CePA alleviated MASH progression and fat accumulation in high-fat diet-fed mice. Mechanistic studies validated that CePA exerts a liver-targeted mTOR repressive function, making it a promising candidate for MASH and other mTOR-related disease treatments.</p>","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 6","pages":"loae026"},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vitellogenins (VITs) are the most abundant proteins in adult hermaphrodite Caenorhabditis elegans. VITs are synthesized in the intestine, secreted to the pseudocoelom, matured into yolk proteins, and finally deposited in oocytes as nutrients for progeny developme nt. How VITs are secreted out of the intestine remains unclear. Using immuno-electron microscopy (immuno-EM), we localize intestinal VITs along an exocytic pathway consisting of the rough endoplasmic reticulum (ER), the Golgi, and the lipid bilayer-bounded VIT vesicles (VVs). This suggests that the classic exocytotic pathway mediates the secretion of VITs from the intestine to the pseudocoelom. We also show that pseudocoelomic yolk patches (PYPs) are membrane-less and amorphous. The different VITs/yolk proteins are packed as a mixture into the above structures. The size of VVs can vary with the VIT levels and the age of the worm. On adult day 2 (AD 2), intestinal VVs (~200 nm in diameter) are smaller than gonadal yolk organelles (YOs, ~500 nm in diameter). VVs, PYPs, and YOs share a uniform medium electron density by conventional EM. The morphological profiles documented in this study serve as a reference for future studies of VITs/yolk proteins.
卵黄素(VIT)是成年雌雄同体秀丽隐杆线虫体内含量最高的蛋白质。VITs 在肠道中合成,分泌到假肠,成熟为卵黄蛋白,最后沉积在卵母细胞中,作为后代发育的营养物质。VIT 如何分泌出肠道仍不清楚。利用免疫电子显微镜(immuno-EM),我们确定了肠道 VIT 沿着由粗面内质网(ER)、高尔基体和脂质双分子层结合的 VIT 囊泡(VVs)组成的外泌途径。这表明,经典的外泌途径介导了 VIT 从肠道分泌到伪肠。我们还发现假肠卵黄斑(PYPs)是无膜和无定形的。不同的 VITs/卵黄蛋白以混合物的形式包裹在上述结构中。VV的大小会随着VIT水平和蠕虫年龄的变化而变化。在成虫第 2 天(AD 2),肠道 VV(直径约 200 nm)小于性腺卵黄细胞器(YOs,直径约 500 nm)。在传统的电磁学中,VVs、PYPs 和 YOs 具有均匀的中等电子密度。本研究记录的形态特征可作为今后研究 VITs/卵黄蛋白的参考。
{"title":"Immuno-electron microscopy localizes Caenorhabditis elegans vitellogenins along the classic exocytosis route","authors":"Chao Zhai, Nan Zhang, Xixia Li, Xue-Ke Tan, Fei Sun, Meng-Qiu Dong","doi":"10.1093/lifemeta/loae025","DOIUrl":"https://doi.org/10.1093/lifemeta/loae025","url":null,"abstract":"\u0000 Vitellogenins (VITs) are the most abundant proteins in adult hermaphrodite Caenorhabditis elegans. VITs are synthesized in the intestine, secreted to the pseudocoelom, matured into yolk proteins, and finally deposited in oocytes as nutrients for progeny developme nt. How VITs are secreted out of the intestine remains unclear. Using immuno-electron microscopy (immuno-EM), we localize intestinal VITs along an exocytic pathway consisting of the rough endoplasmic reticulum (ER), the Golgi, and the lipid bilayer-bounded VIT vesicles (VVs). This suggests that the classic exocytotic pathway mediates the secretion of VITs from the intestine to the pseudocoelom. We also show that pseudocoelomic yolk patches (PYPs) are membrane-less and amorphous. The different VITs/yolk proteins are packed as a mixture into the above structures. The size of VVs can vary with the VIT levels and the age of the worm. On adult day 2 (AD 2), intestinal VVs (~200 nm in diameter) are smaller than gonadal yolk organelles (YOs, ~500 nm in diameter). VVs, PYPs, and YOs share a uniform medium electron density by conventional EM. The morphological profiles documented in this study serve as a reference for future studies of VITs/yolk proteins.","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141346708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1093/lifemeta/loae023
H. Demagny, A. Perino, Kristina Schoonjans
{"title":"Protecting liver health with microbial-derived succinylated bile acids","authors":"H. Demagny, A. Perino, Kristina Schoonjans","doi":"10.1093/lifemeta/loae023","DOIUrl":"https://doi.org/10.1093/lifemeta/loae023","url":null,"abstract":"","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141347959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1093/lifemeta/loae024
Peter U Amadi, Da-wei Zhang
{"title":"Cholesin, a new hormone bridges intestinal cholesterol absorption and hepatic synthesis","authors":"Peter U Amadi, Da-wei Zhang","doi":"10.1093/lifemeta/loae024","DOIUrl":"https://doi.org/10.1093/lifemeta/loae024","url":null,"abstract":"","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":" 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-12-27DOI: 10.1093/lifemeta/load051
Anna S Monzel, Michael Levin, Martin Picard
Major life transitions are always difficult because change costs energy. Recent findings have demonstrated how mitochondrial oxidative phosphorylation (OxPhos) defects increase the energetic cost of living, and that excessive integrated stress response (ISR) signaling may prevent cellular identity transitions during development. In this perspective, we discuss general bioenergetic principles of life transitions and the costly molecular processes involved in reprograming the cellular hardware/software as cells shift identity. The energetic cost of cellular differentiation has not been directly quantified, representing a gap in knowledge. We propose that the ISR is an energetic checkpoint evolved to i) prevent OxPhos-deficient cells from engaging in excessively costly transitions, and ii) allow ISR-positive cells to recruit systemic energetic resources by signaling via the brain.
{"title":"The energetics of cellular life transitions.","authors":"Anna S Monzel, Michael Levin, Martin Picard","doi":"10.1093/lifemeta/load051","DOIUrl":"10.1093/lifemeta/load051","url":null,"abstract":"<p><p>Major life transitions are always difficult because change costs energy. Recent findings have demonstrated how mitochondrial oxidative phosphorylation (OxPhos) defects increase the energetic cost of living, and that excessive integrated stress response (ISR) signaling may prevent cellular identity transitions during development. In this perspective, we discuss general bioenergetic principles of life transitions and the costly molecular processes involved in reprograming the cellular hardware/software as cells shift identity. The energetic cost of cellular differentiation has not been directly quantified, representing a gap in knowledge. We propose that the ISR is an energetic checkpoint evolved to i) prevent OxPhos-deficient cells from engaging in excessively costly transitions, and ii) allow ISR-positive cells to recruit systemic energetic resources by signaling via the brain.</p>","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic disease that can progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and cancer. The zonal distribution of biomolecules in the liver is implicated in mediating the disease progression. Recently, G-protein-coupled receptor 35 (GPR35) has been highlighted to play a role in MASLD, but the precise mechanism is not fully understood, particularly, in a liver-zonal manner. Here, we aimed to identify spatially distributed specific genes and metabolites in different liver zonation that are regulated by GPR35 in MASLD, by combining lipid metabolomics, spatial transcriptomics (ST), and spatial metabolomics (SM). We found that GPR35 influenced lipid accumulation, inflammatory and metabolism-related factors in specific regions, notably affecting the anti-inflammation factor ELF4 (E74 like E-twenty six (ETS) transcription factor 4), lipid homeostasis key factor CIDEA (cell death-inducing DNA fragmentation factor alpha (DFFA)-like effector A), and the injury response-related genes SAA1/2/3 (serum amyloid A1/2/3), thereby impacting MASLD progression. Furthermore, SM elucidated specific metabolite distributions across different liver regions, such as C10H11N4O7P (3',5'-cyclic inosine monophosphate (3',5'-IMP)) for the central vein, and this metabolite significantly decreased in the liver zones of GPR35-deficient mice during MASLD progression. Taken together, GPR35 regulates hepatocyte damage repair, controls inflammation, and prevents MASLD progression by influencing phospholipid homeostasis and gene expression in a zonal manner.
代谢功能障碍相关脂肪性肝病(MASLD)是一种代谢疾病,可发展为代谢功能障碍相关脂肪性肝炎(MASH)、肝硬化和癌症。肝脏中生物分子的地带性分布与疾病的进展有关。最近,g蛋白偶联受体35 (GPR35)已被强调在MASLD中发挥作用,但其确切机制尚不完全清楚,特别是以肝区方式。本研究旨在结合脂质代谢组学、空间转录组学(ST)和空间代谢组学(SM),确定MASLD中不同肝分区中受GPR35调控的空间分布特异性基因和代代物。我们发现GPR35影响特定区域的脂质积累、炎症和代谢相关因子,特别是影响抗炎因子ELF4 (E74 like e- 26 (ETS)转录因子4)、脂质稳态关键因子CIDEA(细胞死亡诱导DNA片段因子α (DFFA)样效应因子A)和损伤反应相关基因SAA1/2/3(血清淀粉样蛋白A1/2/3),从而影响MASLD的进展。此外,SM阐明了不同肝脏区域的特定代谢物分布,例如中央静脉的C10H11N4O7P(3',5'-环磷酸肌苷(3',5'-IMP)),并且该代谢物在gpr35缺陷小鼠的肝脏区域中在MASLD进展期间显着减少。综上所述,GPR35调节肝细胞损伤修复,控制炎症,并通过影响磷脂稳态和基因表达以区向方式阻止MASLD进展。
{"title":"Spatial multi-omics characterizes GPR35-relevant lipid metabolism signatures across liver zonation in MASLD.","authors":"Wuxiyar Otkur, Yiran Zhang, Yirong Li, Wenjun Bao, Tingze Feng, Bo Wu, Yaolu Ma, Jing Shi, Li Wang, Shaojun Pei, Wen Wang, Jixia Wang, Yaopeng Zhao, Yanfang Liu, Xiuling Li, Tian Xia, Fangjun Wang, Di Chen, Xinmiao Liang, Hai-Long Piao","doi":"10.1093/lifemeta/loae021","DOIUrl":"10.1093/lifemeta/loae021","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic disease that can progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and cancer. The zonal distribution of biomolecules in the liver is implicated in mediating the disease progression. Recently, G-protein-coupled receptor 35 (GPR35) has been highlighted to play a role in MASLD, but the precise mechanism is not fully understood, particularly, in a liver-zonal manner. Here, we aimed to identify spatially distributed specific genes and metabolites in different liver zonation that are regulated by GPR35 in MASLD, by combining lipid metabolomics, spatial transcriptomics (ST), and spatial metabolomics (SM). We found that GPR35 influenced lipid accumulation, inflammatory and metabolism-related factors in specific regions, notably affecting the anti-inflammation factor ELF4 (E74 like E-twenty six (ETS) transcription factor 4), lipid homeostasis key factor CIDEA (cell death-inducing DNA fragmentation factor alpha (DFFA)-like effector A), and the injury response-related genes <i>SAA1/2/3</i> (serum amyloid A1/2/3), thereby impacting MASLD progression. Furthermore, SM elucidated specific metabolite distributions across different liver regions, such as C10H11N4O7P (3',5'-cyclic inosine monophosphate (3',5'-IMP)) for the central vein, and this metabolite significantly decreased in the liver zones of <i>GPR35</i>-deficient mice during MASLD progression. Taken together, GPR35 regulates hepatocyte damage repair, controls inflammation, and prevents MASLD progression by influencing phospholipid homeostasis and gene expression in a zonal manner.</p>","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 6","pages":"loae021"},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24eCollection Date: 2024-08-01DOI: 10.1093/lifemeta/loae019
Callen C Goldsmith, Garron T Dodd
{"title":"TET2: the fat controller of leptin.","authors":"Callen C Goldsmith, Garron T Dodd","doi":"10.1093/lifemeta/loae019","DOIUrl":"10.1093/lifemeta/loae019","url":null,"abstract":"","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"3 4","pages":"loae019"},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout, compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5’-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from blood to liver and activation of urate biosynthesis. Our findings was further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors.Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.
{"title":"Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH","authors":"Ningning Liang, Xuan Yuan, Lili Zhang, Xia Shen, Shanshan Zhong, Luxiao Li, Rui Li, Xiaodong Xu, Xin Chen, Chunzhao Yin, Shuyuan Guo, Jing Ge, Mingjiang Zhu, Yongzhen Tao, Shiting Chen, Yongbing Qian, Nicola Dalbeth, Tony R. Merriman, R. Terkeltaub, Changgui Li, Qiang Xia, Huiyong Yin","doi":"10.1093/lifemeta/loae018","DOIUrl":"https://doi.org/10.1093/lifemeta/loae018","url":null,"abstract":"\u0000 Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout, compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5’-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from blood to liver and activation of urate biosynthesis. Our findings was further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors.Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":"2 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}